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Abstract: Semantic segmentation is an important process of scene recognition with deep learning
frameworks achieving state of the art results, thus gaining much attention from the remote
sensing community. In this paper, an end-to-end conditional random fields generative adversarial
segmentation network is proposed. Three key factors of this algorithm are as follows. First,
the network combines generative adversarial network and Bayesian framework to realize the
estimation from the prior probability to the posterior probability. Second, the skip connected
encoder-decoder network is combined with CRF layer to implement end-to-end network training.
Finally, the adversarial loss and the cross-entropy loss guide the training of the segmentation network
through back propagation. The experimental results show that our proposed method outperformed
FCN in terms of mIoU for 0.0342 and 0.11 on two data sets, respectively.

Keywords: generative adversarial network; conditional random fields; semantic segmentation;
loss function

1. Introduction

1.1. Background

Scene recognition has important applications in inferring information through images, such as
automatic driving, human-computer intersection and virtual reality. Semantic segmentation plays an
important role in scene recognition and paves the way for the complete understanding of the scene,
receiving more and more research and studies.

Traditional image segmentation methods include edge-based [1], region-based [2,3] and hybrid
segmentation. Since the convolutional neural networks (CNNs) have outstanding performance in
various kinds of computer vision tasks [4–7], the ability of CNNs in semantic segmentation has
attracted much attention [8–12]. The state-of-art semantic segmentation algorithm converts CNNs
designed for classification such as AlexNet [13] and VGG-16 [6] into fully convolutional network
(FCN) [14]. FCN completes the transformation from classification model to semantic segmentation
model by replacing the fully-connected layers with deconvolution ones. Image segmentation models
based on CNNs can be divided into three categories: (1) The encoder-decoder neural network, such
as SegNet [15] and U-Net [16]. In the encoding part, the feature map is generated by removing the
last fully connection layer of the network. And then in the decoding part, different structures are
utilized to decode the feature map to obtain the image with original size. The decoding part of SegNet
consists of up-sampling layers and convolutional layers, each up-sampling layer is determined by its
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corresponding maximum pooling coefficient of the encoding part. And the convolutional layers are
used to generate the dense feature map. (2) The atrous convolution pooling neural network, such as
Deeplab [17]. Deeplab proposes atrous convolution, atrous spatial pyramid pooling (ASPP) model
and the fully connected conditional random field (CRF). ASPP replaces the original preprocessing
method of resizing the image, thus, the input image can have arbitrary scale. The fully connected CRF
optimizes local features of classification by using low-level detail information. (3) The image pyramid
neural network, such as PSPNet [18]. Considering that the features of different scales have different
details, fusing the features of different scales to obtain better segmentation results has become a new
idea. PSPNet utilizes different pooling proportions to obtain features with different scales, and then
combines these features for feature learning.

The label image from CNNs usually lacks structure information, a pixel label can not match the
surrounding pixel labels since some small area labels in the image may be incorrect. To solve this
problem, some architectures introduce CRF to refine the label image obtained from CNNs by using the
similarity of pixels in the image [19]. Liu et al. [20] utilized CRF to train the deep features obtained
by a pre-trained large CNN. The cross-domain features learned by CNN are utilized to guide the
CRF learning based on structured support vector machine(SSVM), and the co-occurrence pairwise
potentials are incorporated to the inference to improve the performance. Deeplab [17] introduced the
fully connected CRF to optimize local features of classification. In fully connected CRF, each pixel is
modeled as a node, and a pairwise item is established regardless of the distance of the pixel to any
other two pixels. Considering the effects of short distance and long distance, the detailed structure lost
in CNN can be recovered. To realize multi-class semantic segmentation and robust depth estimation,
Liu et al. [21] developed a general deep continuous CRFs learning framework. This framework first
models both unitary and pairwise potentials as CNNs network, and then uses task-specific loss function
for CRFs parameters learning. In the above mentioned methods, CNN and CRF are two separate parts.
Zheng et al. [22] proposed a new structure combining FCN and CRF to realize end-to-end network
training. This structure solves a pixel-level semantic segmentation problem by formulating mean-field
inference of dense CRF with Gaussian pairwise potentials as a recurrent neural network (RNN).

A generative adversarial network (GAN) consists of a generator and a discriminator.
The generator generates fake samples and the discriminator identifies them. As the training proceeds,
the closer the fake samples of the generator are to the true distribution of the true data, the more
difficult it is for the discriminator to distinguish the true from the false. Luc et al. [23] first applied
GAN to semantic segmentation, since the adversarial training approach can realize long-range spatial
label contiguity without increasing complexity of the model in testing process. Then, some algorithms
using GAN to complete semantic segmentation were proposed [24–29]. Phillip et al. [24] investigated
conditional adversarial networks as a general purpose solution to complete semantic segmentation,
which called Pixel2pixel. Pixel2pixel applies GANs in the conditional setting and proposes a classifier
named patchGAN. Pixel2pixel not only learns a mapping from input image to output image, but also
learns a loss function to train the mapping. Zhu et al. [25] proposed the use of GAN to improve the
robustness of small data model and prevent over-fitting. This algorithm uses FCN to classify images at
pixel level for low contrast mammographic mass data, and CRF to implement structural learning to
capture high-order potentials. For remote sensing images, Ma et al. [26] presented a weakly supervised
algorithm, which combines hierarchical condition generative adversarial nets and CRF, to perform the
segmentation for high-resolution Synthetic Aperture Radar (SAR) images. In the condition generative
adversarial network, a multi-classifier is added in the original GAN.

In recent years, with the increasing research on deep convolutional neural network in image
segmentation [14,30], more and more studies have been carried out to improve the semantic
segmentation methods, which are expected to be applied to the remote sensing images with high
resolution [31,32]. Zhang et al. [33] proposed JointNet, which can meet extraction requirements for
both roads and buildings. This algorithm proposes a dense atrous convolution block to achieve a larger
receptive field and maintain the feature propagation efficiency of dense connectivity. In addition, a focal
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loss function is introduced to balance the road centerline target and the background. An object-based
deep-learning framework for semantic segmentation, which exploits object-based information
integrated into a fully convolutional neural network, was proffered by Papadomanolaki et al. [34].
This algorithm proposes an object-based loss to constrain the semantic labels, and then combines the
semantic loss and the object-based loss to produce the final segmentation result. Teerapong et al. [35]
developed a semantic segmentation method on remotely sensed images by using an enhanced
global convolutional network with channel attention and domain specific transfer learning. In this
method, the global convolutional network is utilized to capture different resolution by extracting
multi-scale features from different stages of the network, the channel attention is used to select the
most discriminative features, and the domain specific transfer learning is introduced to alleviate the
scarcity issue. Pan et al. [36] proposed a fine segmentation network, which follows the encoder-decoder
paradigm and uses multi-layer perceptron to accomplish the multi-sensor fusion in the feature-level.
This network utilizes the encoder structure with a main encoder part and a lightweight branch part to
achieve the feature extraction of multi-sensor data with a relatively few parameters. At the back end
of the structure, the multi-layer perceptron can complete feature-level fusion of multi-sensor remote
sensing images effectively.

1.2. Problems and Motivations

For CNN-based segmentation networks, the original images and their corresponding ground
truths in the training set are used to train the segmentation network, and the training of the network is
guided by directly comparing the differences between the ground truths and the segmented results.
GAN is originally used for image generation, the generator uses noise to generate an image, and the
discriminator determines whether the image is real or not. To make further use of the original image
and the ground truth to improve accuracy, the adversarial network is considered to be introduced to
calculate the similarity between the ground truth and the predicted label graph. When the discriminator
cannot distinguish the ground truth and the predicted label graph, it can be considered that good
segmentation result is obtained. The original image is corresponding to GT and the predicted label
graph, thus, the original image can provide a prior condition for the discriminator. Based on the above
considerations, GAN is introduced to implement a complete Bayesian segmentation framework in the
proposed method.

FCN has a good performance in image semantic segmentation, however, it does not take the
global information into consideration. Integrating local and global information is very important
for semantic segmentation because local information can improve pixel-level accuracy, while global
information can deal with local ambiguity. To introduce global information into CNNs, Deeplab uses
the fully connected CRF as an independent post-processing step. To preserve details and make use of
global information as much as possible in high-resolution remote sensing images, the generator adopts
the integrated training model in which the skip-connected encoder-decoder network is combined with
the CRF layer.

The loss function of classical segmentation network usually adopts the pixel-level calculation
method, such as calculating the cross-entropy loss of all the pixels between predicted label graph and
ground truth. This pixel-level evaluation method lacks the ability to discriminate spatial structure.
When pixels of scene and background are mixed together or the object is small, the segmentation
results will be not good. However, GAN evaluates the similarity between the ground truth and the
predicted label graph by discriminator which only considers the differences in the view of the entire
image or a large portion. To solve this problem, this paper considers to combine pixel-level and
region-level estimation methods. In the proposed method, the similarity between the predicted label
graph and the ground truth is evaluated by the adversarial network and the evaluation results are
used as the adversarial loss. The loss function consisting of adversarial loss and cross-entropy loss
guides the training of the segmentation network through back propagation.
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1.3. Contribution

In this paper, an end-to-end conditional random field generative adversarial segmentation
network (CRFAS) is proposed to apply semantic segmentation to remote sensing images. CRFAS has
three main contributions in the following:

(1) CRFAS proposes an end-to-end generative adversarial segmentation network based on
Bayesian framework. In this algorithm, the joint training of prior network, likelihood network and
posterior network realizes the estimation from prior to posterior. The prior network provides the prior
information for the likelihood network and the posterior network. The prior information is combined
with the discriminator of the posterior network to improve the likelihood network.

(2) Based on the structure of GAN, CRFAS combines pixel-level and regional-level evaluation
methods to calculate loss function. Since the pixel-level evaluation methods cannot discriminate spatial
structure, CRFAS utilizes a region-level evaluation method, which can judge the similarity between the
predicted label graph and the ground truth, to introduce spatial structure as a constraint. Through the
discriminative model, CRFAS can obtain the adversarial loss by region-level evaluation method. Then,
a new loss function considering the pixel information and spatial structure information is defined.
The new loss function including cross-entropy loss and adversarial loss, guides the training of the
segmentation network and improves the accuracy.

(3) The integrated training of skip connected encoder-decoder network structure and CRF layer
combines the advantages of both. The existing segmentation networks mainly use convolutional
neural networks and post-optimized CRF. CRF only refines the segmentation results after training the
convolutional neural networks, rather than participating in the training process of neural network
parameters. CRFAS changes the way of training convolutional neural networks and conditional
random fields separately before. By combining skip connected encoder-decoder network structure
and CRF layer, the results of CRF can guide the training of CRF, and the result is improved by taking
more information into account.

2. Methodology

2.1. Framework

The whole framework of our proposed method consists of a prior network, a likelihood network
and a posteriori network, as shown in Figure 1d. These three networks implement joint training
based on the Bayesian framework. The prior network provides pixel-level and region-level prior
information for the posteriori network. In the posterior network, adversarial learning is utilized
to make the predicted label graph obtained by the generative model as consistent as possible with
the ground truth. In the learning process, the discriminator can identify whether the input is the
predicted label graph or the ground truth. If the discriminator has a strong discriminating ability but
cannot distinguish whether the input is the ground truth or the predicted label graph generated by
the generative model, the generative model has a good segmentation ability. For the convenience
of observation and comparison, the structures of FCN, Deeplab and generative adversarial network
(GAN) are also shown in Figure 1.
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Figure 1. Framework of several segmentation methods.

2.2. Generative Model

The main purpose of generative model is to produce predicted label graph. The existing methods
usually use deep convolutional neural network to obtain the coarse segmentation results, and CRF to
refine the results. Although this method can contact the context through CRF, the results of CRF cannot
be input to the convolutional neural network to guide the training of network parameters. In CRFAS,
the skip connected encoder-decoder network and CRF layer are integrated in the generative model, as
shown in Figure 2. After the predicted label graph generated by the generative model is input to the
discriminative model, the adversarial loss is utilized to train the network parameters. That is to say,
the parameters of gradient back-propagation learning model are calculated based on the results of
CRF layer, and the skip connected encoder-decoder structure and CRF layer are a whole network, not
CRF as a follow-up optimization independently.
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Figure 2. Structure of generative model.

2.2.1. Conditional Random Fields

Defining a conditional random field on a pixel or an image block can take the segmentation as
maximum posteriori problem. CRF contains a smoothness term maximizing the label consistency
between similar pixels and describing the context of the pixels. Supposing that image I has P pixels and
k categories, the predicted label graph of image I is represented by random field X, X = {x1, x2, ..., xP},
where xi represents the label of pixel i. Therefore, the segmentation problem can be described as
generating a predicted label graph X to maximize the conditional probability P(X|I), where P(X|I)
can be modeled as a conditional random field under Gibbs distribution:

P(X = x̂| Ĩ = I) =
1

Z(I)
exp(−E(x̂|I)) (1)

where Z(I) = ∑
X

exp(−E(x̂|I)) represents the normalization factor. The energy function E(x̂|I) can be

represented as:

E(x̂|I) = ∑
i≤P

ψu(x̂i|I) + ∑
i 6=j≤P

ψp(x̂i, x̂j|I) (2)

The first item ψu(x̂i|I) is unitary potential. The unitary potential only considers the category
label of each pixel, without considering the information of other pixels. The unitary potential can
be obtained by any segmentation models, such as CNNs. The second term ψp(x̂i, x̂j|I) is pairwise
potential, which represents the joint distribution between the pixel i and pixel j and describes the
interaction between the two pixels. For example, pixels with similar colors may belong to the same
category. In the fully connected conditional random field, each pixel calculates an energy feature with
all other pixels. Thus, the joint energy of all pixels constitutes the pairwise potential energy function,
which is represented by weight sums of a series of Gaussian kernels:

ψp(x̂i, x̂j|I) = µ(xi, xj)
M

∑
m=1

ωmkm( fi, f j) (3)

Each km represents a Gauss kernel function, and M represents the number of kernels. Vectors
fi and f j represent the eigenvectors of the pixels i and j in any feature space, and ωm denotes the
weight of the m-th Gauss kernel. µ(xi, xj) is a label compatibility function, which is usually represented
by a Potts model, µ(xi, xj) =

[
xi 6= xj

]
. This model punishes similar labels with different labels,

making pixels with similar characteristics tend to predict the consistency of labels. µ(xi, xj) restricts the
conditions of energy transmission, and they can only conduct each other when the labels are identical.

For multi-class image segmentation tasks, the fully connected conditional random fields are
usually represented by sensitive binuclear potentials:
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k( fi, f j) = ω1 exp(−
∣∣pi − pj

∣∣2
2θ2

α
−

∣∣Ii − Ij
∣∣2

2θ2
β

) + ω2 exp(−
∣∣pi − pj

∣∣2
2θ2

γ
) (4)

Ii and Ij represent color feature vectors. pi and pj denote position feature vectors. The first term is
appearance kernel function. In this function, pixels with similar color and close spatial distance may
belong to the same class, and the degree of proximity of spatial position and similarity of appearance
are controlled by θα and θβ respectively. The second term is the smoothing kernel function, which
is used to remove small isolated regions. ω1, ω2, θα, θβ and θγ are the parameters to be learned in
the model.

2.2.2. Unitary Potential

The probabilistic graph predicted by the deep convolutional neural network is used as the unitary
potential of CRF in the segmentation network. The network structure of producing unitary potential
is unrestricted, which can utilize classical FCN or other deep convolution neural network. To make
the input and output images have the same resolution, many models use encoder-decoder structure.
In the coding process, a series of convolution and pooling layers reduce the input resolution, and
then in the decoding process, the up-sampling layers make the output get the original resolution.
In this structure, the high-level features provide semantic information, and the boundary information
is gradually recovered during decoding process.

To recover detailed information which losts in the down-sampling process, skip connections
are added to the encoder-decoder network [15,16,24,37–39]. U-net [16] is a symmetrical U-shaped
network, which uses skip connection to combine the feature map of the up-sampling layer from the
right expansive path with the feature map of the pooling layer from the left contracting path. Residual
encoder-decoder network (RedNet) [39] uses skip connection to bypass the spatial information and
proposes fusion structure to introduce depth information into the network. Refs. [24,37] use fully
convolutional encoder-decoder structure, and the feature maps of convolution layer are skip-connected
to the corresponding deconvolution layer. Learning from [24,37], to connect the encoding part directly
to the corresponding decoding part, a skip connection is added between i-th layer and n− i-th layer,
as shown in Figure 3. This kind of connection can avoid the bottleneck and directly transmit the
shallow layer information to the deep layer, so as to restore the details better. In addition, more detailed
information can be obtained by fusing the feature maps of some layers in the network.

Input Output Input Output

(a) encoder-decoder (b) Improved encoder-decoder model

Figure 3. Improvement in encoder-decoder model.

2.2.3. CRF Layer

Different from the previous separated CRF, referring to the idea of regarding CRF iterative process
as recurrent neural network (RNN) [22], one iteration of the mean-field algorithm can be seen as a
stack of common CNN layers, then the CRF layer and the convolutional neural network can form an
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integrated network in our generator. The CRF layer is modeled based on CRF probabilistic graph for
structured prediction. The whole generator integrates the advantages of deep convolutional neural
network (DCNN) and CRF, and completes end-to-end training through back propagation and random
gradient descent. When data passes through the DCNN and enters the CRF layer, the data needs T
iterations to leave the cycle created by the CRF layer. The idea of mean field estimation is adopted in
the concrete process of CRF layer, but it is implemented in the form of CNN. The structure of CRF
layer is shown in Figure 4.

Messaging

Weighted 

summation of 

filtering results

Category 

compatibility 

conversion

Local update

normalization

Unitary 

potential

Qout

Qin

I

Figure 4. The iteration in CRF layer.

Each step in mean-field estimation can be realized by the process of CNN: (1) Initialization.
The initialization can be completed by softmax. (2) Messaging. The process of messaging is achieved
by applying M Gauss filters on Q values. The coefficients of Gauss filter are obtained based on image
features, reflecting the correlation between the pixels and other adjacent pixels. Considering that the
sensing field of the filter in the fully connected CRF is the whole image, the computational complexity
will exceed the expectation. Therefore, the Permutohedral lattice is used to optimize the computation.
The Permutohedral lattice can calculate the filter response in O(P) time, where P is the number of
pixels of the image. (3) Weighted summation of filtering results. The weighted summation of the
results of M filters can be regarded as the convolution of the filters with M channels and an output
channel. For each class label, the kernel weights are independent of each other and depend on the class
label. (4) Category compatibility conversion. The step of class compatibility conversion achieves better
results by measuring compatibility between different categories and punishing allocation accordingly.
(5) Local updates. The local updating process subtracts the output of the category compatibility
conversion from the unitary potential. (6) Normalization. Finally, normalization can be achieved
by softmax.

The above is an iteration process of CRF, which can be seen as a stack of common CNN layers.
Assuming that the number of iteration is T, the CRF mean field estimation process is executed T times.
Each iteration takes Qout estimating from the previous iteration as Qin, and Qin input into this iteration
with unitary potential and the input image I. This iterative mean-field inference can be seen as a RNN.

2.3. Discriminative Model

The discriminative model can adopt models with different output structures. In the atomic level,
the discriminator determines the image in a pixel manner, called PixelGAN. The discriminative model
judges the image in the image level, called ImageGAN. Between the two levels, there is the patch level,
where the discriminative model makes decisions in K× K patch, called PatchGAN [40].

PatchGAN divides the input into several patches. The discriminative model determines the
authenticity of each patch, and takes the average of all patch outputs as the final output of the
discriminative model. The structure is punished on the scale of patch, and the size K of patch is much
smaller than that of image. The smaller patchGAN has fewer parameters, runs faster and can be
applied to any size image.

Among the existing structures, cross-entropy loss can restrict the pixel-level correctness of the
image, therefore, it is not necessary to emphasize the pixel-level correctness in the design of the
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discriminative model, but should pay attention to the simulation of region-level structure. For the
above reasons, PatchGAN is adopted as the discriminative model. The structure of discriminative
model is shown in Figure 5. Three convolution-batchnorm-relu layers are followed by a 2× 2 max
pooling layer, then two convolution-batchnorm-relu layers are connected with a 2× 2 max pooling
layer, followed by a convolution-batchnorm-relu layer. Finally, a distribution map is generated through
a convolution-sigmoid layer. The discriminator can determine whether the input image is a predicted
label graph or a ground truth by calculating the mean of distribution map.
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Figure 5. Structure of discriminative model.

2.4. Loss Function

To improve the segmentation accuracy, the loss function combines the cross-entropy loss at the
pixel level and the adversarial loss at the region level. The loss function is defined as:

l(θg, θd) = lP(G)− λlcGAN(G, D) + γlL1(G) (5)

where θg and θd represent the parameters of generator and discriminator respectively. lP(G) =
N
∑

n=1
lmce(g(xn), yn) is the cost function of the classical segmentation method, such as cross-entropy,

which is the negative logarithm of probability value. The loss is generated by calculating the
differences between the predicted label graph and the ground truth pixel by pixel. lcGAN(G, D) =

lbce(d(xn, yn), 1) + lbce(d(xn, g(xn)), 0) denotes the objective of a conditional GAN. It is defined as
the cost of predicted label graph to be detected by the discriminative model. The discriminative
model considers whether the predicted label graph is similar to the ground truth or not. In the
discriminative model, the convolution and pooling layers can obtain the context information in a
certain area, which makes up for the defect that classical cost function does not consider structure
information. lL1(G) = lL1(yn, g(xn)) is L1 distance, which is used to make the predicted label graph
as similar as the ground truth. Weight λ is used to balance the two kinds of losses. The data set
has N training images. xn represents the original image, yn represents the ground truth, and g(xn)

denotes the predicted label graph. Since the cross-entropy loss lacks spatial structure information,
and adversarial loss only considers high-order consistency. By combining cross-entropy loss and
adversarial loss, we take advantages of both to compensate for their shortcomings.

In the training process, the parameters of discriminative model θd and the parameters of generative
model θg are alternately trained. The cost function used to train the discriminative model is as follows:

ld =
N

∑
n=1

lbce(d(xn, yn), 1) + lbce(d(xn, g(xn)), 0) (6)

In the above formula, lbce(z, ẑ) = −(z ln ẑ + (1 − z) ln(1− ẑ)). The first part of the formula
represents that the ground truth is judged to be 1, and the second part represents that the predicted
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label graph g(xn) is judged to be 0 in the discriminative model. These two parts reflect the ability of
the discriminative model to distinguish the ground truth and the predicted label graph. By minimizing
the function, the best performance of the discriminative model can be obtained. The cost function used
to train the generative model is:

lg =
N

∑
n=1

lmce(g(xn), yn) + γlL1(yn, g(xn))− λlbce(d(xn, g(xn)), 0) (7)

The first part in the formula is cross-entropy loss, which calculates the difference between
the ground truth yn and the predicted label graph g(xn) at the pixel level. lmce(g(xn), yn) =

−
P
∑

i=1
(yn)i ln g(xn)i, where P represents the pixel numbers of predicted label graph. The third part is

the adversarial loss. If the discriminative model recognizes the predicted label graph, the predicted
label generated by the generative model is not good. Thus, the loss function increase. It is hoped
that when the generative model is fully trained, the discriminative model cannot distinguish between
ground truth and the predicted label.

2.5. Model Training

In the model training process, the generative model and the discriminative model are trained
alternately after each gradient descent step. To avoid the imbalance between the two models caused
by the strong discriminative model, the optimization goal of the discriminative model is divided
by two to reduce the learning speed of the adversarial network. Since −λlbce(d(xn, g(xn)), 0) cannot
provide enough gradient in training and generative model, there will be obvious difference between
the predicted label graph and the ground truth in the initial stage, the discriminative model can easily
identify the predicted label graph, thus, the loss log(1− d(g(xn))) of the discriminative model will
be saturated. To solve this problem, we follow Luc et al. [23] to use +λlbce(d(xn, g(xn)), 1) to replace
−λlbce(d(xn, g(xn)), 0) in the process of training the generative model, that is to say, the probability of
identifying g(xn) as a predicted label graph by minimizing the discriminative model is replaced by the
probability of identifying g(xn) as ground truth by maximizing the discriminative model. The critical
points of these two probabilities are the same, but the discriminative model will produce stronger
gradient signals when it makes more accurate judgements, which can accelerate the early learning.
Mini-batch random gradient descent and ADAM are used to solve this problem. The learning rate is
set to 0.0002 and the momentum parameter are set to β1 = 0.5, β2 = 0.99. The epochs of two data sets
are 400 and 53 respectively.

3. Flowchart

The network structure of CRFAS for training and testing is shown in Figure 6. Figure 6a shows the
network structure in training process, where the structure is divided into two modules: the generative
model and the discriminative model. The generative model segments the input image to obtain the
predicted label graph. The internal structure of the generative model consists of an integrated skip
connected encoder-decoder network and a CRF layer. The deep convolutional neural network segments
the image into a rough segmented probability map, and the map is regarded as an unitary potential
in CRF. Then, in CRF layer, the pairwise potential is constructed according to the label relationship
between pixels, and iteratively optimized with the unitary potential to obtain the predicted label.
The predicted label graph and the prior information output by the prior network are jointly input into
the discriminative model, and the output probability value of the discriminative model indicates the
similarity between the predicted label graph and the ground truth. According to the probability value
of the output, the adversarial loss can be calculated, and then the gradient inversion is carried out to
train the parameters of each module by combining the prediction of the cross-entropy loss between the
predicted label graph and the pixel-level prior information. Figure 6b shows the network structure
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in testing process. When the training is completed, the parameters of the generative model are fixed.
Thus, the discriminative model does not participate in the testing process. The image is input into the
generative model, and then the rough probability map generated by the deep convolutional neural
network is input into CRF layer as the unitary potential. Finally, the segmentation result is obtained.

Generator Discriminator
Predicted label 

graph

Prior information

Cross-entropy 

loss

Real/Predicted?

Adversarial loss

Input

Back propagation

Back propagation

(a) Network structure in training process.

Test 

image

Segmentation 

result
Generotor

(b) Network structure in testing process.

Figure 6. Flowchart of training and testing process.

4. Experiment

4.1. Experiment Data

To evaluate the validity of our proposed method, experiments were carried out on two data
sets. The first set of data is E-SAR L-band PolInSAR image of the German Aerospace Center, which
contains many typical characteristics, such as roads, buildings and forests. The resolution of the data is
3 m × 3 m, the size of original image is 1300× 1200, and the intercepted image is 1187× 1187 pixels.
The interested areas can be divided into five categories: road, farmland, building, forest and other land
cover. The PauliSAR image and its ground truth are shown in Figure 7.

Forest

Farmland

Others

Road

Building

( a ) ( b )

Figure 7. The experimental data 1. (a) Pauli SAR image; (b) The ground truth.

To use all the information in the training process, the image was divided into four blocks, three
of which were trained in each experiment and one was used for testing. Since the data set is small,
following [41–43], we have not set a validation set in order to ensure adequate training. Then, four times
of training were carried out to get four similar models and corresponding test pictures. Finally, the final
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test results were obtained by combining four test pictures. The size of small image is 256× 256, the
sampling interval is 49 pixels, and a large image can be divided into 400 small images. Compared with
ordinary optical images, remote sensing images have multi-directional characteristics. To increase the
multi-directionality of training, a series of methods were adopted to increase the direction diversity of
training data. The expansion was mainly carried out by two methods: inversion and rotation.

The second data set is GID, which is a high-resolution data set for land classification proposed
by Tong et al. [44]. The GF-2 images in GID were acquired from 5 December 2014 to 13 October 2016.
Five categories are marked in different colors: building (red), farmland (green), forest (cyan), grassland
(yellow) and water area (blue). Areas that do not belong to the above five categories or cannot be
artificially identified are marked black. One example of original images and its ground truth are shown
in Figure 8.

Building

Farmland

Water

Grassland

Forest

( a ) ( b )

Figure 8. The experimental data 2. (a) Remote sensing image; (b) The ground truth.

There are 150 large images in data set 2, the size of each image is 6800× 7200 pixels. We took
120 images as training set, 15 as validation set and 15 as test set. For each large image, 783 small images
with 256× 256 pixels were cut without overlap. For the test set, each large image was cut to 256× 256
small images as the test samples which are input into the trained model to get the predicted label
graphs, and the small graphs were spliced into a large one to get the final segmentation result.

4.2. Experiment Result

The segmentation results of our proposed method are compared with three segmentation algorithms:
(1) FCN; (2) Deeplab; (3) Pixel2pixel [24]. The first comparison algorithm, FCN, is the pioneering work
of semantic segmentation network. Deeplab is chosen to be the second comparison algorithm since it
proposes atrous convolution and utilizes the fully connected CRF for post-optimization. The third
comparison method is Pixel2pixel, which is based on generative adversarial network.

The segmentation results conducted on data set 1 with these four methods are shown in Figure 9.
Three examples of the segmentation results conducted on data set 2 with these four methods are

shown in Figures 10–12. Image 1, 2, 3 contains 5, 4, 3 data categories, respectively.
To evaluate the model proposed in this paper quantitatively, the following three evaluation

indicators are used: (1) The confusion matrix and overall accuracy. (2) F1 score. (3) Mean Intersection
over Union (MIoU).
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(a) Pauli SAR image (b) GT (c) FCN

(d) Deeplab (e) Pix2pix (f) CRFAS

Figure 9. Segmentation results 1.

(a) Remote sensing image 1 (b) GT (c) FCN

(d) Deeplab (e) Pix2pix (f) CRFAS

Figure 10. Segmentation results 2.
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(a) Remote sensing image 2 (b) GT (c) FCN

(d) Deeplab (e) Pix2pix (f) CRFAS

Figure 11. Segmentation results 3.

(a) Remote sensing image 3 (b) GT (c) FCN

(d) Deeplab (e) Pix2pix (f) CRFAS

Figure 12. Segmentation results 4.

4.2.1. The Confusion Matrix and Overall Accuracy

To quantitatively evaluate the segmentation accuracy of each category, the confusion matrix
of data set 1 is shown in Table 1. For each category, the ratio of the number of correctly classified
pixels in the segmentation result to the total number of all the pixels in the ground truth is calculated.
The overall segmentation accuracy calculates the average accuracy of all categories. In the calculating
process, the background part is removed and the segmentation accuracy of the remaining part is
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calculated. The calculation method is as follows: after removing the background part, the ratio of the
correct classified pixels in the segmentation result to the total number of pixels in the ground truth is
calculated. Tables 2–4 show the confusion matrices of three example images of data set 2.

Table 1. Confusion Matrix of data set 1.

Method Category Farmland Forest Others Road Building Overall Acc.

FCN

Farmland 46.17 8.97 38.63 2.16 4.07

81.83
Forest 1.67 87.56 3.90 1.25 5.62
Others 4.33 1.35 87.51 3.87 2.95
Road 4.90 2.08 28.58 59.34 5.09

Building 0.04 2.28 4.61 1.08 91.99

Deeplab

Farmland 45.03 21.91 31.43 0.39 1.24

83.87
Forest 0.74 89.01 5.14 1.61 3.50
Others 1.64 1.16 92.26 3.27 1.66
Road 0.87 4.19 34.30 55.09 5.56

Building 0 0.76 4.13 0.60 94.48

Pix2pix

Farmland 35.88 6.23 23.77 2.55 31.56

82.43
Forest 2.06 84.30 5.05 2.21 6.38
Others 2.18 0.61 88.02 4.79 4.40
Road 0.28 0.87 20.02 75.00 3.83

Building 0.42 2.75 5.41 1.81 89.62

Pro. Aproach

Farmland 47.81 9.70 23.06 2.77 15.15

84.74
Forest 1.27 83.51 5.06 2.29 7.86
Others 2.22 0.93 93.72 3.12 0.01
Road 0.67 2.45 23.42 68.79 4.67

Building 0.47 3.71 4.89 2.22 88.70

Table 2. Confusion Matrix of image 1.

Method Category Farmland Water Building Grassland Forest Overall Acc.

FCN

Farmland 98.39 0.08 0.01 1.27 0.25

76.31
Water 24.99 75.01 0 0 0

Building 6.40 0.11 93.49 0 0
Grassland 98.71 0.06 0 0.64 0.59

Forest 31.37 2.24 0 3.49 62.90

Deeplab

Farmland 93.10 5.02 0 0.77 1.11

77.99
Water 0.48 99.47 0 0 0.04

Building 2.13 0 97.87 0 0
Grassland 67.42 0.34 0 3.29 28.95

Forest 0.42 0 0 0 99.58

Pix2pix

Farmland 91.53 0 0 0 8.47

71.78
Water 100 0 0 0 0

Building 13.52 0 85.46 1.01 0
Grassland 98.31 0 0 0 1.69

Forest 32.65 0 0 0 67.35

Pro. Aproach

Farmland 95.69 0.71 0 2.61 0.99

78.27
Water 0.82 28.57 0 0 70.61

Building 1.65 0 97.10 1.25 0
Grassland 85.44 0.04 0 11.21 3.32

Forest 22.00 0.81 0 0.06 77.13
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Table 3. Confusion Matrix of image 2.

Method Category Farmland Water Building Grassland Forest Overall Acc.

FCN

Farmland 99.69 0.06 0.09 0.12 0.04

92.45
Water 50.07 49.22 0.69 0.02 0.02

Building 33.20 0.10 66.67 0 0.03
Grassland 0 0 0 0 0

Forest 13.73 0.06 0.15 0.71 85.35

Deeplab

Farmland 98.91 1.01 0.02 0 0.06

98.03
Water 1.38 98.57 0.04 0 0

Building 9.18 0.62 90.20 0 0
Grassland 0 0 0 0 0

Forest 0.14 0.08 0 0 99.78

Pix2pix

Farmland 98.99 0.03 0.70 0.04 0.25

88.27
Water 73.70 20.45 0.62 0.03 5.19

Building 29.00 0 69.96 2.04 0
Grassland 0 0 0 0 0

Forest 96.56 0 0 0 3.44

Pro. Aproach

Farmland 99.26 0.33 0.08 0.14 0.19

98.17
Water 3.36 96.16 0.04 0 0.44

Building 3.83 0 95.96 0.21 0
Grassland 0 0 0 0 0

Forest 7.27 18.28 0 0 74.45

Table 4. Confusion Matrix of image 3.

Method Category Farmland Water Building Grassland Forest Overall Acc.

FCN

Farmland 98.90 0.50 0.56 0 0.04

93.16
Water 68.99 30.99 0 0 0.01

Building 29.41 0.40 70.19 0 0
Grassland 0 0 0 0 0

Forest 0 0 0 0 0

Deeplab

Farmland 98.08 1.14 0.63 0 0.15

97.54
Water 7.98 88.35 0 0 3.66

Building 3.49 0.53 95.98 0 0
Grassland 0 0 0 0 0

Forest 0 0 0 0 0

Pixel2pixel

Farmland 97.83 0.02 2.04 0.02 0.09

95.59
Water 78.15 14.36 0.47 0 7.01

Building 3.86 0 96.09 0.05 0
Grassland 0 0 0 0 0

Forest 0 0 0 0 0

Pro. Aproach

Farmland 99.32 0 0.58 0.08 0.01

98.81
Water 9.50 87.85 0.09 0 2.56

Building 2.14 0.03 97.65 0.18 0
Grassland 0 0 0 0 0

Forest 0 0 0 0 0

After observing the above four confusion matrixes, it can be seen that CRFAS has the highest
overall accuracy and good robustness. For data set 1, compared with Deeplab, CRFAS has higher
accuracy in road and farmland categories. The confusion matrix of the complete data set 2 is shown in
Table 5. From Table 5, it can be seen that CRFAS has the highest overall accuracy and good performance
in farmland, water, and building categories. For forest category, the accuracy of CRFAS is not as good
as Deeplab’s. These four methods did not perform well in grassland category.
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Table 5. Confusion Matrix of Data Set 2.

Method Category Farmland Water Building Grassland Forest Overall Acc.

FCN

Farmland 93.99 0.42 4.93 0.22 0.44

87.11
Water 25.68 72.38 1.16 0.07 0.71

Building 19.05 0.65 79.95 0.02 0.33
Grassland 98.71 0.06 0 0.64 0.59

Forest 50.22 0.88 0.11 4.34 44.45

Deeplab

Farmland 95.34 1.80 2.32 0.04 0.49

92.38
Water 11.98 87.74 0.13 0 0.15

Building 4.65 0.26 95.02 0 0.07
Grassland 67.41 0.34 0 3.30 28.94

Forest 31.31 6.29 0.08 3.70 58.62

Pixel2pixel

Farmland 94.43 0.17 3.18 0.34 1.87

87.04
Water 21.89 74.40 0.39 0.01 3.31

Building 18.51 0.13 80.44 0.91 0.01
Grassland 98.31 0 0 0 1.69

Forest 82.50 0 0 0 17.50

Pro. Aproach

Farmland 97.73 0.30 1.03 0.43 0.50

94.14
Water 6.30 92.75 0.21 0.04 0.70

Building 4.43 0.07 95.22 0.27 0
Grassland 85.43 0.04 0 11.21 3.32

Forest 64.64 1.31 0.12 0.11 33.83

In terms of overall accuracy, CRFAS has better segmentation results than FCN, Deeplab and
Pixel2pixel. To further compare the segmentation results of our proposed method with three other
algorithms, the F1 score and mIoU are calculated in the following.

4.2.2. F1 Score and mIOU

The calculation of F1 score is based on recall and precision. The formulations are as follows:

Precision =
tp

tp + f p
(8)

Recall =
tp

tp + f n
(9)

where tp represents true positive, which is the number of pixels in the category for both the predicted
result and the real label. f p represents false positive, which is the number of pixels predicted for each
category but not for the real label. f n represents false negative, which is the number of pixels in each
category that are not predicted label but are real label as such.

The precision and recall are contradictory measures. Generally, when the precision is high,
the recall is low, while when the recall is high, the precision is low. For example, if the segmentation
results of a category are expected to have a high accuracy, pixels can be classified into this category
as many as possible. If the whole images is classified into this category, the pixels belonging to this
category in the label graph must be correctly classified, in which way the precision will be very low,
and vice versa. Therefore, we hope to find a balance point between precision and recall. F1 score is an
evaluation metric used to balance precision and recall. The calculation formulation is as follows:

F1 = 2 · precision · recall
precision + recall

(10)

F1 score is the harmonic average of precision and recall, which reflects the relative double-high
degree of precision and recall of model segmentation results to a certain extent. The higher the score of
F1, the more reliable the segmentation result is.



Remote Sens. 2019, 11, 1604 18 of 22

Mean intersection over union (MIoU) is a standard measure of semantic segmentation. Intersection
over union (IoU) calculates the ratio of the intersection and union of two classifications. IoU is
calculated on each class and then mIOU is obtained. MIoU can be calculated by the following:

MIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(11)

where pii represents the number of pixels in which the predicted label and the real label are i.
The F1 score and mIOU of data set 1 are shown in Table 6. Table 7 displays the F1 score and mIoU

of three example images and the evaluation results of complete data set 2.

Table 6. F1 score and mIoU of Data Set 1.

Data Method
F1 Score

mIOU
Farmland Forest Others Road Building

Data Set 1

FCN 0.4871 0.8840 0.8558 0.6698 0.8697 0.6270
Deeplab 0.5634 0.8723 0.8781 0.6489 0.9105 0.6529
Pix2pix 0.4550 0.8807 0.8752 0.7555 0.8001 0.6266
CRFAS 0.5717 0.8570 0.9032 0.7349 0.8580 0.6612

Table 7. F1 score and mIoU of Data Set 2.

Data Method
F1 Score

mIOU
Farmland Water Building Grassland Forest

Image1

FCN 0.8484 0.3413 0.9656 0.0118 0.7617 0.4994
Deeplab 0.8785 0.0713 0.9892 0.0621 0.7998 0.4995
Pix2pix 0.8104 0 0.9216 0 0.6239 0.3978
CRFAS 0.8565 0.1003 0.9849 0.1852 0.8195 0.5137

Image2

FCN 0.9556 0.6560 0.7940 0 0.9130 0.5803
Deeplab 0.9882 0.9355 0.9472 0 0.9882 0.7464
Pix2pix 0.9349 0.3385 0.7880 0 0.0530 0.3518
CRFAS 0.9915 0.9364 0.9760 0 0.8132 0.7004

Image3

FCN 0.9604 0.4106 0.8094 0 0 0.3724
Deeplab 0.9862 0.7635 0.9615 0 0 0.5032
Pix2pix 0.9747 0.2496 0.9240 0 0 0.3904
CRFAS 0.9934 0.9338 0.9715 0 0 0.5615

Data set 2

FCN 0.9148 0.8247 0.7681 0.0099 0.5521 0.5109
Deeplab 0.9508 0.8803 0.9141 0.0569 0.6398 0.6068
Pix2pix 0.9156 0.8479 0.8111 0.0000 0.1925 0.4738
CRFAS 0.9609 0.9523 0.9471 0.1543 0.4468 0.6209

For data set 1, CRFAS has higher mIoU than three other comparison methods. In terms of F1
score, CRFAS maintains a better balance between precision and recall than the other three methods.

As can be seen from Table 7, CRFAS has the highest mIoU among four methods for data set 2.
We compare segmentation results of these four methods in details. In image 1, four methods have low
F1 score in water and grassland categories. Deeplab has better performance than CRFAS in farmland
and building categories. However, for farmland, water, and building categories in image 2 and image
3, CRFAS has highest F1 score. For complete data set 2, CRFAS has the highest mIoU and performs
best in three categories: farmland, water and building.
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4.3. Discussion

Three evaluation indexes are synthesized to evaluate the segmentation results. The segmentation
results of CRFAS on two data sets have the highest overall accuracy and mIoU among the four
algorithms. Comparing the precision and F1 score of each category, for data set 1, we can see that
CRFAS has obvious advantages. For data set 2, as shown in Figure 13, CRFAS has the highest precision
and F1 score in farmland, water and building categories. In the forest category, FCN and Deeplab have
higher precision and F1 score than CRFAS. For the grassland category, these four methods perform
poorly in terms of precision and F1 score.

precision F1 precision F1 precision F1 precision F1 precision
FCN 0.9399 0.9148 0.7238 0.8247 0.7995 0.7681 0.0064 0.0099 0.4445
Deeplab 0.9534 0.9508 0.8774 0.8803 0.9502 0.9141 0.033 0.0569 0.5862
Pix2pix 0.9443 0.9156 0.744 0.8479 0.8044 0.8111 0 0 0.175
CRFAS 0.9773 0.9609 0.9275 0.9523 0.9522 0.9471 0.1121 0.1543 0.3383

Farmland Water Building Grassland Forest

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

precision F1 precision F1 precision F1 precision F1 precision F1

Farmland Water Building Grassland Forest OA mIoU

FCN Deeplab Pix2pix CRFAS

Figure 13. Statistics on the evaluation indexes of Data Set 2.

Based on the experimental results, three main contributions of the proposed method can be
summarized as follows.

(1) A conditional generative adversarial segmentation network is proposed based on the Bayesian
framework. The networks joint training and adversarial learning make the segmentation results as
close as possible to the ground truth. While FCN is a segmentation network, and Deeplab adds
conditional random fields as post-processing after segmentation network. We directly observe the
segmented results and can see that at the lower part of Figure 12, FCN and Deeplab labeled farmland
as water, but CRFAS and pixel2pixel did not.

(2) To obtain details and consider global information, the skip-connected encoder-decoder
architecture is integrated with CRF layer to form an end-to-end generative model, so as to improve the
accuracy of segmentation. FCN8 and Pixel2pixel use skip connections between different layers to get
detailed information, but the global information is not taken into account. Observing the segmentation
results directly, it can be seen that in Figures 11 and 12, CRFAS and Deeplab succeeded in segmenting
rivers (blue), while FCN and pixel2pixel failed.

(3) A new loss function including the cross-entropy loss and the adversarial loss is defined to
guide the training of the whole segmentation network. In contrast, FCN and Deeplab only consider the
difference of each pixel to calculate the cross-entropy loss, while pixel2pixel does not take the pixel-level
difference into account. Combined with the above, for these two data sets, CRFAS completes the
segmentation task and has highest accuracy and mIoU among the four semantic segmentation methods.

However, our proposed method still has some shortcomings. The main shortcoming is that
CRFAS does not perform well in categories with fewer training samples, such as forest category in data
set 2. Second, our proposed method takes a long time to train the model. The training time consumed
in training data set 1 is counted in Table 8. Our future work will focus on improving accuracy of small
sample categories and computational efficiency.
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Table 8. Training time of data set 1.

Method FCN Deeplab Pixel2pixel CRFAS

Time (h) 16.9 25.3 26.7 81.2

5. Conclusions

In this paper, a new end-to-end semantic segmentation model called CRFAS is proposed.
In CRFAS algorithm, the CRF is combined with GAN in a Bayesian framework. The adversarial
loss and the cross-entropy loss are utilized to guide the training process through back propagation.
The algorithm mainly relies on three factors. First, the generative adversarial network and Bayesian
framework are combined to realize the estimation from the prior probability to the posterior probability.
Second, the generative model takes details and global information into consideration by integrating the
skip-connected encoder-decoder structure and CRF layer. Finally, the loss function redefined is utilized
to guide the training process of the whole model. The experimental results show that our proposed
method can achieve semantic segmentation and have good performance. However, long training time
and low accuracy of small sample categories are limitations of our proposed method. Our future work
will mainly focus on improving the accuracy of small samples and reducing training time.
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