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Abstract: Drought is one of the most widespread and threatening natural disasters in the world,
which has terrible impacts on agricultural irrigation and production, ecological environment,
and socioeconomic development. As a critical ecologically fragile area located in southwest China,
the Yarlung Zangbo River (YZR) basin is sensitive and vulnerable to climate change and human
activities. Hence, this study focused on the YZR basin and attempted to investigate the spatiotemporal
variations of drought and associated multi-scale response to climate change based on the scPDSI
(self-calibrating Palmer drought severity index) and CRU (climate research unit) data. Results showed
that: (1) The YZR basin has experienced an overall wetting process from 1956 to 2015, while a distinct
transition period in the mid 1990s (from wet to dry) was detected by multiple statistical methods.
(2) Considering the spatial variation of the scPDSI, areas showing the significantly wetting process
with increasing scPDSI values were mostly located in the arid upstream and midstream regions,
which accounted for over 48% area of the YZR basin, while areas exhibiting the drying tendency
with decreasing scPDSI values were mainly concentrated in the humid southern part of the YZR
basin, dominating the transition period from wet to dry, to which more attention should be paid.
(3) By using the EEMD (ensemble empirical mode decomposition) method, the scPDSI over the YZR
basin showed quasi-3-year and quasi-9-year cycles at the inter-annual scale, while quasi-15-year
and quasi-56-year cycles were detected at the inter-decadal scale. The reconstructed inter-annual
scale showed a better capability to represent the abrupt change characteristic of drought, which
was also more influential to the original time series with a variance contribution of 55.3%, while
the inter-decadal scale could be used to portray the long-term drought variation process with a
relative lower variance contribution of 29.1%. (4) The multi-scale response of drought to climate
change indicated that changes of precipitation (PRE) and diurnal temperature range (DTR) were
the major driving factors in the drought variation at different time scales. Compared with potential
evapotranspiration (PET), DTR was a much more important climate factor associated with drought
variations by altering the energy balance, which is more obvious over the YZR basin distributed
with extensive snow cover and glaciers. These findings could provide important implications for
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ecological environment protection and sustainable socioeconomic development in the YZR basin and
other high mountain regions.

Keywords: climate change; drought; multi-scale; scPDSI; EEMD; Yarlung Zangbo River

1. Introduction

Drought is one of the most threatening natural disasters in the world, which has terrible
impacts on agricultural irrigation and production, ecological environment, and socioeconomic
development [1], and it is generally categorized into four types: meteorological, agricultural,
hydrological, and socioeconomic [2]. Meteorological drought (represented as drought in this study)
is a prerequisite to identify other drought categories, which is characterized as the occurrence of
below-average precipitation over a long period of time and across a wide area [3,4]. Under the
background of global warming, the frequency and intensity of drought have increased significantly [5].
Therefore, it is of great importance for drought monitoring and warning to understand the
spatiotemporal variation of drought and associated multi-scale response to climate change.

Influenced by multiple climate factors, drought often displays nonlinear, nonstationary complex
processes with periodic oscillations [6–8]. However, previous research mostly focused on linear
variations and neglected the nonlinear responses to climate change [9–11]. Hence, investigating the
nonlinear and nonstationary process is essential to understand long-term drought variations. As a novel
signal processing method, the ensemble empirical mode decomposition (EEMD), having advantages
of robust self-adaptability and local variation characteristics, was developed to solve nonlinear and
nonstationary problems [12,13]. The intrinsic mode functions (IMFs) and the trend component of
climate factors are separated from the original signal based on the EEMD method [14,15]. Hence, the
EEMD method is one of the most popular techniques to extract periodic information and changing
trends, which has been applied to analyze long-term nonlinear variations in climate research [16,17].

The scPDSI (self-calibrating Palmer drought severity index), based on evapotranspiration
estimation using the FAO-56 Penman–Monteith equation, has been considered as the best drought
index in China [18–20], especially for monitoring and warning drought events. Firstly, it has a solid
physical foundation by considering precipitation, temperature, and the locally-available water content
to assess the precipitation deficit/surplus [21]. Whereas, the SPI (standardized precipitation index)
only focuses on the precipitation [22], and the SPEI (standardized precipitation evapotranspiration
index) ignores soil moisture [23]. Secondly, compared with the empirical Thornthwaite (Th) equation
that only describes the mean daily temperature and latitude, the FAO-56 Penman–Monteith equation
incorporates the energy balance and aerodynamic theory [24]. Thirdly, it is more suitable for global wide
drought monitoring as it automatically calibrates itself at any location using dynamically computed
values based on the framework of the PDSI model [25]. In addition, the seasonal snowpack dynamic
variation is considered in the water balance model, which provide a more accurate measure of the
availability of moisture for snowy areas when the snowpack melts [26]. This feature is particularly
suitable for high altitude regions covered with glaciers and snow, such as the Yarlung Zangbo River
basin in the Qinghai–Tibet Plateau. Finally, the high accuracy scPDSI dataset produced by the CRU
(climate research unit) has been successfully applied in different regions over the world [27–29].

Long-term variation of drought is closely associated with climate variables, such as precipitation,
temperature, potential evapotranspiration, etc. In general, less precipitation and higher temperature
will lead to more soil moisture consumed by evapotranspiration and furthermore result in drought
events. Although comprehensive research concerning the response mechanism of drought to climate
variables has been extensively carried out [30–32], it is still unclear what the response mechanism
between extreme temperatures (i.e., maximum, minimum temperature and diurnal temperature range)
and drought variation process, especially in high-altitude regions featured with the fragile ecological
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environment. In addition, the multi-scale response mechanism of drought under global climate change
should be considered more.

Since the twentieth century, severe drought has brought great economic and social losses over
China, and the dry area has increased by 3.72% per decade throughout China [33]. Chen and Sun
(2015) further detected drought variation characteristics and considered that drought has been frequent
and intensive across China [34]. Li et al. (2009) pointed out that significant decreasing soil moisture
may induce severe drought since the 1950s [35]. The Qinghai–Tibet Plateau, located in southwest
China, also known as the Third Pole of the Earth and the Water Tower of Asia, is more sensitive
to global climate change [36]. Currently, it is one of the ideal and perfect regions to study global
climate change [37]. Recent investigations have indicated that drought in the Qinghai–Tibet Plateau
not only exerted important influence to local agricultural production and social development [38,39],
but also gave feedback to global climate because it is an elevated heat source and sink that drive
global circulation [40]. The Yarlung Zangbo River (YZR) basin (82◦0′E to 97◦1′E, 27◦8′N to 31◦2′N) is a
key region for the precipitation generation mechanism over the Qinghai–Tibet Plateau. In addition,
the YZR contains enormous water vapor transportation channels which carry abundant moisture
from the Indian Ocean to the inner region of the Qinghai–Tibet Plateau [41]. Thus, the YZR basin is
of overwhelming importance to agricultural development, sustainable environment, and economic
prosperity of the Qinghai–Tibet Plateau [42]. Furthermore, the YZR basin is also the political, economic,
and cultural center of Tibet Autonomous Region, China. The cultivated land, mainly distributed in
the river valley of the midstream, accounts for about 62.89% of the area of the Tibet Autonomous
Region. However, the statistically-significant warming and intensive drought were observed in the
YZR basin [43]. Li et al. (2010) and Song et al. (2011) concluded that the mean temperature showed an
evident increasing trend [44,45], which would result in severe drought in the YZR basin. Li et al. (2015)
demonstrated that under the context of global warming, the duration and magnitude of drought had
gradually worsened [46]. Desertification in the YZR basin has been a critical issue during the past few
decades due to the significant warming [47]. The available water resources for agricultural production,
economic prosperity, and society development, significantly affected by warming and drought, will
become more challenging in the future. Previous investigations more focused on the linear variation of
drought, while non-linear and non-stationary drought process and associated multi-scale response to
climate change are still indistinct. In addition, inadequate and irregular observation networks in the
YZR basin have been restricting the ability to study basin-wide climate change. Therefore, to solve
the problems mentioned above, the primary objectives of this study are as follows: (1) To explore the
spatiotemporal variation of drought in the YZR basin based on scPDSI; (2) to identify periodic cycles at
different time scales and reconstruct time series of the scPDSI based on the EEMD method; and (3) to
investigative the multi-scale response mechanism of drought under global climate change. The results
of this study will contribute to our understanding of drought in the YZR basin and provide useful
information for ecological environment protection and socioeconomic development.

2. Materials and Methods

2.1. Study Area

The YZR basin, one of the largest river basins in southwest China, is sited in the southern edge of
the Qinghai–Tibet Plateau that is located at a longitude of 82◦0′E–97◦1′E and latitude of 27◦8′N–31◦2′N
(Figure 1). The YZR flows through the south of Qinghai–Tibet Plateau from west to east, with a total
length of ~2000 km and an entire area of ~240,000 km2 in China. Originating from the northern foothills
of the Himalayas Glacial on the Qinghai–Tibet Plateau, it serves as the most important freshwater
source for downstream areas. In this study, the YZR basin was divided into three sub-areas with
the ArcSWAT tool (upstream, midstream, and downstream). The climate in the YZR basin, strongly
influenced by the southwest monsoon, is complicated. 65%–80% of the annual precipitation amount
falls in June to September, while precipitation mostly comprised of snow in winter and early spring
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is relatively little, indicating the precipitation has an obvious uneven intra-annual variation [48].
Precipitation in this region is characterized by a large spatial heterogeneity with a decreasing trend
from the downstream to upstream areas. The annual mean precipitation of the cold and dry upstream is
less than 300 mm, the annual mean precipitation in the midstream is 300–600 mm, whereas the annual
precipitation amount of the warm and humid downstream is more than 2000 mm. The YZR basin is
covered with extensive glaciers and snow cover. The area of glaciers reaches 4225 km2 accounting for
about 2.1% of the YZR basin and nearly 30% of the area is covered by perennial snow and seasonal
snow [49,50]. Furthermore, the YZR basin has shown a remarkable increase in temperature over the
past decades, which is consistent with the warming trend across the whole Tibetan Plateau [51–53],
and increasing runoff of the YZR basin was noted in the recent years, which can be attributed to the
melting of the glacier and snow coverage over the basin [54].

Figure 1. The geographical location of the Yarlung Zangbo River (YZR) basin in Qinghai–Tibet Plateau
and in China.

2.2. Data

Previous research has typically considered in-situ observations to analyze the spatiotemporal variation
of climate factors [55–57]. However, the observational networks are irregularly distributed, which reduces
the representativeness of the spatial variability. In addition, most stations lack long-term and continuous
observation data [58,59]. The YZR basin is a typical high-altitude region with an inadequate and irregularly
observation network [60], which has only 15 national meteorological stations mainly concentrated in the
midstream and downstream, while its drainage area is over 240,000 km2.

To overcome the problems that exist in sparse observational networks, the CRU data have been
used extensively in recent climate research to analyze the historical climate factors of the world [61–64].
The CRU data was developed and has been subsequently updated, improved, and maintained with
support from a number of funders, principally the UK’s Natural Environment Research Council (NERC)
and the US Department of Energy. Long-term support is currently provided by the UK National
Centre for Atmospheric Science (NCAS), a NERC collaborative center. Based on surface meteorological
stations, monthly values of climate variables firstly were constructed for the reference period by
applying quality control techniques, interpolation methodologies, and cross-validation. Then, the time
series of climate variables were filled by interpolating the observed data. In addition, sometimes one
variable was used to estimate another: for example, sunshine duration and daily temperature range
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were used to estimate cloudiness. Detailed information on the procedures used to build this database
are given in New et al. [65,66]. The CRU data has a spatial and temporal resolution of 0.5◦ × 0.5◦ and
one month, respectively. The CRU data was validated and applied across the Qinghai–Tibet Plateau,
indicating a reasonable representation of spatiotemporal variations of precipitation and surface air
temperature [67,68].

In this study, precipitation (PRE), mean temperature (TEM), potential evapotranspiration
(PET), maximum (TMX) and minimum temperature (TMN), and diurnal temperature range (DTR)
were extracted from the CRU TS 3.26 data. The PET data were calculated based on the FAO-56
Penman–Monteith equation as recommended by the World’s Food and Agriculture Organization
(FAO).

The scPDSI data were produced based on CRU TS 3.26. It was calculated using the time series
of precipitation, temperature, and fixed parameters related to the soil/surface characteristics at each
location, which made this scPDSI data more appropriate for drought monitoring and warning [69].
The range of values of the scPDSI was between −4 and +4. Negative scPDSI values indicated dry
condition; positive scPDSI values indicated wet condition. The classification of the PDSI values is
summarized in the below charts (Table 1).

Table 1. Classification of the scPDSI (self-calibrating Palmer drought severity index) values.

Value Category Value Category

Above 4.00 Extreme wet −1.00 to −1.99 Mid dry
3.00–3.99 Severe wet −2.00 to −2.99 Moderate dry
2.00–2.99 Moderate wet −3.00 to −3.99 Severe dry
1.00–1.99 Mid wet Below −4.00 Extreme dry
−0.99–0.99 Normal

2.3. Methods

2.3.1. Linear Regression Method

The linear regression method was applied to detect the changing rate of scPDSI and climate
variables in the YZR basin from 1956 to 2015. The regression model was as follows:

y = at + b (1)

where y is the scPDSI and climate variables; t is the year; a is the slope, indicating the increasing rate
when a > 0 or decreasing rate when a < 0. Specially, when variable y is scPDSI, a > 0 indicates the
wetting tendency, a < 0 indicates the drying tendency; b is the intercept of the regression.

Locally-weighted scatter point smoothing (LOWESS), a nonparametric method, has been also
used to smooth the time series and visualize changing trends in climate factors [70–72]. With the
LOWESS, each smoothed value was determined by neighboring data points within the span and
locally-weighted polynomial regression [73].

2.3.2. Mann–Kendall Significance Test

As an effective and practical statistical method, the nonparametric Mann–Kendall significance
test, widely applied in the research field of climate change, mainly aims to identify trend significance
of discharge, precipitation, temperature, and other climate factors [74–76]. The Mann–Kendall test
statistic Zc was estimated as follows:
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To a series of Xt = (x1, x2, . . . , xn),

Zc =


s−1√
D(s)

s > 0

0 s = 0
s+1√
D(s)

s < 0
(2)

where

s =
n−1∑
i=1

n∑
j=i+1

sgn(x j − xi) (3)

with

sgn(θ) =


1
0
−1

θ > 0
θ = 0
θ < 0

(4)

where xi and xj are the sequential data values; n is the length of the time series; t is the extent of any given
time. The null hypothesis H0 is rejected if |Zc| > Z(1−α/2), where α is the significance level of the test.
In this study, the trend was significant when |Zc| > 1.96 corresponding to the significance level of 0.05.

In addition, Sen’s slope coupled with Mann–Kendall test was used to carry out trend analysis in
this study. β, the Sen’s slope, was calculated as follows:

β = Median(
x j − xi

j− i
) (5)

2.3.3. Moving t-test

The principle of the moving t-test to identify the abrupt point is to test whether the mean values
of two sub-samples change significantly at the significance level of 0.05 [77,78]. Two sub-datasets
are manually separated by setting a datum point, but generally the lengths of two subsamples are
equivalent. The statistical value of the moving t-test method was calculated as follows:

t =
x1 − x2

s·
√

1
n1

+ 1
n2

(6)

s =

√
n1s1

2 + n2s22

n1 + n2 − 2
(7)

where x1, x2 are the two sets of subsamples; n1, n2 are the lengths of the subsamples; x1, x2 and s1, s2

are mean values and standard deviations of the two sub-datasets, respectively. When t > t1−α/2 (i.e., α
was the significance level of the student test and equals 0.05 in this study), it can be considered that an
abrupt change takes place at the significance level of 0.05.

2.3.4. Ensemble Empirical Mode Decomposition

The ensemble empirical mode decomposition (EEMD) with robust self-adaptability and local
variation characteristics, can be applied to solve nonlinear and nonstationary problems. Therefore,
we applied EEMD method to decompose the scPDSI and climate factors from 1956 to 2015 into different
intrinsic mode functions (IMFi) and a trend component (T). Each IMF component, consisting of a
signal and white noise of finite amplitude, was defined as the mean of an ensemble of trials [79,80].
The natural waveforms were applied in the EEMD method compared with other decomposition
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methods, and the physical information with specific time scales did not change when the new data
was added [81,82]. The original time series x(t) was decomposed according to the formula below.

x(t) =
n∑

i=1

IMFi(t) + T(t) (8)

2.3.5. Significance Test of IMF Components

To determine the oscillation scale of each IMF component, we examined a more detailed distribution
of the energy for the period in the form of a spectral function. The energy density of IMF components
(Ei) can be defined as follows:

Ei =
1
N

N∑
j=1

∣∣∣IMFi( j)
∣∣∣2 (9)

where N is the length of the IMF component.
The white noise sequence was tested using the Monte Carlo method. A simple equation that

related the energy density (Ei) and the averaged period (Ti) was obtained:

ln(Ei) + ln(Ti) = 0 (10)

If we plot ln(Ti) as the X-axis and ln(Ei) as the Y-axis, the relation between the energy density
and the averaged period can be expressed by a straight line whose slope is −1.

In theory, the IMF components of the white noise series should be distributed on the line; however,
the actual application produced a little deviation, and the confidence interval for the energy spectrum
distribution of white noise was; thus, presented as follows:

ln Ei = − ln
{
Ti

}
α
± α

√
2/N·e

ln [(Ti) α
2
]

(11)

where α is the significance level.

2.3.6. Variation Contribution Rate

The variance contribution rate (W) is a measure of the effects of the frequency of the fluctuation
and amplitude at different scales on the original signal characteristics [83,84]. The variance contribution
rate of the IMFi can be calculated as follows:

Wi =
var(IMFi)

n∑
i=1

(var(IMFi) + var(T))
(12)

where var(IMFi) and var(T) are, respectively, the variances of the IMFi and the trend component. Wi
is the variation contribution rate of the IMFi.

3. Results

3.1. Temporal Variation Analysis

By averaging scPDSI values over all pixels, the linear regression and LOWESS method were
applied to identify the long-term variation trend of scPDSI anomaly from 1956 to 2015 in the YZR
basin. The results are shown in Figure 2. The scPDSI anomaly showed a significant increasing trend
with the slope value of 0.024/yr (R = 0.347, Zc = 2.54), indicating the YZR basin was, overall, becoming
wetter during the study period. Yuan et al. (2017) used the ration of potential evapotranspiration
to precipitation to detect spatial and temporal variations of the wet–dry condition over China,
and concluded that the degrees of wetness in the Qinghai–Tibet Plateau had substantially increased
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from 1961 to 2015 [85]. Owing to the better capability of the LOWESS method to capture the intrinsic
variation trend by smoothing time series, an obvious climate transition period from wet to dry during
the mid 1990s was detected (brown line in Figure 2). Especially, the scPDSI showed a significantly
decreasing trend after the transition period, indicating that the YZR basin turned drier. Zhang et al.
(2019) came to the same conclusions, showing that soil moisture kept a persistently decreasing trend in
the Qinghai–Tibet Plateau since the twenty-first century [86], which indicates a drier condition. Though
the LOWESS curve shows the value is dropping, the end of 2015 was still wetter than the beginning
of 1956, which restated that the YZR basin showed a basin-wide wetting tendency. In conclusion,
although the YZR basin showed an overall wetting tendency, it experienced a “wetting-to-drying
transition” process during the mid 1990s, as shown by the results of the LOWESS method.

Figure 2. The inter-annual variation of the scPDSI anomaly in the YZR basin.

To further investigate and validate the transition characteristics of the dry–wet condition inferred
by the LOWESS curve, the moving t-test method was utilized to identify the occurrence time of the
breakpoint. Figure 3 shows the moving t-test results of the annual scPDSI anomaly. There were two
breakpoints located over the 95% confidence interval. One located in 1975 and the other located in
1994. The result of the transition point in 1975 was close with the opinion that the occurrence frequency
of drought showed an obvious change around the 1980s in China [87]. The transition point of 1994 was
consistent with results detected by the LOWESS curve, illustrating a transition period from wet to dry
occurred in the middle of the 1990s.

3.2. Periodic Cycle Analysis

EEMD method was utilized to decompose the scPDSI anomaly from 1956 to 2015 in the YZR basin,
and; furthermore, to identify the periodic cycles by using the significance test. As shown in Figure 4,
four IMFs and one trend component were decomposed, which contained the periodic changes and
nonlinear feedback in the climate system [88]. According to Section 2.3.5, the significance test results
of different IMF components are plotted in Figure 5, where the energy density values and inherent
periodic cycles are shown with the logarithmic form at the longitudinal axis and the horizontal axis,
respectively. The periodic cycles of IMF components are listed in Table 2. The IMFs, with their specific
physical meaning, reflected particular inherent oscillation in the original scPDSI anomaly series [89].
Figure 5 and Table 2 indicate that the scPDSI anomaly had the quasi-3-year (IMF1), quasi-9-year (IMF2),
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quasi-15-year (IMF3), and quasi-56-year (IMF4) cycles. In addition, the IMFs decomposed by the
original scPDSI anomaly all fell above the 90% confidence level line, indicating each IMF component
had an important inherent physical meaning (Figure 5 and Table 2). The trend component showed
a nonlinear and nonstationary characteristic during 1956–2015, which exhibited an upward trend
before the middle 1990s and a downward trend after 1990s, which is similar to the result in Section 3.1.
Combined with the result of LOWESS and the trend component decomposed by EEMD, although the
YZR basin experienced an overall wetting process from 1956 to 2015, a transition period from wet to
dry occurred in the mid 1990s, implying a significant drying period after 2000, which should be taken
into consideration seriously for drought monitoring and warning. According to the Tibet Natural
Disaster Statistics from the Third Pole Environment Database (http://www.tpedatabase.cn), Nyingchi
and Shigatse counties, located in the YZR basin, indeed faced continuous drought in 2001 and 2002,
which brought great challenges to the local ecological environment, agricultural production, and social
development [90].

Considering the amplitude of the oscillation, IMF1 showed a higher fluctuating amplitude in the
1970s and 2000s. Meanwhile, two distinct abrupt points were also detected by using the moving t-test
method in the same period (Figure 3). This can indicate that IMF1 with the quasi-3-year cycle had a
good capability to represent the drought abrupt characteristic. The periodic cycle with quasi-3-year in
IMF1 was also consistent with that of precipitation records in the Tibetan Plateau [91]. IMF2 with the
quasi-9-year cycle showed a higher amplitude during the 1960s and 1980s, which might be influenced
by the sunspot activity characterized by a 11-year periodic cycle [92]. Due to less than 10 years of
periodic cycles, IMF1 and IMF2 can be regarded as the interannual variations of the scPDSI. IMF3 and
IMF4, with the lower amplitude and longer periodic cycle, could be used to reflect the interdecadal
variation characteristics in drought, which have been considered to have a relationship with large-scale
atmospheric circulations [93–95]. Thus, the interdecadal variation indicated by IMF3 and IMF4 is a
good reference for the long-term variation pattern of drought, which cannot be neglected in drought
monitoring and warning.

Figure 3. The abrupt detection of scPDSI with the moving t-test method in the YZR basin. The dotted
purple line is 95% confidence level.

http://www.tpedatabase.cn
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Figure 4. The original scPDSI anomaly, intrinsic mode functions (IMFs), and trend component in the
YZR basin.

Figure 5. The significance test for the IMFs of the scPDSI anomaly in the YZR basin.

Table 2. The contribution rates of IMF components and trend component of the scPDSI anomaly.

IMF1 IMF2 IMF3 IMF4 Trend

Period/yr 3 9 15 56
Contribution/% 26.4 28.9 21.3 7.8 15.6

Confidence level 90% 99% 99% 90%
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3.3. Contribution Rates of IMFs and the Trend Component

To investigative the multi-scale variation characteristics of the scPDSI in the YZR basin, the
inter-annual and inter-decadal scales were reconstructed based on the IMFs with different periodic
cycles and the trend component. IMF1 and IMF2, with quasi-3-year and quasi-9-year cycles, respectively,
reflected the inter-annual variation features in the original scPDSI time series. Hence, the inter-annual
scale of scPDSI was reconstructed by the summation of IMF1, IMF2, and the trend component.
Similarly, the inter-decadal scale of scPDSI was reconstructed by summing IMF3 (quasi-15-year), IMF4
(quasi-56-year), and the trend component. The results are shown in Figure 6. The reconstructed
inter-annual scale (pink line in Figure 6) was consistent with the original scPDSI anomaly (black line
in Figure 6) with a high Pearson correlation coefficient (R > 0.85), manifesting that the inter-annual
variation was the dominant part in the original scPDSI anomaly. However, the Pearson correlation
coefficient between the inter-decadal and the original scale was only 0.63, implying that the reconstructed
inter-decadal scPDSI variation could not adequately portray the characteristic of the original scPDSI
anomaly. This might be attributed to small-scale oscillations excluded from the reconstructed
inter-decadal scPDSI anomaly variation [96]. However, the reconstructed inter-decadal scale could
capture the long-term variation process of the original scPDSI anomaly, and, for example, the YZR
basin in the 1960s, 1980s, and 2000s exhibited a drying process with the decreasing scPDSI anomaly
at inter-decadal scale, while the scPDSI showed an increasing tendency during the other periods,
indicating the YZR basin became wetter.

Figure 6. The original, inter-annual, inter-decadal, and trend component of scPDSI time series.

The effect of the fluctuated frequency and amplitude at each scale on the general characteristics
of the original data can be expressed as the variance contribution rate. Table 2 shows the variance
contribution rate of each component for the scPDSI anomaly. IMF2 had the maximum variance
contribution (28.9%), followed by IMF1 (26.4%), IMF3 (21.3%), and the trend component (15.6%).
The minimum variance contribution was found in IMF4 with the value of 7.8%. What is more, the
trend component contributed up to 15.6% of the variance, indicating that the overall mean annual
scPDSI in the YZR basin from 1956 to 2015 showed a nonlinear rise with wetting tendency, which was
more obvious before the mid 1990s. Hence, it can be concluded that the inter-annual variation had a
contribution of 55.3%, whereas the inter-decadal variation had only a contribution of 29.1%.
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3.4. Spatial Variation of Drought

The mean annual value of the scPDSI anomaly from 1956 to 2015 was calculated for each grid.
Meanwhile, the standard deviation (~0.60), calculated by using the mean annual values over the whole
basin, was used as the classification criterion of drought in the YZR basin during the study period.
The spatial pattern of the mean annual scPDSI anomaly is shown in Figure 7. The mean annual values
of scPDSI anomaly > 0.3 were defined as a wet condition, while the mean annual values of scPDSI
anomaly < −0.3 were defined as a dry condition. The wet regions accounted for 26.7% of the YZR
basin, and were mainly concentrated in the north of midstream and downstream basins, especially in
the headwater basin of Lhasa river and Parlung Tsangpo river. However, the arid regions accounted
for 33.4% of the YZR basin, which were mainly located in the Nyang Qu river basin of the upstream
and Bomi county of the northeast downstream basin.

Figure 7. The spatial pattern of the scPDSI anomaly in the YZR basin.

The Sen’s slope and Mann–Kendall significance test were applied at each grid to detect trend
variations from 1956 to 2015 in the YZR basin. Figure 8 shows that more than 95% of the grids
experienced a wetting trend, which was consistent with the results of the linear regression method
(Figure 2). The regions with the significantly wetting trend, accounting for about 48% of the grids,
were mainly sited in the arid upstream and midstream regions. However, there existed a drying
trend in some parts of the humid downstream regions, especially in the southern part, which was
consistent with the results obtained by Wu et.al [97], demonstrating a frequent risk of drought in the
east YZR basin.

Figure 8. The spatial pattern of the Sen’s slope of the scPDSI anomaly in the YZR basin. The red dot
represents that the trend is significant at the 95% confidence level.
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It can be concluded that the YZR basin was undergoing a wetting process due to the significant
wetting trend in most parts of the basin. In addition, the wetting tendency occurred in the arid and
semi-arid regions and the drying tendency occurred in the humid southern part, indicating a DWDW
(dry gets wetter, wet gets drier) pattern in the YZR basin.

3.5. Multi-Scale Response to Climate Change

The Earth’s climate system is considerably complex. Moreover, nonlinear and nonstationary
processes with different periodic oscillations and scales are often influencing climate factors, as also
noted in this study. It is meaningful for regional economic development and ecological protection
to investigate the nonlinear response of drought to climate factors. The EEMD method can reveal
hidden intrinsic non-stationary oscillation structures, and it was applied to decompose the long-term
climate factor variations in this study. Precipitation (PRE), mean temperature (TEM), potential
evapotranspiration (PET), maximum temperature (TMX), minimum temperature (TMN), and diurnal
temperature range (DTR) were selected to explore the multi-scale response of drought to climate change.
According to the reconstructed principal, all six climate factors were reconstructed at inter-annual and
inter-decadal scales (Figure S1). The correlation coefficients between the scPDSI anomaly and different
climate factors are illustrated in Figure 9.

In terms of original time series, precipitation had the closest positive correlation with drought
variation with a correlation coefficient of 0.76 (Figure 9a), which indicated that precipitation was
considerably important in drought variation processes. Similar results were also found in other
regions [98,99]. Zhang et al., (2010) concluded that precipitation was the main factor causing drought
in southwestern China [98]. Liu et al., pointed out that the Tibetan Plateau exhibited a wetter state,
which could be mainly influenced by increased precipitation [99]. Furthermore, precipitation exerted
important influences at inter-annual and inter-decadal scales with correlation coefficients of 0.69 and
0.82, respectively.

A previous study showed that PET was a decisive drought-induced climate factor in semi-arid
and arid regions [100] (i.e., consistent increased PET will induce more severe drought with lower
scPDSI value). However, there was a small difference in our study. Although PET played a negative
role in drought variation, the correlation coefficient between scPDSI and PET was relatively weak
(−0.32, Figure 9a). Increased precipitation intensity has been observed in the YZR basin [101], which
might be partly responsible for the relatively non-significant negative correlation between the scPDSI
and PET [102]. In addition, ET regulates the water and energy cycle and will keep a relatively balanced
status, which is more evident in high altitude regions [103]. That is, wetter conditions with increasing
scPDSI values can supply more water, which is beneficial for higher ET, and higher ET can conversely
consume more moisture, which will result in drought. That may explain why ET and drought showed
a non-significant correlation in the YZR basin.

Long-term scPDSI anomaly variation in the YZR basin was strong negatively correlated with DTR,
by a correlation coefficient of −0.70 in the original time series (Figure 9a). Some studies concluded that
changes of PET were dominated by temperature variables [104–106]. Although DTR is an important
indicator of temperature, it showed a non-significantly correlation with changes of PET in the YZR
basin as their correlation coefficient was only 0.36. However, in comparison to the weak correlation
coefficient (−0.32) between PET and scPDSI, DTR showed the directly negative influence on the
drought variation with the correlation coefficient up to −0.70, which indicated that DTR played a
more complicated role in long-term drought variation rather than simply influencing the PET. This
phenomenon can be attributed to the special geographical environment in the YZR basin. Due to
the widely distributed glaciers and snow cover, the snow melting process in the cryosphere cannot
be neglected and might change the surface albedo, latent heat, and other variables [107], which will
contribute most to the DTR variation, and; meanwhile, also have great impacts on drought variation.
Hence, an increased cloud thickness will contribute mostly to the decreasing DTR [108,109]. Clouds
can improve long-wave radiation and reduce short-wave radiation, which will further alter the energy



Remote Sens. 2019, 11, 1596 14 of 21

balance and exert some influences on drought variation. Plus, this changing process in energy balance
will be more obvious in the cryosphere over the YZR basin distributed with extensive snow cover and
glaciers. In general, more clouds will lead to abundant precipitation [110,111], which also explained
the cause that there was a significantly negative correlation between DTR and PRE over the YZR basin
in the inter-annual (−0.56, Figure 9b) and inter-decadal (−0.67, Figure 9c) time scales. Furthermore,
the significant increasing TMN was the main reason for the decrease of DTR, and the correlation
coefficient between DTR and TMN was significantly negative due to the fact that the increasing slope
with 0.023 ◦C/yr of the TMN was about twice that of the TMX with the slope of 0.012 ◦C/yr (Figure S2).

Figure 9. Cont.
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Figure 9. The correlation coefficient matrix in the original time series (a), inter-annual (b),
and inter-decadal (c).

4. Discussion

In this study, correlation coefficients between scPDSI and TEM, TMX, and TMN, were very low
(0.05, −0.18, and 0.28 in Figure 9a, respectively), which indicated that drought variation in the YZR
basin was not predominantly determined by the temperature changes [112]. This seems inconsistent
with the previous study that demonstrated that rising temperature was the main reason for global
drought, which might be attributed to the spatial scale inconsistency between global and regional scale
levels and the specific geographical environment in the YZR basin. As mentioned above, glaciers,
snow cover, and permafrost are distributed in the YZR basin, and the melting process in the cryosphere
may play a considerable important role in long-term drought variation. Additionally, the correlation
coefficient between scPDSI and TMX was −0.18, indicating that increasing TMX will induce more
severe drought. Whereas TEM and TMN showed positive but little impacts on scPDSI variation,
with correlation coefficients of 0.05 and 0.28, respectively, which can be attributed to more shallow
soil moisture as a consequence of the accelerated melting process in cryosphere induced by climate
change [113,114]. Li et al. (2019) used GLDAS data to investigate soil moisture variations from 1970 to
2009 and concluded that, under global warming, the significantly increasing surface air temperature
greatly influences the depletion of soil moisture and becomes the dominant controlling factor in soil
moisture variations [115]. These further indicate the important role of the cryosphere components in
environmental changes over the YZR basin.

Correlations among scPDSI and climate factors at the inter-annual and inter-decadal scales
(Figure 9b,c, respectively) were similar with those in the original time series (Figure 9a). However, there
were some differences at the other two time scales. At inter-annual and inter-decadal scales, PRE and
DTR still showed pronounced impacts on the drought variation process. Whereas, compared with the
original time series, correlation coefficients between scPDSI and PRE and DTR at the inter-annual scale
decreased (i.e., changing from 0.76 and −0.70 to 0.69 and −0.63, respectively). While the correlation
coefficients strengthened from 0.76 and −0.70 to 0.82 and −0.83, respectively, at the inter-decadal scale.
These indicated that PRE and DTR played a more important role at the inter-decadal time series, which
may be linked to the atmospheric circulation factors in the longer term [116]. Except for PRE and DTR,
TMN had the most significant influence on the drought variation at the inter-decadal time scale, which
portrayed long-term impacts of the snow melting process under global warming.
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5. Conclusions

In this study, the spatiotemporal variation characteristics of drought and associated multi-scale
response to climate change were investigated, based on the high accuracy scPDSI data and CRU data,
from 1956 to 2015 over the YZR basin, located on the southern edge of Qinghai–Tibet Plateau, China.
The main conclusions were summarized as follows.

(1) The YZR basin experienced a basin-wide wetting process. However, there existed an obvious
transition point in the mid 1990s, which indicated that the YZR basin exhibited first a wetting and then
a drying process. The drying process after the mid 1990s was harmful to the ecological environment,
agricultural productivity, and social development.

(2) Most regions in the YZR basin, located in the arid upstream and downstream areas, showed a
significant wetting tendency, estimated by the Sen’s slope and Mann–Kendall significance test. Whereas
regions showing drying tendency were mainly distributed in the humid southeastern part, which was
inconsistent with the DDWW pattern, emphasizing the complexity of the YZR basin.

(3) The results of EEMD decomposition with significance test manifested that the scPDSI in the
YZR basin had quasi-3-, quasi-8-, quais-15-, and quasi-56-year cycles. The reconstructed inter-annual
scale with the variance contribution of 55.3% has good capability of representing the drought abrupt
change characteristic, while the inter-decadal scale with the variance contribution of 29.1% can portray
the long-term drought variation process.

(4) The multi-scale response of drought to climate change indicated that changes of precipitation
and diurnal temperature range were the dominat driving factors in the drought variation at different
time scales. Compared with potential evapotranspiration, diurnal temperature change was a more
important drought-induced climate factor, which indicated the snow melting process of the cryosphere
cannot be neglected in long-term drought variation over the YZR basin distributed with the glaciers,
snow, and permafrost.

Drought will bring devasting influence on agricultural production, ecological restoration,
and socio-economic development for the Yarlung Zangbo river basin, which is the political, economic,
and cultural center in the Tibet Autonomous Region. Therefore, this study investigated the
spatiotemporal variation of drought and discussed its multi-scale response to climate change in
this region, providing certain implications for drought identification, monitoring, and adaption
management. However, there are still some deficiencies. In the future, better quality and
higher-resolution gridded data should be applied to further describe the spatial heterogeneity in the
YZR basin, with complex terrain and climate. In addition, a distinct dry–wet transition point was
detected in the mid 1990s, indicating that the water and energy cycle may be altered, which can
redistribute hydroclimate variables and result in great influence on the terrestrial ecosystem. These
changes deserve to be investigated deeply in the YZR basin.
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