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Abstract: Depressions due to sinkhole formation cause significant structural damages to buildings
and civil infrastructure. Traditionally, visual inspection has been used to detect sinkholes, which is a
subjective way and time- and labor-consuming. Remote sensing techniques have been introduced for
morphometric studies of karst landscapes. This study presents a methodology for the probabilistic
detection of sinkholes using LiDAR-derived digital elevation model (DEM) data. The proposed
study provides benefits associated with: (1) Detection of unreported sinkholes in rural and/or
inaccessible areas, (2) automatic delineation of sinkhole boundaries, and (3) quantification of the
geometric characteristics of those identified sinkholes. Among sixteen morphometric parameters, nine
parameters were chosen for logistic regression, which was then employed to compute the probability
of sinkhole detection; a cutoff value was back-calculated such that the sinkhole susceptibility
map well predicted the reported sinkhole boundaries. According to the results of the LR model,
the optimal cutoff value was calculated to be 0.13, and the area under the curve (AUC) of the receiver
operating characteristic curve (ROC) was 0.90, indicating the model is reliable for the study area.
For those identified sinkholes, the geometric characteristics (e.g., depth, length, area, and volume)
were computed.
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1. Introduction

Sinkholes can cause serious damage to properties and infrastructure, and sometimes human
casualties occur in severe cases. In the United States, economic damage due to sinkholes has been
estimated to be over $300 million per year and the actual damage is likely to be much greater than
this estimate [1]. Considerable damage from natural sinkholes is particularly common in Florida,
Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania [2]. Insurers in Florida, the most
vulnerable state to sinkhole damage, received a total of 24,671 claims for sinkhole damage between
2006 and 2010, totaling $1.4 billion [3]. According to the Florida Office of Insurance Regulation (FLOIR)
report, the insurers’ expense has been gradually growing with increases in both frequency and severity
of sinkholes.

Sinkholes have been classified into two main groups [4,5]. The first group, known as solution
sinkholes, involves centripetal flow to areas having the highest permeability and consequent
dissolution [6–8]. The second group is known as subsidence sinkholes and involves downward
movement of overlying soils into cavities within bedrock. Subsidence sinkholes are further classified
using two descriptors: The material affected by internal erosion or deformation (cover, bedrock, and
caprock) and the main subsidence mechanism (collapse, suffosion, or sagging). Details of sinkhole
classification can be found in previous research by Gutiérrez et al. [5].
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Some researchers reported that morphometric parameters of sinkholes vary significantly and they
depend on the different types and formation processes of sinkholes [9,10]. Traditionally, topographic
maps and aerial photographs were used to investigate karst landscapes and digital elevation models
(DEMs) were used in morphometric studies [11]. However, DEMs have relatively low levels of
resolution and accuracy, which is made worse in forested areas [12].

Airborne light detection and ranging (LiDAR) (or airborne laser scanning) can penetrate forest
and construct the topography of the underlying terrain [13,14]. In addition, high-resolution LiDAR
data enables more accurate and delineation analyses of ground features and geomorphology of
landscapes [15,16].

Recently, LiDAR data have been used to detect and characterize sinkholes. Filin et al. [17]
applied LiDAR for 3D characterization of sinkholes in the Dead Sea area and delineated sinkholes.
Kobal et al. [18] presented a case study to map and explore the geomorphometric characteristics of
sinkholes under forest cover by utilizing a digital elevation model derived from airborne laser scanning
data. Mukherjee and Zachos [19] used a sink-filling method to delineate depression boundaries. In
their study, sinkholes were extracted by applying different thresholds to the results. Zhu et al. [20]
employed a similar sink-filling method to process LiDAR data and found that four times more potential
sinkholes would be identified than the existing sinkhole data for the same area. Several researchers
have proposed image processing techniques to detect and delineate sinkhole boundaries. Obu and
Podobnikar [21] introduced kernel windows using focal functions to automate sinkhole recognition.
Rahimi and Alexander Jr [22] implemented the active contour method to delineate karst sinkhole
boundaries based on seed points.

This study presents a probabilistic LiDAR-based assessment for sinkhole identification and
assessment of sinkhole characteristics. Logistic regression was employed to the LiDAR data to compute
the probability of sinkhole detection. Logistic regression is a widely adopted method for the assessment
of various geohazards, including landslides, floods, volcano eruptions, and soil erosion [23–26], and
for the development of sinkhole susceptibility maps [27–29]. In this study, all related morphometric
indices were statistically checked and the critical contributing variables were selected for the logistic
regression model. The identified sinkholes were validated using a sinkhole database; once sinkholes
were identified, the geometric characteristics of those identified sinkholes were computed.

2. Study Area

The study area is located in the Springfield Plateau region, the southwestern part of the state of
Missouri, and more specifically in Greene County (Figure 1). It is located between latitudes 37◦18′00′′ N
and 37◦19′40′′ N and longitudes 93◦20′30′′ W and 93◦22′30′′ W, with an area of 9 km2. The estimated
terrain elevation above sea level ranges between 327 and 381 m. The region is underlain by thick and
well karstified carbonate rocks that develop a variety of karst features, including sinkholes, caves,
and springs. The process of sinkhole formation and collapse in this region is due to dissolution and
cavity growth in the underlying bedrock as groundwater percolates through voids and cracks in the
rock. According to the Geological Survey Program of the Missouri Department of Natural Resources’
Missouri Geological Survey, 15,763 sinkholes have been reported in the state until December 2018
and numerous non-reported sinkholes also exist in the region [30]. In the study area, a total of 199
sinkholes of varying sizes have been identified.
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Figure 1. Location of study area and sinkhole occurrence boundary (Missouri, USA). 
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The flow chart showing the research methodology is presented in Figure 2. This study mainly 
consists of the following four steps: (1) Data preparation; (2) sinkhole susceptibility modeling using 
the generalized linear model (GLM) for logistic regression (LR); (3) sinkhole susceptibility mapping 
to detect sinkhole boundaries; and (4) sinkhole geometric characterization. In the data preparation 
step, a digital elevation model (DEM) and geomorphometric indices were created. Logistic 
regression was then selected for the sinkhole susceptibility model. A sinkhole susceptibility map 
was created through the cutoff value identified. Once the boundaries of sinkholes were identified, 
geometric characteristics such as length, area, volume, and circularity were determined. Details of 
each step are presented below.  
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Figure 1. Location of study area and sinkhole occurrence boundary (Missouri, USA).

3. Methodology

The flow chart showing the research methodology is presented in Figure 2. This study mainly
consists of the following four steps: (1) Data preparation; (2) sinkhole susceptibility modeling using
the generalized linear model (GLM) for logistic regression (LR); (3) sinkhole susceptibility mapping to
detect sinkhole boundaries; and (4) sinkhole geometric characterization. In the data preparation step, a
digital elevation model (DEM) and geomorphometric indices were created. Logistic regression was
then selected for the sinkhole susceptibility model. A sinkhole susceptibility map was created through
the cutoff value identified. Once the boundaries of sinkholes were identified, geometric characteristics
such as length, area, volume, and circularity were determined. Details of each step are presented below.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 17 
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3.1. Data Preparation

A DEM is a regularly spaced grid of terrain elevation and is created from LiDAR datasets using GIS
software. This high-resolution DEM is a fundamental element of sinkhole inventories, and the Missouri
Department of Natural Resources (MDNR) actively uses a LiDAR-derived DEM to identify sinkhole
boundaries. For this study, a DEM at a resolution of 1 m was acquired from the Missouri LiDAR DEM
Download Tool of the Missouri Spatial Data Information Service [31]. The airborne LiDAR dataset for
the study area was collected in 2007 using the Leica ALS-60 LiDAR system. The estimate of accuracy
of LiDAR data is documented as 15 cm for vertical and 50 cm for horizontal accuracy [32]. While the
resolution of the constructed DEM is different from the LiDAR point cloud data (which is stored in an
LAS file format), it is the best available resolution and high enough to detect and map sinkholes.

Commonly used geomorphometric indices (or parameters) were derived using SAGA GIS
software (http://saga-gis.org) and then included as independent variables in the GLM model building
process [33]. The LiDAR-based DEM was used to extract the remaining indices. The following 16
indices were derived from the DEM: Slope, aspect, plan curvature, profile curvature, closed depression,
slope height, valley depth, normalized height, convergence index (search radius of 50 m), convergence
index (search radius of 100 m), mid-slope position, multiresolution index of valley bottom flatness
(MRVBF), multiresolution ridge top flatness index (MRRTF), mass balance index (MBI), topographic
position index (TPI), and topographic wetness index (TWI). These indices are defined as:

1. Slope: Slope is one of the most important factors in hydrology because it is related to surface
and subsurface flow velocity and runoff rate over the area of interest [34,35]. As slope increases,
time for surface infiltration decreases, resulting in an increase in soil erosion. In this study area,
the slope ranges from 0 to 81.6◦ (0 to 680% in percent rise). Steep slopes are located within the
southwest area along the Little Sac River.

2. Aspect: Aspect (or slope aspect) refers to the primary direction of change of a DEM and is
expressed in degrees in a clockwise direction from north (ArcGIS 2010). The slope aspect affects
exposure to rainfall, wind, and vegetation cover of the area [34,35].

3. Plan curvature (PLC): PLC is the rate of change in aspect. A positive curvature indicates an
upwardly convex surface of that cell, while a negative curvature indicates an upwardly concave
surface of that cell. A value of 0 refers to flat surface [34,36,37].

4. Profile curvature (PRC): PRC is the rate of change in gradient [34,36,37].
5. Closed depression (CD): The boundary of a depression is defined as the spatial extent of

maximum water surface level when the depression is filled with flood water and then starts
spilling out. Therefore, a closed depression can be a significant indicator of a sinkhole boundary
in karst landscapes.

6. Slope height (SH): SH is defined as the relative height above the closest modeled drainage
accumulation [38,39]. It ranged from 0 to 29 m for the study area.

7. Valley depth (VD): VD is the vertical height below summit accumulation [38]. It ranged from 0 to
27 m for the study area.

8. Normalized height (NH): NH is the normalized difference between SH and the VD and is
unitless [38,39].

9. Convergence index (CI50, 50-m search radius): CI50 is used to determine whether water flow
from neighboring cells diverges or converges. Convergence is calculated using flow direction
between adjacent cells based on the aspects of neighboring cells [40].

10. Convergence index (CI100, 100-m search radius): The same CI but the search radius of 100 m
was used.

11. Mid-slope position (MSP): MSP has values ranging from 0 (minimum slope) to 1 (maximum
vertical distance from valley bottom or ridge top, i.e., valleys and crests) [41].

http://saga-gis.org
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12. Multiresolution index of valley bottom flatness (MRVBF): MRVBF is a measure of flatness and
lowness depicting depositional areas [42]. Higher values correspond to larger valleys. It ranged
from 0 to 4.99 for the study area.

13. Multiresolution ridge top flatness index (MRRTF): MRRTF is a measure of flatness and elevation,
depicting stable upland areas [42]. Higher values correspond to ridges. It ranged from 0 to 5.67
for the study area.

14. Mass balance index (MBI): MBI is derived from transformed elevation, slope, and mean curvature.
Positive values indicate convex forms (upper slopes, crests) whereas negative values indicate
concave forms (valleys and lower slopes) [43].

15. Topographic position index (TPI): TPI is the difference between a raster cell elevation and the
average elevation of neighboring cells. TPI is calculated as:

TPI = Zo −Z (1)

Z =
1

nR

∑
Zo(i ∈ R) (2)

where Zo is the elevation at a central point and Z is the mean surrounding elevation. Positive TPI
values denote that the cell is located higher than its average neighborhood, whereas negative
values denote that the cell is in lower position [35,44].

16. Topographic wetness index (TWI): TWI combines the local upslope contributing area and slope.
TWI is calculated as:

TWI = ln
(
α

tanβ

)
(3)

where α is the upslope catchment area per unit contour length and β is the local slope gradient in
percentage. High values indicate drainage depressions whereas low values indicate crest and
ridges [45]. For more detailed information, you can find them at Supplementary Materials.

Figure 3 shows the map of 9 geomorphometric indices used for the final model development.
While 16 indices were considered as significant contributing indices to the sinkhole susceptibility
map, 7 indices were excluded by eliminating insignificant variables and/or highly correlated variables.
Details of such a process will be discussed in Section 4.1. All maps were produced with a spatial
resolution of 1 m.

3.2. GLM Model Selection—Logistic Regression

Generalized linear modeling (GLM) was employed to determine the existence of sinkholes, which
was necessary for generating the probabilistic sinkhole susceptibility map. Generalized linear models
are extensions of linear regression models and are used to handle dependent variables with non-normal
distributions [46,47]. Logistic regression (LR) was selected as the GLM, and those geomorphometric
indices were used as input variables. Logistic regression is a member of the family of GLMs and can be
used to regress a dichotomous (or binary) dependent variable on a series of independent variables [48].
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Figure 3. Geomorphometric indices of the study area used for the final model: (a) DEM; (b) aspect;
(c) PLC; (d) PRC; (e) SH; (f) VD; (g) MRVBF; (h) MBI; and (i) TWI.

In this study, the binary dependent variable represents presence (1) or absence (0) of a sinkhole.
It was transformed into a logit variable, and then the maximum likelihood estimation was applied
to predict the model parameters. The LR model estimated the odds of an event occurring, and also
assessed the relative importance of each individual variable within the fitted model. The probabilistic
relationship between sinkhole occurrence and its dependency on geomorphometric variables was
computed from the following:

P(S) =
1

1 + e−Z (4)

where P(S) is the probability of an event occurring. In the present study, the value refers to the
estimated spatial probability of sinkhole occurrence. P(S) varies from 0 to 1 on an S-shaped curve,
where 0 indicates 0% probability of a sinkhole and 1 indicates 100% probability. The term Z is the
linear combination of independent variables, which varies from −∞ to +∞, and can be defined as:

Z = b0 + b1x1 + b2x2 + b3x3 + · · ·+ bnxn (5)

In Equation (5), b0 is the intercept of the model, xi (i = 0, 1, 2, . . . , n) are the independent variables,
n is the number of independent variables, and bi (i = 0, 1, 2, . . . , n) are the coefficients of the LR model
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associated with each of the independent variables. The relationship between P(S) and Z can also be
expressed as:

logit(P(S)) = ln
P(S)

1− P(S)
= Z (6)

where P(S)/(1 − P(S)) is the odds ratio.
To evaluate the relative importance of independent variables on sinkhole development, the best

subsets logistic regression method was used. First, GLMs for all possible combinations of independent
variables were fitted separately, and then fitted models were ranked based on goodness-of-fit criteria [49].
Both Akaike information criteria (AIC) and Schwarz-Bayesian information criteria (BIC) were computed
as a measure of goodness-of-fit, as follows:

AIC = −2ln(L) + 2k (7)

BIC = −2ln(L) + ln(n)k (8)

where L is the maximum value of the likelihood function for the model, k is the number of estimated
parameters in the model, and n is the number of observations.

Given a set of candidate models for the data, the model with the lowest AIC and BIC values is
preferred [50,51]. It is noted that the terms, 2 and ln(n) in Equations (7) and (8), respectively, penalize
the models with large numbers of independent variables to avoid overfitting.

3.3. Variable Selection

It is necessary to include only significant independent variables in the LR model; thus, the Wald
statistic was used to check the contribution of independent variables in the model. A p-value of 0.05 or
less (significant level of 95%) was used to identify significance. Therefore, any non-significant variables
(having a p-value greater than 0.05) were excluded from the model.

The LR model is generally sensitive to collinearity (i.e., substantial interactions) between
independent variables. High multicollinearity between independent variables leads to high standard
errors of the regression estimates, and, consequently, interpretation of relative importance of the
independent variable would be unreliable. The variance inflation factor (VIF) is commonly used to
check the degree of multicollinearity. The model is regarded to be free from the multicollinearity
problem if the value is less than 10 [52,53]. Any variable with a VIF or greater than 10 was excluded
from the analysis. A Spearman correlation test was also conducted to examine the association between
each of the two independent variables. If the correlation coefficients were high (Spearman’s rho (ρ)
value of 0.6 or greater), one of the variables was excluded from the LR model [54].

4. Results and Discussion

4.1. Variable Selection

The LR analysis started with 17 independent variables, including DEM and 16 geomorphometric
indices derived from the DEM. In this study, the variables were not standardized to assist in interpreting
odds ratios, since standardization does not affect LR. The regression results demonstrated that all
independent variables were significant (p < 0.05). However, it was necessary to check the correlation
among variables. Both Spearman correlation and VIF were checked. While the VIF result indicated
no significant problem of multicollinearity of the variables of interest (VIF < 10), the Spearman
correlation analysis revealed that seven variables were highly correlated. These seven variables were
slope, depression, normalized height, CI50, CI100, MRRTF, and TPI. These variables did not meet the
Spearman correlation criteria of ρ < 0.6. A summary of Spearman correlation coefficient analysis is
shown in Figure 4.
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Figure 4. Summary of Spearman correlation coefficient analysis of geomorphometric indices.

In the next step of LR analysis, Model 1 was built using the remaining ten variables and the
significance test and correlation analysis were also undertaken. For Model 1, all ten variables were
significant at the p < 0.05 level. According to both VIF and Spearman correlation tests, no independent
variables were in violation of multicollinearity. However, to build up a simpler but still robust model
with fewer independent variables, stepwise LR with a backward selection was used. In this step, the
model was adjusted by sequentially eliminating the variable with the smallest relative importance
of the variables. Summary results of LR analysis for the three candidate models are presented in
Table 1. The relative importance of independent variables was estimated by the absolute value of Wald
statistic (z value), which is the regression coefficients divided by their standard errors [55]. Higher
Wald statistic indicates greater importance of the corresponding variable. Thus, the largest relative
importance of Model 1 was determined to be TWI, followed by DEM, SH, MRVBF, MBI, PLC, VD, PRC,
aspect, and MSP, in order. In the Model 2 and 3, the least important variable was removed from the
previous model, and the relative importance was estimated as in the Model 1. As shown in the Table 1,
the order of relative importance did not vary from Model 1 to Model 3, except for the order between
SH and MRVBF in Model 2 with insignificant difference in the importance. Based on the p value
of each variable, all variables have p value less than 0.05, meaning there is a statistically significant
relationship with sinkhole events. The independent variables of all models did not correlate with each
other (refer to Figure 4) and the VIFs were below 2.06, indicating a low risk of multicollinearity.

In the next step, measures of goodness-of-fit, including AIC, BIC, and pseudo R2, were calculated
to select the optimal model. Table 2 summarizes the goodness-of-fit statistics for three candidate
models. The model with the lowest AIC and BIC values and the highest pseudo R2 was considered the
best-fit model. Models 2 and 3 had the same pseudo R2 values of 0.692, but Model 2 had lower AIC
and BIC values. In addition, Model 1 had a slightly lower AIC than Model 2, but it also had slightly
higher BIC and lower pseudo R2 values than Model 2. Therefore, Model 2 was selected as the optimal
model for the study area.
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Table 1. Coefficients of the logistic regression for sinkhole prediction models.

Model Variable Estimate Std. Error Wald Statistic p Value

1

(Intercept) −42.3300 0.0825 −513.36 <0.001
DEM 0.1049 0.0002 477.55 <0.001
Aspect −0.0006 0.0000 −45.16 <0.001
PLC 20.9700 0.1549 135.37 <0.001
PRC −5.5740 0.1141 −48.87 <0.001
SH −0.6034 0.0016 −385.24 <0.001
VD 0.0948 0.0010 95.37 <0.001
MSP 0.0160 0.0053 3.03 0.00245
MRVBF −0.7296 0.0019 −384.52 <0.001
MBI 0.3363 0.0020 170.92 <0.001
TWI 0.5554 0.0006 900.12 <0.001

2

(Intercept) −42.3000 0.0817 −517.79 <0.001
DEM 0.1049 0.0002 480.31 <0.001
Aspect −0.0006 0.0000 −45.15 <0.001
PLC 20.9700 0.1549 135.39 <0.001
PRC −5.5670 0.1140 −48.81 <0.001
SH −0.6038 0.0016 −386.81 <0.001
VD 0.0952 0.0010 96.62 <0.001
MRVBF −0.7289 0.0019 −387.56 <0.001
MBI 0.3363 0.0020 170.92 <0.001
TWI 0.5553 0.0006 900.45 <0.001

3

(Intercept) −42.4000 0.0817 −519.16 <0.001
DEM 0.1049 0.0002 480.30 <0.001
PLC 21.0500 0.1549 135.94 <0.001
PRC −5.6240 0.1141 −49.29 <0.001
SH −0.6060 0.0016 −388.74 <0.001
VD 0.0932 0.0010 94.45 <0.001
MRVBF −0.7289 0.0019 −387.56 <0.001
MBI 0.3362 0.0020 170.92 <0.001
TWI 0.5555 0.0006 900.74 <0.001

Note: Estimate: The regression coefficient that explains the change in log(odds) of the dependent variable for one
unit change in the independent variable; Std. error: The standard errors of estimated coefficients; Wald statistic: The
regression coefficient divided by standard error; p value: The significance probability of independent variables.

Table 2. LR models fit statistics.

Model 1 Model 2 Model 3

Measures of fit
AIC 3,788,566 3,788,574 3,790,610
BIC 3,788,721 3,788,714 3,790,736

Pseudo R2 0.691 0.692 0.692

From the foregoing analyses, nine of seventeen variables were found to play an important role in
sinkhole identification and were selected to develop the LR model. These nine variables were: DEM,
aspect, plan curvature, profile curvature, slope height, valley depth, MRVBF, MBI, and TWI. The LR
model was defined by:

Z = −42.3000 + (0.1049DEM) − (0.0006Aspect) + (20.9700PLC) − (5.5670PRC)
−(0.6038SH) + (0.0952VD) − (0.7289MRVBF) + (0.3363MBI)
+(0.5553TWI)

(9)

where Z is a linear combination of independent variables.
A positive coefficient tends to increase the probability of occurrence while a negative one implies

the opposite outcome. Five independent variables, DEM, plan curvature, valley depth, MBI and TWI,
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exhibited a positive influence on sinkhole occurrence, while aspect, profile curvature, slope height,
and MRVBF exerted a negative influence. Figure 5 shows the sinkhole susceptibility map created based
on Equation (9); the computed probability of sinkhole occurrence varies from 0 to 1.
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4.2. Cutoff Value

The resulting sinkhole susceptibility map (Figure 5) is a raster format in which each 1-m resolution
grid cell represents the probability of sinkhole occurrence. In order to determine those high probability
areas as sinkholes, a cutoff value was required. This cutoff threshold was determined based on the
sensitivity and specificity tests. Sensitivity and specificity are statistical measures of the performance
of a binary classification model [56]. The sensitivity (also known as a true positive rate) measures
the proportion of actual positives that are correctly identified as such; thus, in this study, it tells how
well the model detects sinkholes. The specificity (also known as a true negative rate) measures the
proportion of negatives identified as such, and it tells how accurately the model avoids false sinkhole
detections. The sensitivity and specificity were calculated as follows:

Sensitivity =
TP

TP + FN
(10)

Speci f icity =
TN

TN + FP
(11)

where TP is the number of true positives, FN is the number of false negatives, TN is the number of true
negatives, and FP is the number of false positives.

The setting of sensitivity and specificity is always a trade-off. If the cutoff value is set too low,
the number of false negatives decreases, resulting in increased sensitivity. However, the number of
false positives increases, and this results in decreased specificity. The effects changes in cutoff values
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on sinkhole identification are presented in Figure 6. The cutoff value varied from 0.1 to 0.8, and the
sinkholes detected by the model were compared with the validated sinkhole database. In Figure 6a,
the cutoff value was set low at 0.1 and the result shows a larger proportion of false positive results,
leading to a decrease in true negative rate. In contrast, when the cutoff value was set high at 0.8
(Figure 6d), the number of true positives decreased. Thus, the optimum cutoff value of the model
can be determined by maximizing the sum of sensitivity and specificity. For this study, the optimal
cutoff value was determined as 0.13, which corresponds to the cross-point of sensitivity and specificity
curves (Figure 7a). Figure 7b shows the area under the receiver operating characteristic (ROC) curve
(also called the AUC). It is a plot of sensitivity versus 1–specificity for all possible cutoff classification
probability values, showing the performance of a classification model at all possible probability
values. In this study, the AUC was 0.90, demonstrating that the fitted LR model was highly reliable in
explaining variability in sinkhole occurrence as a function of selected geomorphometric variables.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 17 
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Figure 6. Effect of cutoff value on sensitivity and specificity of test results when cutoff value is: (a) 0.1;
(b) 0.3; (c) 0.5; and (d) 0.8.
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Figure 7. Plot of (a) sensitivity and specificity versus probability cutoff value; and (b) area under the
receiver operating characteristic (ROC) curve.

4.3. Sinkhole Susceptibility Map (Cutoff = 0.13)

A new sinkhole map was developed in binary classification format using a cutoff value of 0.13
(Figure 8a). The map is a binary raster in which a value of 1 was assigned to grid cells with a probability
of equal or greater than 0.13 and a value of 0 was assigned to any cell with a probability of less than
0.13. To produce sinkhole boundaries, contour lines were drawn by connecting all outer points of
equal probability class. Figure 8b displays the sinkhole boundaries generated by the GLM model
based on the selected cutoff value. Red and yellow lines represent the detected and reference sinkhole
boundaries, respectively, in Figure 8b. This approach does not necessarily delineate the sinkhole
boundaries but is able to locate sinkholes.
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Figure 8. Map of (a) sinkhole susceptibility with cutoff of 0.13; and (b) reference sinkholes (yellow) and
detected sinkholes by GLM model (red).

As previously discussed, more or wider sinkhole boundaries can be identified with application of
a lower cutoff value. However, it also excessively identifies less susceptible areas for sinkholes and
incurs unnecessary costs and time loss in sinkhole prevention and management. In contrast, too high a
cutoff value can lead to low detection performance and high rates of false negatives. From the hazard
management point of view, this scenario tends to be more dangerous. The damage from not knowing
that the area has very high sinkhole potential would be more severe than believing falsely that the
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area has high potential of sinkholes. Therefore, it is recommended that a low cutoff value is used to
minimize false negatives, i.e., avoid predicting an area as safe when it is actually dangerous.

4.4. Sinkhole Geometric Characterization

After sinkholes were detected, they were quantitatively evaluated regarding their geometric
characteristics. Geometric characteristics of sinkholes include length, width, depth, perimeter, area,
volume, elongatedness, and circularity. Length and width were defined as the lengths of the major and
minor axes of the sinkhole, respectively. Depth is the maximum vertical distance from the lowest point
within the sinkhole to the highest point of the sinkhole. Perimeter (or circumference) is the length
around the outside of the sinkhole. Elongatedness can be calculated as the ratio of the length to width
of the sinkhole. Sinkholes with elongatedness values close to 1 represent more circular shapes, while
sinkholes with an elongated shape have higher elongatedness values. Circularity was defined as the
ratio of the area of the shape to the area of a circle having the same perimeter and was measured as 4π
× area/(perimeter)2. This is a measure of the degree of roundness of the sinkhole [57]. Sinkholes with a
perfect circle have a value of 1, whereas a value less than 1 indicates an irregular shape. One sinkhole
was selected as an example to determine geometric characteristics. Figure 9 shows the boundary of
this sinkhole and a detailed 3D profile view of it, and Table 3 contains the summary of geometric
characteristics of this sinkhole.
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Table 3. Results of sinkhole geometric characteristics.

Length
(m)

Width
(m)

Depth
(m)

Perimeter
(m)

Area
(m2)

Volume
(m3) Elongatedness Circularity

22.94 17.12 3.81 63.26 308.45 852.94 1.34 0.97

5. Conclusions

This study presents the sinkhole susceptibility map using LiDAR-derived DEM data. The following
conclusions were drawn:

(1) The sinkhole detection and characterization techniques were proposed using the LiDAR-derived
DEM data. The proposed algorithm is believed to allow for improved consistency and repeatability.

(2) Sixteen geomorphometric parameters were derived from DEM data, and a test for multicollinearity
was conducted using both the Spearman correlation coefficient and VIF criteria. As a result, seven
out of sixteen parameters were found to be highly correlated and were excluded in the further
analyses. The selected nine parameters were DEM, aspect, plan curvature, profile curvature,
slope height, valley depth, MRVBF, MBI, and TWI.
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(3) Logistic regression was used to construct the probabilistic sinkhole susceptibility map using the
reported sinkhole inventory. In order to define the appropriate sinkhole boundaries from the
probabilistic sinkhole susceptibility map, it is important to determine the optimal cutoff value.
In this study, the recommended cutoff value was calculated to be 0.13, which has maximum
sensitivity and specificity values at the same time.

(4) The proposed sinkhole susceptibility map with the recommended cutoff value well predicted the
reported sinkhole boundaries. While the model achieved a considerably high AUC of 0.90, the
cutoff value is based on a training dataset of the study area, making the current results limited to
the study area, and might not be applicable elsewhere.

(5) Geometric features of sinkholes such as length, width, depth, perimeter, area, volume, elongatedness,
and circularity can be estimated with the proposed sinkhole susceptibility map and LiDAR data.

(6) Significant benefits of this study may include (1) identification of non-inventoried (e.g., newly
formed or previously non-detected) sinkholes in the database, (2) automatic delineation of
sinkhole boundaries, and (3) quantification of a sinkhole’s geometric characteristics.

Supplementary Materials: Supplementary materials are available online http://www.mdpi.com/2072-4292/11/13/
1592/s1.
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