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Abstract: Recently, the application of satellite remote sensing images is becoming increasingly
popular, but the observed images from satellite sensors are frequently in low-resolution (LR).
Thus, they cannot fully meet the requirements of object identification and analysis. To utilize
the multi-scale characteristics of objects fully in remote sensing images, this paper presents a
multi-scale residual neural network (MRNN). MRNN adopts the multi-scale nature of satellite images
to reconstruct high-frequency information accurately for super-resolution (SR) satellite imagery.
Different sizes of patches from LR satellite images are initially extracted to fit different scale of
objects. Large-, middle-, and small-scale deep residual neural networks are designed to simulate
differently sized receptive fields for acquiring relative global, contextual, and local information for
prior representation. Then, a fusion network is used to refine different scales of information. MRNN
fuses the complementary high-frequency information from differently scaled networks to reconstruct
the desired high-resolution satellite object image, which is in line with human visual experience
(“look in multi-scale to see better”). Experimental results on the SpaceNet satellite image and
NWPU-RESISC45 databases show that the proposed approach outperformed several state-of-the-art
SR algorithms in terms of objective and subjective image qualities.

Keywords: satellite imagery; super-resolution; residual network; multi-scale image; convolutional
neural network

1. Introduction

Remote sensing satellites, which observe objects on the ground from outer space, are widely
used in various real applications, such as environmental monitoring, resource exploration, disaster
warning, and military applications. The observed images from satellites generally have low-resolution
(LR) due to the limitations of spaceborne imaging equipment (Charge-coupled Device (CCD) sensors)
and communication bandwidth. In addition, satellite images are affected by atmospheric turbulence,
transmission noise, motion blur, and undersampling optical sensors. The quality and resolution
of images from remote sensing satellites cannot meet the requirements of real satellite image
analysis. Super-resolution (SR) technology can overcome hardware limitations and improve the
spatial resolution of images through software manner. The first SR algorithm [1] was developed
to improve the resolution of Landsat remote sensing images by fusing multi-frame complementary
information. In the last decades, SR has been successfully applied to enhance the resolution and
quality of remote sensing satellite images. A well known example is SPOT-5, which reaches 2.5 m
resolution through the SR of two 5 m images that are sampled from shifting a double CCD array by
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subpixel sampling interval [2,3]. Traditional SR image generation methods usually require multiple
spatial/spectral/temporal low-resolution images of the same scene [4,5].

Existing image SR algorithms are divided into two categories, namely reconstruction- and
learning-based algorithms [6]. Reconstruction-based algorithms fuse subpixel LR multi-frame
information and reconstruct their latent high-resolution (HR) images. Previous satellite SR methods
utilize reconstruction-based methods in solving the inverse problem of the degradation process.
Reconstruction-based methods model the degradation process of imaging with mathematical
formulas by using degradation factors, such as downsampling, optical blur, atmospheric
disturbance, registration error, geometric deformation, and motion compensation [7–9]. Although
reconstruction-based methods are simple and intuitive and can be flexibly combined with prior
constraints, they rely on accurate subpixel precision estimation.

Inspired by the immense success of machine learning in object recognition and other tasks,
learning-based SR methods have been highly valued and have become the mainstream direction of
research. They aim to learn a mapping function between LR and HR image/patches through the
prior information provided by a training dataset. Learning-based SR algorithms can obtain better
subjective and objective reconstruction performance than reconstruction-based methods because
external training databases provide considerable a priori information. In terms of the usage of prior
training samples, learning-based SR algorithms can be divided into three categories, namely regression-,
representation-, and deep-learning-based algorithms. Some representative regression-based [10–12]
and representation-based SR algorithms [13–15] yield decent subjective and objective performance.
These methods are efficient with flexible framework for using regularization terms.

Deep-learning-based approaches provide an end-to-end solution for learning complex mapping
functions and are rapidly and successfully applied on SR tasks. A complex nonlinear mapping
relationship between LR and HR patches is learned through convolutional neural networks
(CNNs) [16,17], considering their excellent learning capability. Shi et al. [18] constructed a subpixel
CNN, which provides a novel manner of directly and efficiently learning the mapping function
from LR to HR images, which is further efficient. Kim et al. [19] stated that the construction of a
deep network can effectively alleviate training difficulty with deep residual learning. Lai et al. [20]
built a pyramid network for fusing multi-scale residuals in the feature domain. A generative
adversarial network (GAN) [21,22], which comprises generator and discriminative networks, was
used to generate fake details for simulating a good visual output. For satellite images, Luo et al. [23]
replaced zero-padding with self-similarity to avoid the addition of unusable information and achieved
good results. Wang et al. [24] proposed a multi-memory CNN for video SR to retain inter-frame
temporal correlations.

The above-mentioned SR approaches mainly focus on the general nature images. As for satellite
image, the object scale in the image is relatively different due to wide-range imaging, and it has
important roles in vision tasks, such as segmentation, feature extraction, and object tracking. Some
deep-learning algorithms designed for general images cannot efficiently handle satellite images
because they do not specially consider the multi-scale nature of satellite images. Moreover, adequate
high-frequency information, such as edges and textures, are crucial for satellite image detection [25] and
object recognition [26–30]. The use of a single structure network in predicting and reconstructing objects
without considering their different scales results in poor reconstruction performance. One practical
solution is to explore the multi-scale information into deep neural networks. Zhang et al. [31] used
multi-scale spatial structural self-similarity to learn multi-scale dictionaries. Fu et al. [32] utilized the
multi-scale regions of an image to train a recurrent attention network for fine-grained recognition.
Liu et al. [33] used multi-scale and multi-level network in a holistic manner to obtain hierarchical edge
information. Similar to the inception network [34], Du et al. [35] fused different scale features from
three varying filters.

The aforementioned CNN-based SR models build fine networks and have advanced the
state-of-the-art performance on learning significant local detail information. The approach in [36]
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points out that too small receptive field resulting in the lack of enough global information to yield
good visual results. To obtain fine local detail information, they often use small image patches for
training (e.g., 33× 33 for SRCNN [17], 41× 41 for VDSR [19], 32× 32 for LapSRN [20], and 24× 24 for
SRResnet/SRGAN [21]). A small receptive field only considers a limited range of information during
SR tasks. This model lacks the capability of obtaining global and contextual information for SR. On the
contrary, Zeiler et al. [37] visualized convolutional network to indicate that different network layers
have varying roles in representing the features that simulate the ventral pathway to enhance their
performance [38–42]. They indicated that hierarchical features of different scales effectively improve
the capability of acquiring global information.

Inspired by the observation of “look closer to see better” [32], we propose a flexible and versatile
multi-scale residual deep neural network for satellite image SR, named MRNN, for the hierarchical
reconstruction of satellite imagery with HR detail information. In this network, multi-scale receptive
fields are similar to the observation from different distances by human eyes. We extract three scales of
the image at large- (large-kernel-size network, for global information), middle- (middle-kernel-size
network, for contextual information) and small-scale (small-kernel-size network, for fine local
information) features to represent the multi-scale information of images. In comparison with traditional
neural networks, MRNN fuses the residual information rather than intermediate features. Thus, the
fusion network fuses all scales of residual information to improve the high-frequency details.

The contributions of this study are highlighted as follows: (i) The use of MRNN is proposed for
satellite image SR. The proposed network contains three parts, namely multi-scale feature extraction;
parallel small-, middle-, and large-scale; and residual fusion networks. The proposed multi-scale neural
network leverages SR performance on the basis of “look in multi-scale to see better”. (ii) The proposed
residual enhancement and fusion networks effectively enhance the high-frequency information of
satellite images in SR tasks. The fusion network refines fine edge/detail textures, thereby improving
the details of the satellite image.

The remainder of this paper is organized as follows. In Section 2, we describe the framework
of the proposed method. In Section 3, comparison is presented among the proposed method
and some representative SR methods. The discussion and conclusion of this study are given in
Sections 4 and 5, respectively.

2. Satellite Imagery SR Based on Multi-Scale Residual Neural Network

We use image saliency to show the difference among various image sizes and emphasize the role of
multi-scale images. Image saliency [43] is an important visual feature in an image and emphasizes the
importance degree of a region for human eye perception. The brightness of a saliency map represents
the importance of object parts. The saliency map S is formulated as:

S (x, y) =
∥∥Iµ − Iωhc (x, y)

∥∥2
2 , (1)

where Iµ is the mean image feature vector, and Iωhc (x, y) is the corresponding image pixel vector
value at position (x, y) in the Gaussian blurred version (using a 5× 5 separable binomial kernel) of
the original image.

Figure 1 displays three sizes of image patches, namely large- (91× 91), middle- (61× 61), and
small-sized (41× 41) image patches. In the 91× 91 image patch, the saliency map focuses on the
global information in the image, such as the outline of a building. For the 61× 61 image patch, which
contains further contextual information, the saliency map focuses on building parts and street lines.
For the 41× 41 image patch, which has a small receptive field, only local information is observed, and
global information is neglected. Here, long-distance observation experience can be reviewed; global
configuration information, such as position and outward appearance, can be observed when we are
far from the observed objects, and no detailed information is included. For additional details, we focus
on local information, such as the decoration and color of a building, as we approach. This observation
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is a good illustration of the role of multi-scale information in visual observation. Therefore, image
reconstruction on only single-scale image patches cannot simultaneously and effectively recover the
global and local information of the object.

(C) Small size (B) Middle size(A) Large size 

Image 

patch

Saliency 

map

Look closer Look closer

HR

Figure 1. Saliency maps of multi-size image patches: (A) large-scale focuses on global configuration,
such as edge position; (B) middle-scale focuses on subject parts as contextual information, such as
building parts; and (C) small-scale focuses on detailed edges and textures. Saliency maps reveal the
role of differently scaled image patches in SR reconstruction. There are different feature representation
manners in different size image patch. This experiment is in line with human visual experience (“look in
multi-scale to see better”). Large-, middle-, and small-scale networks are used to simulate different size
receptive fields for acquiring relative global, contextual, and local information for prior representation.
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Figure 2. Network architecture of MRNN. The network includes three SR subnetworks and a residual
fusion network (k is the convolution kernel size; n denotes the number of convolution kernels; and s
indicates the stride size). The residual block is configured to two convolutional layers with multi-scale
kernels followed by ReLU, and a skip connection. p = b(D− 2)/2c, where bc is the floor function. We
add a convolution layer + ReLU behind the residual structure when D is an odd number. The merge
means converting image patches into an image.

We propose a novel multi-scale residual network, whose structure is shown in Figure 2. We
establish three adaptive networks with different scale features to predict their high-frequency residual
information in different scales for satellite images. Thus, we use residual images with varying scales to
merge their high-frequency by utilizing a residual fusion network. As the pixel value in the residual
image is small, we use the ImageEnhance module of Python Imaging Library https://github.com/

 https://github.com/python-pillow/Pillow
 https://github.com/python-pillow/Pillow
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python-pillow/Pillow to conduct enhanced contrast processing of images. The enhanced image
blend_img is given by

blend_img = img1× (1− λ) + img2× λ, (2)

where img1 is the original image, and the enhancement factor λ = 10 represents the weight of the
image blend. img2 is a generated image, whose pixel value is 0.5 plus the average value of img1. The
greater is the λ, the greater is the contrast of the image.

For a pair of training datasets {X̄i, Yi}M
i=1, where LR image X̄i ∈ <h×w and HR image Yi ∈ <ht×wt,

t is the amplification factor, i denotes the sample index, and M refers to the number of training samples.
The LR image X̄i ∈ <h×w is interpolated to the HR image size with bicubic kernel as Xi ∈ <ht×wt, and
the tensor version of the training dataset is rewritten as {xi, yi}M

i=1. The superscript represents the
type of network, and the subscript indicates the number of layers. Superscripts K3, K5, K7, C, and F
represent the K3-network, K5-network, K7-network, Concat operation, and residual fusion network,
respectively. The sampling of patches with different sizes results in various numbers of patches in each
scale. However, all training sample sets share the same training set {xi, yi}M

i=1. The number of image
patches is calculated as follows:

NSD = bht/SDc ∗ bwt/SDc ∗M, (3)

where bc is the floor function and SD indicates the size of receptive field of the D-layer network. Image
patches 41× 41 and 61× 61 are acquired on the basis of the center point of the 91× 91 image patch
(for additional details, see Figure 2). LR and HR image patch pairs with different scales are defined as
{xK3

j , yK3
j }

N41
j=1, {xK5

j , yK5
j }

N61
j=1, and {xK7

j , yK7
j }

N91
j=1, which have patch sizes of 41× 41, 61× 61 and 91× 91

pixels, respectively. j is the index of the image patches, and N41, N61, and N91 denote the numbers
of patches. Considering residual fusion, we use the patch center point to anchor three different size
patches; thus, N41 = N61 = N91.

2.1. Multi-Scale SR

We use three different scales of networks to simulate SR with different depths. The network
depths are Dk3, Dk5, and Dk7. Parameter D is fine tuned according to the method in Section 3. In the
K3-network, the convolution filter is defined as k = 3. The residual map of the K3-network at the
patch level is defined as follows:

f K3(xK3
j ) = WK3

20 ∗ HK3
19 (xK3

j ) + bK3
20 , (4)

where f K3(xK3
j ) is the predicted residual patch with size 41× 41; WK3

20 indicates the weight matrix with

size 64× 3× 3× 1; bK3
20 denotes the bias with size 1× 1; HK3

19 represents the generated feature maps of
the 19th layers by an activation ReLU, which is composed of 64 feature maps; and j refers to the index
of image patches.

For the K5-network, the size of its convolution kernel is 5× 5 pixels. For K7-network, the filter
kernel size is 7× 7 pixels. We use the same method to calculate the size of the input image patch. Their
residual maps are calculated as follows:

f K5(xK5
j ) = WK5

15 ∗ HK5
14 (xK5

j ) + bK5
15 , (5)

f K7(xK7
j ) = WK7

15 ∗ HK7
14 (xK7

j ) + bK7
15 , (6)

where WK5
15 has a size of 64× 5× 5× 1; WK7

15 has a size of 64× 7× 7× 1; the size of bK7
15 and bK5

15 is
1× 1; and j denotes the index of the image patches. HK5

14 and HK7
14 represent the feature maps of the

14th layers by the K5- and K7-networks, respectively.

 https://github.com/python-pillow/Pillow
 https://github.com/python-pillow/Pillow
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2.2. Residual Fusion Network

To realize the complementarity of different scales of information, the global information of an
object is described by large-scale information, and, the closer you look, the better the hierarchical
details become. We use a fusion network for multi-scale residual fusion.

f C(x) = Concat( f K3(xK3
j )r, f K5(xK5

j )r, f K7(xK7
j )r) = [ f K3(xK3

j )r, f K5(xK5
j )r, f K7(xK7

j )r], (7)

where f K3(xK3
j )r, f K5(xK5

j )r, and f K7(xK7
j )r are the residual maps with the removal of border from the

outputs of the three differently scaled networks. f C(x) represents the combined three layers of residual
maps. The Concat function cascades the multi-scale residual maps in the third dimension (connect
three tensors). Regardless of the same input x, the outputs of K3-, K5-, and K7-networks are different
because they reconstruct their residual information through their own scales. To fuse different scales of
residual information, we use a simple two-layer network to fuse three channel information. A 1 × 1
convolution kernel is a linear combination of each pixel on different channels. The 1 × 1 convolution
kernel is used to fuse the residual feature maps. The cross-channel information interaction among
different scales of information is consistent with the hierarchical visual cognition mechanism. We can
obtain the final fusion residual as follows:

RF( f C(x)) = W F
2 ∗ HF

1 ( f C(x)) + bF
2 , (8)

where W F
2 is the second layer weight matrix, bF

2 represents its bias, f C(x) denotes the input multi-scale
residual maps, and RF(x) indicates the final fused output residual map. Thus, the final HR image ŷ is
as follows:

ŷ = RF( f C(x)) + x. (9)

2.3. Loss Function

We define the loss function with mean squared error (MSE) as the objective function. In MRNN,
we formulate the overall loss function as follows:

Loss = α ∑N91
j=1

∥∥∥yK3
j − xK3

j − f K3(xK3
j )
∥∥∥2

2
+ β ∑N91

j=1

∥∥∥yK5
j

−xK5
j − f K5(xK5

j )
∥∥∥2

2
+ χ ∑N91

j=1

∥∥∥yK7
j − xK7

j − f K7(xK7
j )
∥∥∥2

2

+δ
∥∥∥yK3

j − xK3
j − RF( f C(x))

∥∥∥2

2
,

(10)

where the first three terms are the losses of the multi-scale residual networks (K3-, K5-, and
K7-networks). The last term represents the residual fusion loss. We simply set α = β = χ = δ = 1.
We use a two-step method to train the network. Initially, we parallel-train three SR networks with
differently-scaled patches. Then, we determine the fusion loss for the second time on the basis of the
contacted residual maps.

A gradient descent method is used to optimize the network parameters by back propagation.
Convolution operations reduce the size of the feature map. We maintain many edge pixels by padding
zero to infer the center pixel accurately and ensure that all feature maps have the same size to preserve
the information on the edge of the image patch.

3. Experiments

3.1. Experimental Data

The learning-based super-resolution methods learn the missing high-frequency information of LR
images from the prior information provided in the training data. Generally, the more training data
there are, the better reconstruction effect can be obtained by SR methods. In addition, the performance
of the SR reconstruction method is also related to the similarity of the test image to the training image.
If the test image is close to the statistical characteristics of the training images, it is more likely to get a
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good reconstruction result. At this point, there may be fewer training samples to get good results. On
the contrary, when the statistical characteristics of the test image and the training image are greatly
different, it is difficult to achieve a satisfactory result even using a large-scale training set. To verify the
performance of MRNN, we conducted experiments on two satellite image datasets, namely, SpaceNet
image and NWPU-RESISC45, to ensure that all algorithms used the same amount of training data.
The SpaceNet satellite image dataset https://spacenetchallenge.github.io/AOI_Lists/AOI_1_Rio.html
includes five areas in Rio de Janeiro, Paris, Las Vegas, Shanghai, and Khartoum, which are collected
from DigitalGlobe’s WorldView-2 satellite and published publicly at Amazon. The complete satellite
image of Rio de Janeiro (the spatial resolution is 0.5 m) has the highest resolution image with 2.8 M ×
2.6 M pixels, and is divided into 6540 non-overlapping HR image patches with 436× 404 pixels, and
the main contents of interest in the image are buildings and roads. In total, 2080 images of buildings
were randomly selected from these image patches, of which 2000, 40, and 40 images were used as the
training set, validation set, and test samples, respectively.

The NWPU-RESISC45 dataset http://pan.baidu.com/s/1mifR6tU [44] is a publicly available
benchmark for remote sensing image scene classification (RESISC), created by Northwestern
Polytechnical University (NWPU). This dataset covers 45 classes with 700 images in each class. We
randomly selected 52 images from each class, of which 50 were used for training and the rest for
testing. The HR image size is 256× 256 pixels. The spatial resolution of NWPU-RESISC45 varies
from approximately 30 m to 0.2 m [44]. Images in the NWPU-RESISC45 dataset, compared with
the SpaceNet dataset, have complicated and erratic imaging conditions, including various weather,
seasons, and lighting conditions. These factors pose a huge difficulty for SR methods.

Image degradation is a very complex process to be modeled by some filter and down-sampling
operators. Here, we interpolated the HR image with bicubic kernel into its LR version with
scaling factor t. In the current works (for example, all the comparison methods in our
work [17,20,21,23,45]), the most commonly used image degradation is the bicubic downsampling. Since
learning-based super-resolution algorithms learn the mapping relationship between low-resolution
and high-resolution images, the bicubic degradation is the fairest approach for comparison. Complex
imaging degradation model will be investigated in future research. In the testing process, the images
did not need to be partitioned.

Peak signal to noise ratio (PSNR) and structural similarity (SSIM) [46] (with default parameters)
describe the similarity between the reconstructed and original images in terms of the image. Recent
studies [47] have shown that feature similarity (FSIM) [47] and visual information fidelity (VIF) [48]
are further consistent with the subjective results. Rectangular-normalized superpixel entropy index
(RSEI) [49] (with default parameters) https://github.com/jiaming-wang/RSEI obtains further accurate
image evaluation results by introducing the spatial structure of the image. Mutual information (MI)
can express the dependence degree of the information between the images in terms of information.
The higher is the MI score, the more substantial is the dependence and the higher is the similarity
between images. The mutual information between patches y and ŷ is defined as follows:

MI(ŷ; y) = ∑
q∈y

∑
g∈ŷ

P(q, g) log
P(q, g)

P(q)P(g)
, (11)

where q and g represent the gray-scale values, P(g) denotes the ratio of the number of pixels of the
gray value that is g to the increased image, and P(q, g) is the joint distribution function of q and g.

We define the information gain between SR image ŷ and LR image x relative to HR image y
as follows:

GMI(ŷ; y)=
MI(ŷ; y)
MI(x; y)

. (12)

All image quality assessment metrics only consider the Y component of the YCbCr color space.

https://spacenetchallenge.github.io/AOI_Lists/AOI_1_Rio.html
http://pan.baidu.com/s/1mifR6tU
https://github.com/jiaming-wang/RSEI
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3.2. Training Parameters

The proposed network is an end-to-end network, where each sub-network must train for 80
epochs as the pre-training network. The entire network is trained for 10 epochs.

Considering the deep network layer, the algorithm uses learning rate attenuation. We followed
Kim et al. [19] for setting hyper-parameters: the learning rate was initialized to 0.1, the learning rate
decreased by 1/10 every 20 epochs, and the network’s momentum was 0.9. To avoid over-fitting, we
used regularized `2-norm, and its weight decay was 0.0001. For the K3-residual learning network, we
set the step size to 1 with a padding size of 1. For the K5-network, the step size was equal to 1 with a
padding size of 2. For the K7-network, we set the step size to 1 and padding size to 3. We applied the
MSRA method [50] to initialize the weights, that is, satisfying the Gaussian distribution whose mean

value is 0, utilizing a variance of
√

2
n ( n is the batch size), and a constant to initialize the bias term with

initial value 0. We initially converted the RGB image to the YCbCr color space and then reconstructed
the Y channel. After the reconstruction, the Y channel image was restored to the RGB color space. We
implemented the MRNN model using the Caffe library [51]. Training the MRNN roughly took 10 h
with four 1080Ti GPUs.

3.3. Complementarity Analysis of Multi-Scale Residual

If there were less overlap between different scale residual information, it would mean that
the complementarity of residual information between different scales is better [52]. Therefore, in
this section, we show the distributions of residual information on different scales. We selected 15
representative LR images {xi}(i = 1, ..., 15) and corresponding HR image {yi} from SpaceNet image
datasets with the same configuration of Section 3.6. The reconstruction residual maps of multi-scale
networks are

{
f j(xi)

}
(j = K3, K5, K7) for a total of 45 residual images. The estimation residual error

map was defined as ermj
i = f j(xi)− (yi − xi) (i = 1, ..., 15 and j = K3, K5, K7), and we projected

them into 3D and 2D residual feature spaces through principal component analysis (PCA), as shown
in Figure 3. The distribution maps of 2D and 3D feature space show that multi-scale networks provide
different estimation residual errors. This observation also proved that they are complementary. The
overlap observed in Figure 3B covers a sufficiently large feature space, even if only three parallel
networks are used. Therefore, additional parallel networks would only increase overlap.

The distribution maps in Figure 3 cannot clearly describe the complementary patterns of
multi-scale residual. Therefore, we implemented the clustering of data by k-means and obtained
their distribution of 2D feature space, as shown in Figure 4. We name the four patterns as “s + m + l”,
“s + m/l”, “m + s/l”, and “l + s/m”. Pattern “s + m + l” represents the best case, that is, the
high-frequency information of three scales is complementary between any two. The latter three patterns
can be classified as: the information of two scales is considerably common, but a complementary
relationship also exists, whereas the other scale complements them. This behavior effectively
demonstrates the complementarity between multi-scale residuals.
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Figure 3. (A,B) are the visualizations of the estimation residual error map distributions in 3D and 2D
feature spaces, respectively. Blue points represent the residual coming from the K3-network, while
green and red points represent the K5- and K7- networks, respectively.
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Figure 4. The complementary patterns of multi-scale residual map: (A) “s + m + l” indicates
small- middle- and large-scale residuals are complementary each other; (B) “s + m/l” represents
that small-scale residual information is complementary with both middle- and large- scale ones;
(C) “m + s/l” means that middle-scale residual information is complementary with both small- and
large- scale ones; and (D) “l + s/m” represents the pattern that large-scale residual information is
complementary with both small- and middle- scale ones.

We performed quantitative validation as follows:

Cermj = card(
∣∣ermj

∣∣ > t),
Coverlap = card(

∣∣ermK3
∣∣&
∣∣ermK5

∣∣&
∣∣ermK7

∣∣ > t),
where j = K3, K5, K7,

(13)
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where abs(.) represents the absolute value of the matrix in an element-wise manner. The function
card(.) can count the number of nonzero elements in a matrix. Cermj represents the number of elements
whose values are greater than threshold t. Coverlap denotes the number of above elements at the same
locations in three error residual maps. We refer to Wang et al. [52] and set t = 9 to represent high-value
components (high-frequency information signals). Figure 5 plots the bar. The blue bar represents the
error only from the K3-network, and the green and red bars indicate the errors only from the K5- and
K7-networks, respectively. Coverlap is the purple bar. ∀j ∈ {K3, k5, k7} , Coverlap < Cermj , and networks
of different scales play different roles in the proposed method.

Statistical data and qualitative assessments prove that high-frequency information learned by
multi-scale networks is complementary. This case is the reason we fuse multi-scale residual maps for
improving reconstruction performance.

Figure 5. The quantities of estimation errors from multi-scale residual. The quantities of estimation
errors from multi-scale more than overlap. Please zoom in to see the differences.

3.4. Performance and Model Trade-Offs

We configured the multi-scale residual network to different depths and compared their
performance. We set D at 5, 10, 15, 20, and 25 to test the network performance. The input image patch
size changed when the network depth changed. We used PSNR to measure the network performance,
as shown in Figure 6. For the K3-network, the performance was optimal when D was 20. For K5- and
K7- networks, the performance of networks was optimal when D was 15. The receptive field SD × SD
of the D-layer network is defined as SD = (k− 1)× D + 1, and k is the kernel size.

Figure 6. Network depth versus PSNR (dB) score.
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3.5. Visualizing the Learned Filters and Feature Maps

The experiments presented in the previous section showed that three different depths of 3× 3
networks can replace MRNN. The results prove that “deeper is not better” in certain low-level vision
tasks. We would like K5- and K7-networks to learn contextual and global information to compensate
for the lack of information in the K3-network. Therefore, we visualize the networks to consider the
role of differently-scaled networks in this section.

In the recognition task, the features learned by the network exhibit hierarchical features. Deep
features are more discriminative than shallow features, such as color and edge. Therefore, horizontal
visualization is suitable for describing the recognition process from low to high level. The image
restoration is different from the recognition task. To explore the role of differently scaled networks, we
longitudinally visualize the MRNN, that is, the filters and feature maps of the penultimate layer of the
differently scaled networks.

A large difference is observed in the complexity of patterns from the filters. Figure 7 represents
the feature maps. The larger the filters are, the less local detail information is represented in the feature
maps. The smaller are the filters, the more apparent is the detail information in the feature maps.

Overall, we observe that differently scaled networks have their own advantages on various scale
objects. For example, a large-scale network performs efficiently on global configuration, a middle-scale
network is good at contextual information, and a small-scale network performs well in local detail
information. K3-, K5-, and K7-networks have different levels of functionality in the network. A
single-scale network cannot simultaneously learn different scales of information. Thus, the multi-scale
information should be fused to improve image reconstruction performance.

Figure 7. Visualization of the last but one layer feature maps with scale factor of 4. Feature maps
from K3- (first two rows), K5- (third and fourth rows), and K7-networks (last two rows). Small-sized
filters transport considerable local detailed information from feature maps. In addition, the first row
has richer details than the second and the third rows, which can be seen as fine-grain network for SR.
The third row has blurry edges and contains coarse-grain global information. The second row is the
middle-grain network for contextual information.

3.6. Performance Comparison with State-Of-The-Art SR Algorithms

We conducted subjective qualitative and quantitative analyses on the reconstructed images
by using PSNR, SSIM, FSIM, VIF, RSEI, and GMI. To verify the effectiveness of our algorithm, we
compared MRNN with the following state-of-the-art SR algorithms:

• SelfExSR [45] is the best performing algorithm based on self-similarity based SR.
• SRCNN [17] is a classic deep-learning based approach, which first uses CNN for SR task.
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• LapSRN [20] is the most famous multi-scale SR algorithm based on deep learning.
• VISR [23] is the best performing of satellite image SR algorithm via CNN.
• SRResnet [21] is an excellent depth network algorithm with high computing efficiency and high

visual fidelity.

These algorithms were implemented using their public source codes and available parameters
provided by the authors, and all images were down-sampled by using the same bicubic kernel of
MATLAB. For a fair comparison, we trained all these algorithms with the same database configuration
and evaluated the same satellite images with the proposed network.

Figure 8 shows the PSNR, SSIM, FSIM, VIF, RSEI, and GMI of all 40 testing images. MRNN
obtained improved reconstruction results. The corresponding significance levels were 100%, 100%,
97.5%, 100%, 100%, and 95%, respectively. The difference in score between MRNN and other methods
was statistically significant. Tables 1 and 2 show a considerable quantitative advantage of the proposed
method compared with cutting-edge deep learning based algorithms. This finding indicates that
residual multi-scale networks are relatively effective in learning different scales of content and structure,
and they restore image information effectiveness by using a deeper and flatter network than those
used by competing algorithms.

For simple observation, we amplified the representative scale object in randomly selected
reconstructed image for comparison. As shown in Figure 9, we selected a roof (small-scale object),
building (middle-scale object), and street corner (large-scale object) to show the SR performance.
For the examples shown in Figure 9, our method produced sharper edges and finer details than the
other methods for all object scales. In addition, our method produced sharper edges and finer details
than LapSRN for all object scales. This condition confirms that MRNN fuses multi-scale residual
information to enhance visual performance. Figure 10 shows a further intuitive result that only our
method can restore a clear outline.

Table 1. Average results of PSNR, SSIM, MI, and GMI on the SpaceNet dataset with scale factor of 4.
Bold indicates the best performance.

Eval. Mat Bicubic SelfExSR SRCNN LapSRN VISR SRResnet MRNN

PSNR 25.13 26.20 26.53 26.52 26.74 26.38 27.02
SSIM 0.7262 0.7613 0.7675 0.7672 0.7793 0.7738 0.7894
FSIM 0.9097 0.9448 0.9501 0.9503 0.9570 0.9546 0.9575
VIF 0.3272 0.3848 0.3917 0.3864 0.4021 0.3964 0.4124

RSEI 0.3590 0.3760 0.3782 0.3785 0.3828 0.3797 0.3859
MI 5.0582 5.1229 5.0980 5.1040 5.1114 5.0972 5.1424

GMI 1.0000 1.0128 1.0079 1.0091 1.0106 1.0078 1.0167

Table 2. Average results of PSNR, SSIM, MI, and GMI on the NWPU-RESISC45 dataset with scale
factor of 4. Bold indicates the best performance.

Eval. Mat Bicubic SelfExSR SRCNN LapSRN VISR SRResnet MRNN

PSNR 25.57 28.48 28.49 28.81 28.77 28.80 28.93
SSIM 0.6920 0.7403 0.7378 0.7578 0.7503 0.7564 0.7580
FSIM 0.7872 0.8384 0.8336 0.8400 0.8386 0.8419 0.8461
VIF 0.2968 0.3499 0.3464 0.3612 0.3661 0.3678 0.3685

RSEI 0.3572 0.3740 0.3760 0.3766 0.3777 0.3807 0.3837
MI 4.4972 4.5807 4.5507 4.5517 4.5478 4.5808 4.6210

GMI 1.0000 1.0191 1.0122 1.0125 1.0117 1.0191 1.0283
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Figure 8. Objective results of SR algorithms over SpaceNet satellite images. X-axes represent the index
of testing samples. Y-axes indicate evaluation index: PSNR, SSIM, FSIM, VIF, RSEI, and GMI.

Bicubic SelfExSR SRCNN LapSRN

VISR SRResnet MRNN HR

Bicubic SelfExSR SRCNN LapSRN

VISR SRResnet MRNN HR

VISR SRResnet MRNN HR

Bicubic SelfExSR SRCNN LapSRN

Figure 9. Subjective performance of different SR algorithms over SpaceNet satellite images. We selected
three objects with representative scales, i.e., roof (small-scale object), building (middle-scale object),
and street corner (large-scale object), and MRNN recovered more texture information.
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Original / PSNR

Bicubic / 25.35 dB SRCNN / 26.30 dBSelfExSR / 26.37 dB LapSRN / 26.51 dB

VISR/ 26.67 dB MRNN / 27.00 dB SRResnet / 26.85 dB

Original / PSNR

Bicubic / 31.82 dB SRCNN / 32.85 dBSelfExSR / 33.65 dB LapSRN / 33.69 dB

VISR/ 33.48 dB MRNN / 33.95 dB SRResnet / 33.80 dB
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Figure 10. The images from NWPU-RESISC45 with scale factor 4×. Only MRNN successfully recovered
the edge of the airplane’s head. The contour in the image is sharp in the result of MRNN.

3.7. Time Complexity

Figure 11 shows the running time of all algorithms. The running time of the traditional algorithm
is longer than that of deep learning algorithms and has no training phase. MRNN is a parallel network
with three different scales and does not increase the time complexity of the network, especially when
the network is complex. Although LapSRN has a better running time performance, its PSNR is lower
than that of MRNN. Our method is slightly slower than VISR in terms of running time. However,
MRNN has improved PSNR, SSIM, FSIM, VIF, RSEI, and GMI. We implemented all algorithms in the
experiments under the same hardware configuration: Intel Core i7-6700 K CPU @4.00 GHz, NVIDIA
GTX1080 8 GB RAM.

Figure 11. Mean running time (seconds) of all 40 testing samples for different SR algorithms.
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4. Discussions

4.1. Multi-Scale Prior Information

Lai et al. [20] proposed a progressive SR method to super-resolve images gradually. A Laplacian
pyramid is used in the generative network for SR. A residual recurrent network is adopted to predict
the output information in each pyramid level. Here, LapSRN designs a multi-scale training strategy,
which trains multi-scale combinations as 2×, 4×, and 8× in one net. This process involves the
addition of multi-scale training pairs to cover different scale samples. Many differences are observed
between LapSRN and MRNN. First, LapSRN directly performs multi-scale information fusion in the
feature domain, whereas MRNN constructs multi-scale parallel networks and performs multi-scale
information fusion in the residual domain. The residual map is closely related to the high frequency
information of the image, which is the purpose of SR. Second, LapSRN can perform SR tasks at
different scales of factor one-shot, but it ignores the multi-scale information in the input image. MRNN
completely investigates the multi-scale information of the input image in SR at fixed-scale factors.
On the basis of the experimental results, the fusion of multi-scale residual information has a better
performance than LapSRN at a scale factor of 4.

4.2. Residual Learning Versus Pixel Learning

VISR [23] uses a self-similar padding instead of zero padding to avoid the addition of unnecessary
information. Therefore, VISR is performed in the pixel domain, such as SRCNN. The reconstruction
in the pixel domain focuses on the low- and middle-frequency information in the image. However,
SR infers the missing high-frequency information. Furthermore, the residual values of images are
frequently small or zero, and the residual network has consistently less calculation burden than pixel
learning. The recovery of high-frequency information on satellite images can improve recognition
performance. At this point, residual learning is further suitable for satellite image SR scenarios.
In addition, the experimental results confirm this inference in terms of subjective and objective
image qualities.

4.3. Subpixel Network Versus Pixel Network

SRResnet [21] directly divides LR images into small image patches. Similar to LapSRN and
ESPCNN [18], these networks directly use LR inputs (subpixels) to learn mapping functions. Subpixel
networks simulate the degradation process and are more efficient than pixel-based networks. By
contrast, pixel networks interpolate LR inputs into the same size of HR samples and use the residual
information in networks. Residual recursive networks are assumed to overcome the vanishing problem
for improving network performance. Thus, subpixel and pixel networks have their own advantages.
On the basis of the experimental data in the SpaceNet database, the pixel network outperforms its
subpixel competitors.

4.4. Applicability of the Proposed Method

We conducted experiments on the Jilin-1 satellite image to further illustrate the applicability
of the proposed algorithm. The imaging environment and resolution of the test image are different
from those of the training datasets (NWPU-RESISC45). The size of LR Jilin-1 satellite image is
408× 204 pixels. Figure 12 shows the reconstruction results obtained from our proposed approaches
and the comparison methods. Considering the absence of ground truth image, we introduce mean
gradient (MG) to calculate the sharpness of the SR image. MG is defined as follows:

MG = |grdx(y)|+
∣∣grdy(y)

∣∣ , (14)
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where grdx(y) and grdy(y) are the gradients of image y on the x- and the y-axes, respectively. The
proposed MRNN recovers sharp edges, and enjoys the first MG scores. The comparison results of
real video satellite images show the applicability of the proposed method. Considering the image
characteristics between satellites, we introduce GAN to learn the cross-domain degradation model for
solving the real-world SR problems in the future.

Bicubic:MG(7.053)

VISR:MG(9.756)

MRNN:MG(10.191) LR input

SRResnet:MG(9.998)

LapSRN:MG(9.688)

Figure 12. An example of the reconstruction results on the Jilin-1 imagery with a scale of 4. MRNN
recovered sharp building edges.

5. Conclusions

This paper presents a multi-scale residual CNN, namely MRNN, based on the characteristics
of satellite images, for enhancing SR performance. It first extracts different sizes of patches from LR
satellite images. Then, multi-scale deep residual neural networks are applied to simulate differently
sized receptive fields for acquiring different levels of information. Then, a fusion network is used
to refine the multi-scale features. Based on the proposed novel network, reasonably accurate
high-frequency information, such as edges and textures, can be obtained by complementing the
residual information at different scales. The experimental results on the SpaceNet database show that
the proposed MRNN effectively enhanced the high-frequency information in the reconstructed images.
MRNN also exhibited better subjective and objective image qualities than several state-of-the-art
deep-learning-based SR algorithms for satellite images. MRNN is mainly designed for true color
satellite images SR. As is known, multi-spectral images have higher spectral resolution but lower
spatial resolution. It would be very interesting to investigate the fusion of the multi-spectral images and
the true color images in the proposed framework to improve the visualized quality of the multi-spectral
images in the future.
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Supervision, Y.Z.; Validation, T.L. and J.J.; Visualization, J.W.; Draft Preparation, J.W.; Writing, review and editing,
T.L. and J.J.



Remote Sens. 2019, 11, 1588 17 of 19

Funding: This work is supported by the NSFC grants (61502354, 61671332, 41501505, 61771353), the Central
Government Guides Local Science and Technology Development Projects (2018ZYYD059), the Natural Science
Foundation of Hubei Province of China (2018CFA024, 2018ZYYD059, 2012FFA099, 2012FFA134, 2013CF125,
2014CFA130, 2015CFB451), Provincial teaching research projects in Hubei Universities (2017324), Scientific
Research Foundation of Wuhan Institute of Technology (K201713), Wuhan Institute of Technology Key teaching
and construction projects (Z2017009).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tsai, R.Y.; Huang, T.S. Multiframe image restoration and registration. Adv. Comput. Vis. Image Process. 1984,
1, 317–339.

2. Lim, K.H.; Kwoh, L.K. Super-resolution for SPOT5—Beyond supermode. In Proceedings of the 30th Asian
Conference on Remote Sensing, Beijing, China, 18–23 October 2009.

3. Nasrollahi, K.; Moeslund, T.B. Super-resolution: A comprehensive survey. Mach. Vis. Appl. 2014,
25, 1423–1468. [CrossRef]

4. Garzelli, A. A Review of Image Fusion Algorithms Based on the Super-Resolution Paradigm. Remote Sens.
2016, 8, 797. [CrossRef]

5. Shao, Z.; Cai, J. Remote Sensing Image Fusion with Deep Convolutional Neural Network. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2018, 11, 1656–1669. [CrossRef]

6. Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications,
and future. Signal Process. 2016, 128, 389–408. [CrossRef]

7. Shen, H.; Zhang, L.; Huang, B.; Li, P. A MAP approach for joint motion estimation, segmentation, and super
resolution. IEEE Trans. Image Process. 2007, 16, 479–490. [CrossRef]

8. Zhong, Y.; Zhang, L. Remote sensing image subpixel mapping based on adaptive differential evolution.
IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 1306–1329. [CrossRef] [PubMed]

9. Kohler, T.; Huang, X.; Schebesch, F.; Aichert, A.; Maier, A.; Hornegger, J. Robust Multiframe Super-Resolution
Employing Iteratively Re-Weighted Minimization. IEEE Trans. Comput. Imaging 2016, 2, 42–58. [CrossRef]

10. Huang, H.; He, H. Super-resolution method for face recognition using nonlinear mappings on coherent
features. IEEE Trans. Neural Netw. 2011, 22, 121–130. [CrossRef]

11. Romano, Y.; Isidoro, J.; Milanfar, P. RAISR: Rapid and accurate image super resolution. IEEE Trans.
Comput. Imaging 2017, 3, 110–125. [CrossRef]

12. Zhang, H.; Huang, B. Support vector regression-based downscaling for intercalibration of multiresolution
satellite images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1114–1123. [CrossRef]

13. Dang, C.; Radha, H. Fast Single-Image Super-Resolution Via Tangent Space Learning of
High-Resolution-Patch Manifold. IEEE Trans. Comput. Imaging 2017, 3, 605–616. [CrossRef]

14. Elbakary, M.; Alam, M. Superresolution Construction of Multispectral Imagery Based on Local Enhancement.
IEEE Geosci. Remote Sens. Lett. 2008, 5, 276–279. [CrossRef]

15. Zhang, K.; Gao, X.; Tao, D.; Li, X. Single image super-resolution with multiscale similarity learning.
IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1648–1659. [CrossRef] [PubMed]

16. Kappeler, A.; Yoo, S.; Dai, Q.; Katsaggelos, A.K. Video Super-Resolution with Convolutional Neural
Networks. IEEE Trans. Comput. Imaging 2016, 2, 109–122. [CrossRef]

17. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 38, 295–307. [CrossRef]

18. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single
image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 1874–1883.

19. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 1646–1654.

20. Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate
superresolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; Volume 2, p. 5.

http://dx.doi.org/10.1007/s00138-014-0623-4
http://dx.doi.org/10.3390/rs8100797
http://dx.doi.org/10.1109/JSTARS.2018.2805923
http://dx.doi.org/10.1016/j.sigpro.2016.05.002
http://dx.doi.org/10.1109/TIP.2006.888334
http://dx.doi.org/10.1109/TSMCB.2012.2189561
http://www.ncbi.nlm.nih.gov/pubmed/22510950
http://dx.doi.org/10.1109/TCI.2016.2516909
http://dx.doi.org/10.1109/TNN.2010.2089470
http://dx.doi.org/10.1109/TCI.2016.2629284
http://dx.doi.org/10.1109/TGRS.2013.2243736
http://dx.doi.org/10.1109/TCI.2017.2691554
http://dx.doi.org/10.1109/LGRS.2008.915935
http://dx.doi.org/10.1109/TNNLS.2013.2262001
http://www.ncbi.nlm.nih.gov/pubmed/24808601
http://dx.doi.org/10.1109/TCI.2016.2532323
http://dx.doi.org/10.1109/TPAMI.2015.2439281


Remote Sens. 2019, 11, 1588 18 of 19

21. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017.

22. Jiang, K.; Wang, Z.; Yi, P.; Wang, G.; Lu, T.; Jiang, J. Edge-Enhanced GAN for Remote Sensing Image
Superresolution. IEEE Geosci. Remote Sens. 2019, 19, 1–14. [CrossRef]

23. Luo, Y.; Zhou, L.; Wang, S.; Wang, Z. Video Satellite Imagery Super Resolution via Convolutional Neural
Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2398–2402. [CrossRef]

24. Wang, Z.; Yi, P.; Jiang, K.; Jiang, J.; Ma, J. Multi-Memory Convolutional Neural Network for Video
Super-Resolution. IEEE Trans. Image Process. 2018, 28, 2530–2544. [CrossRef]

25. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 779–788.

26. Lu, T.; Ming, D.; Lin, X.; Hong, Z.; Bai, X.; Fang, J. Detecting building edges from high spatial resolution
remote sensing imagery using richer convolution features network. Remote Sens. 2018, 10, 1496. [CrossRef]

27. Zhao, P.; Liu, K.; Zou, H.; Zhen, X. Multi-stream convolutional neural network for SAR automatic target
recognition. Remote Sens. 2018, 10, 1473. [CrossRef]

28. Zhang, W.; Witharana, C.; Liljedahl, A.; Kanevskiy, M. Deep convolutional neural networks for automated
characterization of arctic ice-wedge polygons in very high spatial resolution aerial imagery. Remote Sens.
2018, 10, 1487. [CrossRef]

29. Xu, Y.; Zhu, M.; Li, S.; Feng, H.; Ma, S.; Che, J. End-to-end airport detection in remote sensing images
combining cascade region proposal networks and multi-threshold detection networks. Remote Sens. 2018,
10, 1516. [CrossRef]

30. Ma, J.; Zhao, J.; Jiang, J.; Zhou, H.; Guo, X. Locality preserving matching. Int. J. Comput. Vis. 2019,
127, 512–531. [CrossRef]

31. Zhang, Y.; Liu, J.; Bai, W.; Guo, Z. Exploiting multi-scale spatial structures for sparsity based single image
super-resolution. In Proceedings of the 2014 IEEE International Conference on Image Processing, Paris,
France, 27–30 October 2014; pp. 3877–3881.

32. Fu, J.; Zheng, H.; Mei, T. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for
Fine-Grained Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4476–4484.

33. Liu, Y.; Cheng, M.; Hu, X.; Wang, K.; Bai, X. Richer Convolutional Features for Edge Detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 5872–5881.

34. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015.

35. Du, X.; Qu, X.; He, Y.; Guo, D. Single Image Super-Resolution Based on Multi-Scale Competitive
Convolutional Neural Network. Sensors 2018, 18, 789. [CrossRef]

36. Zhang, X.; Yang, W.; Hu, Y.; Liu, J. DMCNN: Dual-Domain Multi-Scale Convolutional Neural Network for
Compression Artifacts Removal. In Proceedings of the 2018 25th IEEE International Conference on Image
Processing, Athens, Greece, 7–10 October 2018.

37. Zjournaleiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks; Springer: Berlin,
Germany, 2014; pp. 818–833.

38. Andrews, T.J.; Watson, D.M.; Rice, G.E.; Hartley, T. Low-level properties of natural images predict
topographic patterns of neural response in the ventral visual pathway. J. Vis. 2015, 15, 3. [CrossRef]

39. Zeng, K.; Lu, T.; Liang, X.; Liu, K.; Chen, H.; Zhang, Y. Face super-resolution via bilayer contextual
representation. Front. Signal Process. Image Commun. 2019, 75, 147–157. [CrossRef]

40. Tschechne, S.; Neumann, H. Hierarchical representation of shapes in visual cortex from localized features to
figural shape segregation. Front. Comput. Neurosci. 2014, 8, 93. [CrossRef]

41. Yu, Y.; Tang, S.; Aizawa, K.; Aizawa, A. Category-based deep CCA for fine-grained venue discovery from
multimodal data. Front. IEEE Trans. Neural Netw. Learn. Syst. 2018, 99, 1–9. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2019.2902431
http://dx.doi.org/10.1109/LGRS.2017.2766204
http://dx.doi.org/10.1109/TIP.2018.2887017
http://dx.doi.org/10.3390/rs10091496
http://dx.doi.org/10.3390/rs10091473
http://dx.doi.org/10.3390/rs10091487
http://dx.doi.org/10.3390/rs10101516
http://dx.doi.org/10.1007/s11263-018-1117-z
http://dx.doi.org/10.3390/s18030789
http://dx.doi.org/10.1167/15.7.3
http://dx.doi.org/10.1016/j.image.2019.03.019
http://dx.doi.org/10.3389/fncom.2014.00093
http://dx.doi.org/10.1109/TNNLS.2018.2856253


Remote Sens. 2019, 11, 1588 19 of 19

42. Yu, Y.; Tang, S.; Raposo, F.; Chen, L. Deep cross-modal correlation learning for audio and lyrics in music
retrieval. Front. ACM Trans. Multimed. Comput. Commun. Appl. 2019, 15, 20. [CrossRef]

43. Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition, Miami Beach, FL, USA,
20–26 June 2009; pp. 1597–1604.

44. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: benchmark and state of the art.
Proc. IEEE 2017, 105, 1865–1883. [CrossRef]

45. Huang, J.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 5197–5206.

46. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: from error visibility to
structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

47. Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment.
IEEE Trans. Image Process. 2011, 20, 2378–2386. [CrossRef] [PubMed]

48. Sheikh, H.R.; Bovik, A.C. Image information and visual quality. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; Volume 3.

49. Lu, T.; Wang, J.; Zhou, H.; Jiang, J.; Ma, J.; Wang, Z. Rectangular-Normalized Superpixel Entropy Index for
Image Quality Assessment. Entropy 2018, 20, 947. [CrossRef]

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision,
Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

51. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

52. Wang, S.; Yue, B.; Liang, X.; Jiao, L. How Does the Low-Rank Matrix Decomposition Help Internal and
External Learnings for Super-Resolution. IEEE Trans. Image Process. 2018, 27, 1086. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3281746
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1109/TIP.2011.2109730
http://www.ncbi.nlm.nih.gov/pubmed/21292594
http://dx.doi.org/10.3390/e20120947
http://dx.doi.org/10.1109/TIP.2017.2768185
http://www.ncbi.nlm.nih.gov/pubmed/29220313
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Satellite Imagery SR Based on Multi-Scale Residual Neural Network
	Multi-Scale SR
	Residual Fusion Network
	Loss Function

	Experiments
	Experimental Data
	Training Parameters
	Complementarity Analysis of Multi-Scale Residual
	Performance and Model Trade-Offs
	Visualizing the Learned Filters and Feature Maps
	Performance Comparison with State-Of-The-Art SR Algorithms
	Time Complexity

	Discussions
	Multi-Scale Prior Information
	Residual Learning Versus Pixel Learning
	Subpixel Network Versus Pixel Network
	Applicability of the Proposed Method

	Conclusions
	References

