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Abstract: Retrieving multi-temporal and large-scale thermohaline structure information of the
interior of the global ocean based on surface satellite observations is important for understanding
the complex and multidimensional dynamic processes within the ocean. This study proposes a
new ensemble learning algorithm, extreme gradient boosting (XGBoost), for retrieving subsurface
thermohaline anomalies, including the subsurface temperature anomaly (STA) and the subsurface
salinity anomaly (SSA), in the upper 2000 m of the global ocean. The model combines surface
satellite observations and in situ Argo data for estimation, and uses root-mean-square error (RMSE),
normalized root-mean-square error (NRMSE), and R2 as accuracy evaluations. The results show that
the proposed XGBoost model can easily retrieve subsurface thermohaline anomalies and outperforms
the gradient boosting decision tree (GBDT) model. The XGBoost model had good performance with
average R2 values of 0.69 and 0.54, and average NRMSE values of 0.035 and 0.042, for STA and SSA
estimations, respectively. The thermohaline anomaly patterns presented obvious seasonal variation
signals in the upper layers (the upper 500 m); however, these signals became weaker as the depth
increased. The model performance fluctuated, with the best performance in October (autumn) for
both STA and SSA, and the lowest accuracy occurred in January (winter) for STA and April (spring)
for SSA. The STA estimation error mainly occurred in the El Niño-Southern Oscillation (ENSO) region
in the upper ocean and the boundary of the ocean basins in the deeper ocean; meanwhile, the SSA
estimation error presented a relatively even distribution. The wind speed anomalies, including the u
and v components, contributed more to the XGBoost model for both STA and SSA estimations than the
other surface parameters; however, its importance at deeper layers decreased and the contributions
of the other parameters increased. This study provides an effective remote sensing technique for
subsurface thermohaline estimations and further promotes long-term remote sensing reconstructions
of internal ocean parameters.

Keywords: thermohaline structure; global ocean interior; remote sensing data; XGBoost; deeper
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Remote Sens. 2019, 11, 1598; doi:10.3390/rs11131598 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-0280-3926
https://orcid.org/0000-0001-6578-6970
http://www.mdpi.com/2072-4292/11/13/1598?type=check_update&version=1
http://dx.doi.org/10.3390/rs11131598
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1598 2 of 22

1. Introduction

In recent years, rapid warming has occurred in the global climate system. Meanwhile, the strongest
El Niño event in the past 60 years occurred in the central and eastern Pacific with a Nino 3.4 index
of up to 3.1 ◦C, which had a large impact on the global climate and environment [1,2]. As an area
sensitive to global climate change, the ocean plays an important role in regulating the global climate
system. Numerous studies have suggested that most of the heat gained by the Earth system is stored
in the ocean, which leads to significant global ocean warming [3]. In particular, the heat variation
and redistribution in the global subsurface and deeper ocean (300–2000 m) is of great significance to
global climate change [4–7], but there are large uncertainties and discrepancies in the deeper ocean
warming evaluation [8]. The ocean thermohaline structure as the indispensable environmental factors
can be used to study ocean processes and climate change. Evaluating the temperature and salinity
distributions within the ocean can provide a valuable basis for studying ocean dynamics and other
phenomena. The ocean temperature, along with the salinity, is required to compute the ocean water
density [9].

Current internal ocean observation data, while precise, are sparse in time and space and far from
meeting observational requirements for multi-scale ocean process studies [8,10]. At the same time, the
profile data of temperature and salinity in the ocean are sparse and their observations are extremely
uneven, hindering our understanding of important dynamic processes within the ocean. The dynamic
processes in the ocean interior are complex with multi-dimensional and multi-scale features; therefore,
understanding such processes require well-sampled internal ocean observation data over large scales.

So far, satellite sensors have provided abundant time-series and large-scale remote sensing data
with high temporal and spatial resolution. Even though remote sensing techniques have made great
achievements in the marine field, the observations are still limited to the ocean’s surface and are unable
to directly detect information inside the ocean. However, sea surface features can reflect the dynamic
phenomena within the ocean and most interior ocean processes have sea surface manifestations [11].
Moreover, subsurface dynamic information, such as the thermohaline structure, depends greatly on
many processes in the surface layer, such as the surface heat exchange, wind-driven mixing, and
advection [12]. Therefore, it is feasible to retrieve pivotal subsurface dynamic information, e.g.,
the thermohaline structure, indirectly by combining multiple sea surface parameters from satellite
observations with in situ measurements of the ocean’s interior.

Currently, with the development of satellite observations and in situ Argo datasets, more and
more studies have attempted to retrieve and reconstruct important subsurface information, such as
the thermohaline structure, by establishing dynamic models, empirical statistical models, or data
assimilations [13]. The Bluelink Reanalysis (BRAN) model can be applied to retrieve the ocean eddy
currents by assimilating satellite altimetry data, sea surface temperature (SST), and in situ data [14].
Wang et al. [15] proposed a new dynamic method, the internal plus surface quasi-geostrophic equation,
which was used to retrieve the subsurface density and velocity fields on regional scales [16,17]. However,
dynamic models are more suited to regional scales and rely excessively on input parameters. In addition,
it is difficult to obtain large-scale and quasi-real-time sea subsurface environmental information via
data assimilation. Altimetry height, combined with broad scale profile data, can be used to estimate
steric height, heat storage, and subsurface temperature variability [18]. An empirical method was
developed to estimate 3D oceanic thermal structures from quasi-real-time satellite altimeter data [19].
The 3D temperature and salinity fields were derived from remote sensing and in situ data [20,21].
Dynamic topography data, combined with the gravest empirical mode, can obtain time series of
temperature and salinity fields [22]. Satellite altimetry was adopted to estimate the 4D temperature,
salinity, and velocity fields of the Southern Ocean [23]. The global 3D geostrophic ocean circulation
can be estimated based on satellite data and in situ measurements [24]. A time series of the subsurface
temperature structure in the North Atlantic Ocean was derived via a self-organized map (SOM) by
combining the sea surface temperature (SST) and sea surface height (SSH) [25]. Subsurface velocity
fields can be retrieved from sea surface parameters, combined with geographic reference information,
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using the iteration self-organized map approach [26]. Salinity profiles can be estimated from surface
satellite observations using a generalized regression neural network with the fruit fly optimization
algorithm method [27]. The vertical profiles of chlorophyll-a can be retrieved from satellite observations
using hidden Markov models and self-organizing topological maps [28]. An objective algorithm was
proposed to reconstruct the 3D ocean temperature field based on Argo profiles and SST data [29].
Su et al. [30,31] and Li et al. [32] employed classic machine learning methods, such as support vector
regression (SVR) and random forest (RF), to retrieve the subsurface temperature anomaly (STA) based
on multi-source satellite observations, and the results showed that the models have good performance
and RF outperforms SVR for global applications. The geographically weighted regression model
shows a great potential for subsurface modeling with surface data, and has a significant improvement
over the ordinary linear regression model by considering the significant spatial nonstationarity feature
in the ocean [33].

Because the dynamic processes within the ocean are complex and nonlinear [34], it is necessary to
introduce nonlinear machine learning models to reconstruct the ocean interior. In particular, ensemble
learning methods are appropriate for estimating the subsurface thermohaline structure since they
can promote the ability of a model to be generalized by increasing the number of base learners.
This study proposes an ensemble learning algorithm, an improved gradient boosted decision tree
(GBDT) algorithm, called extreme gradient boosting (XGBoost), to detect thermohaline anomalies
within the global ocean (in the upper 2000 m) in different seasons of 2015. In addition, this study
analyzes the estimation accuracy of the model, evaluates the reliability and stability of the model with
respect to the seasons, and further analyzes the spatial distribution of the model estimation errors.

2. Study Area and Data

In this study, the global ocean (in the range of 180◦ W–180◦ E and 78.375◦ S–77.625◦ N) is the study
area. The data used in this study included sea surface data (sea surface height, temperature, salinity,
and wind) from satellite observations and Argo in situ data of the ocean interior. The sea surface height
(SSH) data were derived from Archiving, Validation and Interpretation of Satellite Oceanographic
(AVISO) altimetry [35], and the SST data were derived from the Advanced Microwave Scanning
Radiometer 2 (AMSR2) sensor [36]. The sea surface salinity data were obtained from the Microwave
Imaging Radiometer with Aperture Synthesis (MIRAS) sensor on the Soil Moisture and Ocean Salinity
(SMOS) satellite [37]. The sea surface wind data (SSW, including the northward component (USSW) and
the eastward component (VSSW)) were obtained from the Cross-Calibrated Multi-Platform (CCMP)
product [38]. All the surface data were registered at monthly intervals and had a spatial resolution
of 0.25◦. The Argo in situ data contained 27 vertical standard levels of the ocean interior (from the
surface to a depth of 2000 m), and each depth level included temperature, salinity, and other important
parameters of the ocean interior [39]. The spatial resolution of the Argo data was 1◦.

We unified all the datasets to the same spatial and temporal resolution (1◦, monthly) first and then
subtracted the climatological field from the sea surface data and Argo data to obtain their anomalies.
The climatology of each variable (the base period was 2005–2016) used in this study was from the Argo
gridded dataset [39]. The sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA),
sea surface salinity anomaly (SSSA), northward component of the SSW speed anomaly (USSWA), and
eastward component of the SSW speed anomaly (VSSWA) ranged from −0.3 m to 0.4 m, from −6 ◦C
to 5 ◦C, from −2 psu to 1.5 psu, from −6 m/s to 7 m/s, and from −4 to 5 m/s, respectively, in October
2015. Finally, we normalized all the data to the range of [0, 1], so they could be used as model input
parameters to make the model more reliable. These surface parameters all show significant spatial
variation and heterogeneity characteristics.
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3. Methods

3.1. Extreme Gradient Boosting (XGBoost)

GBDT is an iterative decision trees algorithm proposed by Jerome Friedman [40]. GBDT, as a
type of boosting algorithm, is composed of multiple decision trees, where each decision tree trains
the residual error of the prediction result of the last decision tree. The final result of the algorithm is
obtained by summing up the results of all the decision trees.

Extreme gradient boosting (XGBoost) is an advanced version of the GBDT algorithm [41].
In addition to the first derivative, XGBoost introduces the second derivative of the error function at
each data point to optimize the loss function. Meanwhile, the algorithm takes the complexity of the
tree model as a regularization term in the objective function to avoid over-fitting by adding the regular
terms to the cost functions. In addition, XGBoost refers to the ideas of an RF [42] during model training.
This means that each iteration process does not apply all the samples and all the features of the samples
but selectively takes part of the samples and part of the features for training so as to effectively improve
the generalization ability of the model and weaken the under-fitting and over-fitting phenomena.
The algorithm can automatically select the fraction of columns and observations to be randomly
sampled for training according to certain tuned hyper-parameters such as “colsample_bytree” and
“subsample.” To improve the running speed, the XGBoost algorithm also supports parallel computing.
The procedure of this algorithm is to first divide the original dataset into multiple sub-datasets, and
then, to randomly assign each subset to the base learner for prediction and calculate the result of the
weak learner according to a certain weight. Finally, the model results can be expressed as the weighted
sum of the predicted results of all the decision trees.

Parameter tuning is imperative during modeling. As a learning algorithm, XGBoost includes
some hyper-parameters that cannot be directly learned from model input and training; instead, these
parameters are related to the complexity and regularization of the model [43], and need to be optimized
to refine the model. In this study, we employed Bayesian optimization to tune the hyper-parameters of
XGBoost. This optimization method is a Gaussian process and constantly updates the prior knowledge
by considering the previous parameter information, whereas a conventional grid search or random
search considers no prior parameter information. In addition, the Bayesian optimization process uses
a small number of iterations and has a rapid running speed, allowing it to optimize algorithms with
multiple parameters such as XGBoost. Table 1 shows some imperative hyper-parameters of XGBoost
models tuned by the Bayesian optimization. The other parameters are set to the default values.

Table 1. The meaning and optimal values of some hyper-parameters of the XGBoost model.

Some Hyper-Parameters Meaning (Default Values) Optimal Values

learning_rate Makes the model more robust by shrinking the weights
on each step (0.3) 0.1

min_child_weight The minimum sum of weights of all observations
required in a child (1) 2

max_depth The maximum depth of a tree (6) 16

colsample_bytree The fraction of columns to be randomly sampled for each
tree (1) 0.8

subsample The fraction of observations to be randomly sampled for
each tree (1) 0.8

gamma The minimum loss reduction required to make a split (0) 0
reg_alpha L1 regularization term on weights (0) 0.1

reg_lambda L2 regularization term on weights (1) 10

The XGBoost algorithm has been widely used in various fields such as remote sensing
classification [44] and object detection [45]; this study attempts to use this method to estimate
the thermohaline structure of the interior of the global ocean.
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3.2. Experimental Setup

This study used sea surface parameters from satellite observations (i.e., the SSTA, SSHA, SSSA,
USSWA, and VSSWA) to estimate the interior ocean thermohaline structure (STA and SSA) via the
GBDT and XGBoost methods.

The modeling process was divided into three steps. First, the training dataset was built. The surface
remote sensing parameters were selected as independent input variables of the model, and the
subsurface temperature and salinity anomalies (STA and SSA) measured by Argo were used as training
labels and testing labels. Meanwhile, all datasets were normalized and randomly sampled into a
training set (60%) and a testing set (40%), which were used to train and test the model, respectively.
Second, the XGBoost model was trained. We tuned the hyper-parameters of the XGBoost model using
the Bayesian hyper-parameter optimization method, and then an appropriate XGBoost model was
built with the optimal parameters combination. Third, STA and SSA were predicted using the XGBoost
model. We estimated the results with the trained XGBoost model and evaluated the model accuracy
via R2, the root-mean-square error (RMSE), and the normalized root-mean-square error (NRMSE).
Figure 1 presents the modeling process; the process for GBDT is similar to that for XGBoost.
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XGBoost/GBDT regression approach.

4. Results

4.1. Accuracy Comparison between the XGBoost and GBDT Models

Here, in order to obtain a more reliable model with a higher accuracy, we employed the XGBoost
and GBDT methods to establish regression models to estimate the thermohaline structure at 23 different
depth levels (0–2000 m) in the global ocean interior for the four seasons (January (winter), April
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(spring), July (summer), and October (autumn)) of 2015 and to allow for a comparison between the
two methods using values of the RMSE.

The average RMSE over the different depth levels in each season for the model evaluation are
shown in Figure 2. The average RMSEs of the XGBoost-estimated STA and SSA at different depth
levels were lower than the GBDT-estimated values, which suggests that XGBoost is better suited for
estimating STA and SSA with higher accuracy at the global scale than GBDT, regardless of the season.
Therefore, we selected the better model, XGBoost, as the estimation model in the following analyses.
Moreover, to examine the applicability of the model, we analyzed the seasonal–spatial variation of
the estimated results and investigated the model stability via a spatial distribution analysis of the
estimation errors.Remote Sens. 2019, 11, x FOR PEER REVIEW  6 of 22 
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Figure 2. The average root-mean-square error (RMSE) for the 23 depth levels of STA and SSA estimated
using XGBoost and GBDT in different seasons (the lines indicate the RMSE of the STA and the bars
indicate the RMSE of the SSA).

4.2. Analysis of the Seasonal Results

Figures 3–5 show the spatial distribution of the thermohaline anomalies (including STA and SSA)
of the global ocean interior from the XGBoost-estimated results and the Argo data in the four seasons
of 2015 at several depth levels (100 m (Figure 3), 500 m (Figure 4), and 1500 m (Figure 5)). It is clear
that at the same depth level, the XGBoost-estimated STA and SSA were consistent with the Argo STA
and SSA. On the whole, the thermohaline anomaly signals became weaker with depth, which might be
related to the weaker dynamic processes and more stable seawater stratification in the deeper layers
compared to the upper layers. Moreover, the thermohaline anomalies present some similar patterns in
different seasons.
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100 m for the different seasons in 2015: (A) January, (B) April, (C) July, and (D) October.

As Figure 3 shows, at 100 m, the STAs were all significantly positive in the central and eastern
equatorial Pacific and negative in the western equatorial Pacific in the different seasons, while the
SSAs show a comparatively even distribution pattern. The global ocean STAs were dominated by the
strong El Niño phenomenon at the upper depth levels in 2015. At the same time, the temperature in
the western equatorial Pacific Ocean was abnormally low, and the STA in the Indian Ocean presented a
distribution pattern with positive values in the east and negative values in the west because the Indian
Ocean dipole was in a positive phase period. Moreover, the El Niño phenomenon in the equatorial
Pacific became increasingly stronger, with a Nino 3.4 index of 0.6 ◦C in January, 0.8 ◦C in April, 1.5 ◦C
in July, and 2.4 ◦C in October. Meanwhile, the SSA became increasingly significant with the seasons,
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presenting negative values in the western equatorial Pacific and positive values in the eastern equatorial
Pacific, similar to the STA in October. This was because most of the distinctive thermohaline anomaly
patterns in the subsurface ocean were dominated by the El Niño in the tropical ocean.
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At depths below 500 m (in the deeper ocean), the El Niño phenomenon became weaker and the
negative anomaly in the western Pacific was much weaker or even diminished at 500 m, even though
there remained a high anomaly in the eastern Pacific Ocean. For both the STA and SSA patterns, the
signals in the Southern Ocean and Atlantic Ocean were more intense and significant than those in
the central ocean basin, possibly due to the strong boundary current and mesoscale eddy processes
in the deeper ocean such as the Antarctic Circumpolar Current (ACC), Gulf Stream, and Kuroshio
Current. The STA and SSA signals had little seasonal variation but both showed a latitudinal alternation
distribution over the Southern Ocean and the northern Atlantic Ocean. From depths of 1000 m to
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2000 m, there were almost no El Niño-Southern Oscillation (ENSO) signals and the thermohaline
anomaly signals got weaker and less distinct in their spatial heterogeneity. The ranges of STA and SSA
both decreased, and the anomaly patterns presented little seasonal variation in the different seasons;
this was related to the significant difference in the dynamic processes between the deeper and upper
layers of the ocean.
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Our quantitative evaluation of the performance measures for the XGBoost STA and SSA estimations
at the 23 different depth levels for the different seasons in 2015 (January, April, July, and October)
according to the NRMSE and R2 results is shown in Figures 6 and 7. The RMSE visually reflects the
true errors of the STA and SSA estimations at each depth level. The RMSE ranges of the model also
varied with depth and were smaller at deeper levels due to the smaller magnitude and variance of the
STA and SSA at depth. To describe the model accuracy with increasing depth more intuitively and
to improve the comparability of the model accuracy at the different depth levels, we normalized the
RMSE values to the relative error (NRMSE is the RMSE divided by the range of the Argo-measured
STA and SSA values at the current depth level).

On the whole, both for the STA and SSA estimations, the NRMSE in the different seasons
generally showed first a downtrend and then an uptrend with a turning point occurring at a depth
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of approximately 500 m or 600 m. The R2 value first fluctuated and then showed a downtrend.
This indicates that the prediction performance of the XGBoost model decreased with depth, which
may be due to the relatively stable seawater stratification in the deeper layer and because deeper
ocean phenomena have weaker surface manifestations, which are harder to interpret from satellite
measurements. This result is consistent with the almost absent mesoscale signal shown in Figures 4
and 5 at these deeper levels. In addition, at depths less than 250 m, the accuracy fluctuated due to the
unstable dynamic environment in the upper ocean.

For the STA estimation, the average NRMSE and R2 values of the 23 depth levels were 0.037, 0.036,
0.035, and 0.033; and 0.647, 0.652, 0.702, and 0.742 for January, April, July, and October, respectively.
The model accuracy increased gradually as the seasons progressed, accompanying the stronger ENSO
signal in the upper ocean. For the SSA estimation, the average NRMSE and R2 values of the 23 depth
levels were 0.042, 0.043, 0.041, and 0.040; and 0.521, 0.468, 0.542, and 0.629 for January, April, July, and
October, respectively. The lowest accuracy occurred in April, and the highest accuracy occurred in
October. The accuracy of the SSA estimation was lower in general than the STA estimation. The model
accuracy was relatively high for all four seasons, suggesting that the XGBoost method had a good
seasonal applicability to global STA and SSA estimations.
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4.3. Estimation Error Analysis

The above results suggest that the STA and SSA estimation accuracies from the XGBoost model in
January and April, respectively, were the lowest of the four seasons; therefore, the spatial distribution
of the STA and SSA estimation errors in these respective seasons are analyzed and discussed here.
The XGBoost-estimated STA and SSA values minus the Argo-measured STA and SSA values refer to
the estimation errors (“STA-residual” refers to XGBoost-estimated STA minus the Argo-measured
STA), which are shown in Figures 8 and 9. In order to show the relative errors of the estimated STA and
SSA more intuitively, we also present the error proportion (“error proportion” refers to the proportion
of the estimation residual in the Argo-measured thermohaline anomaly values at each point) for STA
and SSA in Figures 8 and 9, respectively.
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Figures 8 and 9 show the spatial distributions of the XGBoost-estimated STA and SSA errors,
respectively, at depths of (A) 100 m, (B) 500 m, and (C) 1500 m. On the whole, most of the error
spatial distributions showed green with values close to zero; that is, the model-predicted STA and
SSA values were close to the Argo values, which indicates that the XGBoost method is reliable and
robust for STA and SSA estimations at the global scale in the different seasons. In the upper layer of the
ocean (at the depth of 100 m), the abnormal ENSO signal in the equatorial Pacific Ocean was not well
estimated and reduced the STA estimation accuracy of the model, whereas the SSA estimation error had
a relatively even distribution. In addition, significant STA and SSA estimation errors occurred at the
boundary of the ocean basins, such as in the Antarctic Circumpolar Current, Gulf Stream, and Kuroshio
Current regions (i.e., regions including strong current dynamic processes with intense mesoscale eddy
processes). There was an obvious alternation in the STA and SSA overestimation and underestimation
in the Atlantic Ocean and the Southern Ocean. In the deeper layers (below 500 m), such as 1500 m, the
STA and SSA estimation errors became more significant than the errors at 500 m. The estimation errors
became more obvious with depth (below 100 m) since the upper thermohaline anomaly was more
predictable from the surface signatures than the deeper ocean, which is in accordance with the results
above. Moreover, the spatial distribution of the error proportion (relative error) is also clearly shown
in Figures 8 and 9. In general, the most significant error proportion showed a linear distribution, and
the error proportion of SSA estimation was more significant than STA. As the depth increased, the
error proportion became more distinct for both STA and SSA estimation.

4.4. Relative Importance of the Sea Surface Parameters

Previous studies have introduced some machine learning methods in this field, but have not
analyzed the feature sensitivity or contribution to the estimation models [30,31,46]. To evaluate
the contribution of each sea surface parameter to the estimation model, we calculated the relative
importance of each parameter using the feature importance scores obtained from the getfscore function
in Python. The getfscore function evaluates a feature’s score by computing the number of times a
feature is used to split the data across all trees, the average gain of the feature, and the average coverage
of the feature when it is used in trees.

Figures 10 and 11 show the relative importance of the five surface parameters from seasonal and
vertical depth perspectives, respectively, for the (a) STA and (b) SSA estimation models. The relative
importance of the five surface parameters adds up to 1 for each model case. In general, all five
parameters had similar feature importance (approximately 0.2), which illustrates that the surface
parameters used in this study were all effective and reasonable in the XGBoost estimation model.
Nevertheless, the surface wind speed anomalies (including the northward component, USSWA, and
the eastward component, VSSWA) contributed relatively more than the other parameters.
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Figure 10. The relative importance of the five sea surface parameters (SSHA, SSTA, SSSA, USSWA,
and VSSWA) for the XGBoost (a) STA and (b) SSA estimation model at 1000 m in January (blue), April
(green), July (yellow), and October (orange).

The relative importance of the five parameters in the different seasons at the same depth (1000 m)
were similar, which suggests that the contributions of the surface features to the model remained
relatively stable with the seasons (Figure 10). Figure 11 presents the feature importance at different
depth levels (100 m, 500 m, 1000 m, 1500 m, and 2000 m) in January. The surface wind speed anomalies
played the most significant role in the models for both the STA and SSA estimations, regardless of
the depth level. Further, from the upper layer (100 m) to the middle (500 m and 1000 m) and deep
(1500 m and 2000 m) layers, the relative importance of SSHA, SSTA, and SSSA increased gradually
while the importance of the u and v wind speed components decreased slightly. SSTA made a greater
contribution than SSHA and SSSA to the STA estimation. Meanwhile, SSHA made a larger contribution
than SSTA and SSSA to the SSA estimation.
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Figure 11. The relative importance of the five sea surface parameters (SSHA, SSTA, SSSA, USSWA, and
VSSWA) for the XGBoost (a) STA and (b) SSA estimation model at 100 m (blue), 500 m (orange), 1000 m
(purple), 1500 m (green), and 2000 m (yellow) in January.

5. Discussion

Compared to the well-performed random forest (RF) model proposed recently [31], the XGBoost
had better performance with higher accuracy. The average R2 and RMSE at different layers (the
upper 2000 m) were improved by 5.0% and 5.6%, respectively, for STA estimation; and 5.7% and 3.4%,
respectively, for SSA estimation compared to the RF model, which may be attributed to the fact that
the XGBoost algorithm also considered the diversity of decision trees to avoid over-fitting besides the
sampling of features. Furthermore, as an advanced global model, the XGBoost performed well and
could accurately detect both the large-scale STA feature and mesoscale variability, which was superior
to the classic GBDT and linear statistical models [33]. The XGBoost introduces the second derivative
of the error function at each data point to optimize the loss function as an improvement over GBDT.
Relative to the linear statistical models, the XGBoost is more applicable to interpret the nonlinear ocean
dynamic processes.

This study validated the spatiotemporal applicability of the model in different seasons of 2015.
The thermohaline anomaly signals were dominated by ENSO in the upper layers (in the upper 500 m),
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and the signals become stronger as the seasons progressed. However, the thermohaline anomalies
in the deeper ocean varied little with the seasons due to the more stable dynamic processes and
stratification in the deeper layers compared to the upper layers. Moreover, the model overestimated
the abnormal ENSO signal in the upper equatorial Pacific Ocean, especially in January 2015. The trend
of STA estimation accuracy with the depths agreed well with previous studies [31,46], but the SSA
estimation accuracy has been rarely discussed at the seasonal scale. In addition, we show the relative
estimation error at each grid point. The absolute values of the error proportion were reasonable, lower
than 0.5 and 0.6 for STA and SSA estimation, respectively. It is clear that the estimation accuracy of
SSA was lower than STA, which may be improved by introducing other related surface parameters to
the XGBoost model or establishing a more robust SSA estimation model.

Further, the relative importance of each surface parameter to the model was investigated in the
study. The results show all the surface parameters (including SSHA, SSTA, SSSA, USSWA, and VSSWA)
used in this study were effective for the STA and SSA estimations in the XGBoost model with similar
importance (approximately 0.2); however, the surface wind speed anomalies (USSWA and VSSWA)
contributed more to the model than the other surface parameters. In future research, we aim to adopt
other possible surface dynamic parameters to improve the subsurface thermohaline estimation.

6. Conclusions

This study aimed to retrieve the subsurface thermohaline information from satellite-based sea
surface parameters by establishing a robust model based on an advanced machine learning technique
and provide a useful technique for the study of subsurface thermohaline variability during recent global
warming. Here, we proposed a novel ensemble learning method, XGBoost, to retrieve the thermohaline
anomaly of the global ocean interior (in the upper 2000 m) based on satellite observations (SSHA,
SSTA, SSSA, USSWA, and VSSWA) combined with Argo data at different depth levels. The model
performance was quantitatively evaluated using the RMSE, NRMSE, and R2 values. The study showed
that the accuracy of XGBoost was higher than that of GBDT, suggesting that XGBoost is better suited
for thermohaline anomaly estimations in the global ocean. Moreover, we validated the spatiotemporal
applicability of the model in different seasons and analyzed the spatial distribution of the estimation
error at different depth levels. We also evaluated the contribution of each sea surface parameter to
the model.

The results show that the XGBoost model could retrieve the thermohaline anomaly (STA and
SSA) in the global ocean with average R2 values of 0.69 and 0.54 for STA and SSA, respectively, and
average NRMSE values of 0.035 and 0.042 for STA and SSA, respectively. The STA estimation model
performance improved gradually from January (winter) to April (spring) to July (summer) to October
(autumn), and the SSA estimation model performed best in October (autumn) and worst in April
(spring). The thermohaline anomalies presented some similar patterns in different seasons, which were
possibly caused by the continuous El Niño phenomenon in the upper layers in 2015 and the relatively
stable seawater in the deeper ocean.

In general, XGBoost is effective and robust for estimating thermohaline structure information in
the global ocean regardless of the season. The temporal and spatial applicability of the model is decent
on the seasonal scale. This study can help reconstruct thermohaline information for long time series
in the global ocean, and provide effective technical support for detecting and studying subsurface
anomalies and variability from satellite-based sea surface parameters during recent global warming.
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