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Abstract: The simultaneous availability of observations from space by remote sensing platforms
operating at multiple frequencies in the microwave domain suggests investigating their complementarity
in thematic mapping and retrieval of biophysical parameters. In particular, there is an interest to
understand whether the wealth of short wavelength Synthetic Aperture Radar (SAR) backscatter
observations at X-, C-, and L-band from currently operating spaceborne missions can improve the
retrieval of forest stem volume, i.e., above-ground biomass, in the boreal zone with respect to a
single frequency band. To this scope, repeated observations from TerraSAR-X, Sentinel-1 and ALOS-2
PALSAR-2 from the test sites of Remningstorp and Krycklan, Sweden, have been analyzed and used
to estimate stem volume with a retrieval framework based on the Water Cloud Model. Individual
estimates of stem volume were then combined linearly to form single-frequency and multi-frequency
estimates. The retrieval was assessed at large 0.5 ha forest inventory plots (Remningstorp) and small
0.03 ha forest inventory plots (Krycklan). The relationship between SAR backscatter and stem volume
differed depending on forest structure and environmental conditions, in particular at X- and C-band.
The highest retrieval accuracy was obtained at both test sites at L-band. The combination of stem
volume estimates from data acquired at two or three frequencies achieved an accuracy that was
superior to values obtained at a single frequency. When combining estimates from X-, C-, and L-band
data, the relative RMSE for the 0.5 ha inventory plots at Remningstorp was 31.3%. For the 0.03 ha
inventory plots at Krycklan, the relative RMSE was above 50%. In a retrieval scenario involving short
wavelength SAR backscatter data, these results suggest combining multiple frequencies to ensure
the highest possible retrieval accuracy achievable. Retrievals should be undertaken to target spatial
scales well above the size of a pixel.

Keywords: SAR backscatter; TerraSAR-X; Sentinel-1; ALOS-2 PALSAR-2; Water Cloud Model; stem
volume; above-ground biomass

1. Introduction

The increasing number of orbiting platforms acquiring an unprecedented number of images of
the Earth’s land surfaces fosters mapping and monitoring applications that cannot be achieved in
timely manner with in situ observations. The way the Earth land surfaces are perceived changes as
a more global perspective is being achieved, thus unraveling the systemic aspects of the bio- and
geophysical processes over land. In this respect, observations of forest extent and density are of utmost
importance [1] because forests control the carbon cycle, which ultimately feeds back to climate [2].

Synthetic Aperture Radar (SAR) instruments comply with the requirement of continuous
observations because the data acquired remains unaffected by cloud cover and solar illumination.
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Yet, the signal recorded by radar represents the interplay of geometric and dielectric properties of the
objects seen on the ground. For example, the SAR backscattered intensity from a forest combines (i)
structural information related to the arrangement of the trees on the ground and the trees architecture,
(ii) dielectric information related to the water content of the tree, (iii) properties of the soil underneath
the forest in terms of surface roughness and moisture, and (iv) additional specific conditions of the
environment at the time of image acquisition (e.g., presence of snow cover). The interplay of such
factors depends on the frequency band at which the radar operates, the viewing geometry and the
polarization of the microwave. The development of thematic mapping applications based on SAR
data, therefore, requires careful consideration of these multiple factors.

The retrieval of forest variables, in particular above-ground biomass, is a major topic of
investigation with SAR because of the sensitivity of the observed signal to vegetation structure;
accordingly a rather wide range of approaches have been presented in literature to improve the
estimation of biomass with respect to past studies and overcome the major issue with any remote
sensing observable when estimating biomass, i.e., the fact that biomass cannot be directly measured
with remote sensing [3].

One line of biomass retrieval approaches aims at disentangling the multiple components affecting
the SAR signal by modeling individual terms and removing the modeled components not related
to biomass. This is viable when the SAR observable is dominated by one of the factors listed above.
In the case of interferometric data in a repeat-pass scenario (InSAR), it is attempted to compensate
for temporal decorrelation with a model in order to maximize the volumetric decorrelation, e.g., as
in [4], in order to univocally relate to tree height, i.e., a major predictor of forest above-ground biomass
(AGB).

In the case of observations of the radar backscattered intensity, referred to as SAR backscatter from
here onwards, the information content on the parameter of interest in the measurement is significantly
masked by the different factors listed above. As a result, disentangling signal contributions would
introduce significant uncertainties in the compensated observation. A more viable approach in this
case is to rely on an extended vector of SAR observations where a diversity of information is captured
in the signals. For example, a multi-temporal dataset of observations can improve the retrieval of forest
biomass with respect to a retrieval based on a single observation [5,6]. The information content on
biomass in each observation is maximized by combining estimates from individual images in a way that
estimates from an image dataset characterized by higher sensitivity to biomass are preferred to values
estimated from image where apparently there is no sensitivity of the biomass to the backscatter [3].
With a multi-temporal dataset, systematic issues persist such as lack of sensitivity of the observable to
biomass above a certain level as in the case of short wavelength SAR backscatter data [6,7]. To further
improve the retrieval, one could exploit the frequency dimension, which in recent times has become
possible thanks to the availability of repeated SAR observations from spaceborne platforms operating
at different wavelengths.

The potential of multi-frequency observations to retrieve biomass has been reported in studies
investigating mostly a small number of airborne observations acquired during the 1990s [8–12]. Studies
focused on C-, L-, and P-band observations to retrieve AGB in temperate forests, concluding that the
retrieval accuracy increased at lower frequency. Since the investigations were exploratory, it could
not be concluded what is the actual benefit of combining observations from multiple frequencies to
retrieve forest biomass. More recently, the combination of multiple C-, L-, and P-band observations
from the Remningstorp test site in Sweden (see also Section 2) has been investigated to appraise the
contribution of these three frequencies to the retrieval of biomass [13]. While it was confirmed that
P-band has the strongest sensitivity to biomass compared to C- and L-band, the results indicated that
the retrieval of AGB with multi-temporal C- and L-band data achieved comparable accuracies as a
single P-band observation up to ~150 tons/ha [13].

With the simultaneous availability of repeated SAR observations from spaceborne SAR platforms
at X-, C-, and L-band [13–16], as well as the recent launch of the NovaSAR platform carrying an S-band
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sensor and the first P-band sensor in space [17] in the nearest future, the benefit of multi-frequency
SAR observations in the context of biomass estimation need to be further understood as to appraise
the relevance of multi-frequency observations of the SAR backscatter with respect to other observables
derived from the measurements by these sensors.

The scope of this study is to advance knowledge on the retrieval of forest biomass with
multi-frequency SAR data by exploring the combination of observations of short wavelength SAR
backscatter (i.e., acquired at X-, C-, and L-band) over boreal forest and assessing the complementarity
of observations in joint retrievals. Differently than in the exploratory studies cited above, where a
small number of fully polarimetric images were available, here we profit from repeated observations
at each individual frequency band and investigated the potential of combined multi-frequency and
multi-temporal observations. The study has been undertaken at two test sites in Sweden where we
expected that, at each frequency band, the SAR backscatter has sensitivity to biomass, even if not
throughout the entire range of biomass, and the functional dependency of the SAR backscatter upon
biomass differs because of the different penetration of the microwave into the forest canopy at X-, C-,
and L-band. Structural differences of the forests at the two sites allows for a deeper understanding of
multi-frequency signatures of SAR backscatter and to assess the impact on the retrieval of biomass.

Sections 2 and 3 describe the test sites and the SAR datasets, respectively. The model relating
the SAR observations to biomass is presented in Section 4. Here, biomass is represented by the stem
volume (unit: m3/ha), i.e., the volume of tree trunks per unit area. Stem volume is the major predictor
of biomass in northern forests and a relevant forest variable in terms of forest management. Section 5
presents the retrievals of stem volume for (i) single images, (ii) combinations of estimates of stem
volume from multiple images acquired at a single frequency band and (iii) combinations of estimate
from multiple images acquired in multiple frequency bands. The results are discussed in Section 6
and put into perspective with a comparison to retrievals obtained at the test sites using other remote
sensing datasets. Conclusions centered on the usefulness of multi-frequency SAR backscatter data to
retrieve biomass are reported in Section 7.

2. Test Sites

Retrieval of forest stem volume has been investigated in Sweden at the hemi-boreal forest site of
Remningstorp and the boreal forest sites of Krycklan (Figure 1). At both sites, the forests are regularly
inventoried with different techniques (forest field measurements, laser scanning). Measurements
of forest variables are then used to assess novel retrieval methodologies based on remote sensing
observations, e.g., [7,18–22].

The Remningstorp test site (Figure 1) is located in the south of Sweden (58◦30′N, 13◦40′E) within
the transition zone from the boreal to the temperate biome. The topography is fairly flat with a ground
elevation between 120 m and 145 m above sea level. The test site covers about 1200 ha of productive
forest land. Prevailing tree species are Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and, less
represented, birch (Betula spp.). Pine forests are characterized by fewer but bigger trees and a more
open canopy structure compared to spruce forests of similar overall above-ground biomass. This is a
result of different management practices [13]. In addition, pine forests were characterized by sandy
soils whereas spruce and birch forests grow on till. Stem volume measurements were available for 48
forest field inventory plots. Each plot had a radius of 40 m, corresponding to an area of approximately
0.5 ha, and was inventoried in 2014. At each plot, trees were callipered at breast height and tree heights
were measured for a sub-sample of trees. The plot locations were measured using differential GPS with
post-processing producing sub-meter accuracy. Stem volumes were between 58 and 691 m3/ha, with
an average of 320 m3/ha, corresponding to 163 Mg/ha of above-ground biomass under the assumption
of a biomass conversion and expansion factor of 0.51 [23].
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Figure 1. Map of Sweden showing the location of the test sites of Remningstorp and Krycklan.

The Krycklan test site is located in the north of Sweden (64◦14′N, 19◦50′E) and is a watershed
managed and owned by both Swedish forest companies and private owners. Topography is hilly with
several gorges and the ground elevation ranges between 125 m and 350 m above sea level. The size
covers about 6800 ha of mainly coniferous forests. The prevailing tree species is Norway spruce, with
frequent patches of Scots pine and some deciduous tree species, e.g., birch (Betula pubescens). The
dominant soil type is till. Stem volumes were measured at 325 forest inventory plots, each with a
radius of 10 m, corresponding to an area of approximately 0.03 ha. Stem volumes were between 2 and
649 m3/ha, with an average of 158 m3/ha, corresponding to 81 Mg/ha of above-ground biomass.

For each site, weather data were gathered to support the interpretation of the SAR observables
and the retrieval statistics. Weather data included temperature, humidity, snow cover, precipitation
and wind speed collected at several weather stations located nearby the sites (less than 10 km away).
Measurements were available on a 10-, 30-, or 60-minute basis.

3. SAR Datasets

The datasets of SAR backscatter observations were obtained from images acquired by TerraSAR-X
(X-band, wavelength of 3.1 cm), Sentinel-1A (C-band, wavelength of 5.6 cm), and Advanced Land
Observing Satellite-2 (ALOS-2) Phased Array type L-band SAR-2 (PALSAR-2) (L-band, wavelength
of 23.4 cm). Details on number of observations and time span of the acquisitions are provided in
Tables 1 and 2 for Remningstorp and Krycklan, respectively. The time interval was selected to obtain a
multi-temporal dataset of observations at each frequency band. Frequent observations by TerraSAR-X
were possible thanks to dedicated observation strategy over each test site, aiming at the development
on interferometric techniques to estimate height and biomass [24]. The high rate of acquisitions over
Europe by Sentinel-1 explains the large number of images available. The dataset of ALOS-2 PALSAR-2
images was among the largest that could be achieved within one year (personal communication,
Åke Rosenqvist). The multiple viewing geometries under which each test site was observed by
TerraSAR-X and ALOS-2 PALSAR-2 resulted in a rather broad range of look angles.
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Table 1. Synthetic Aperture Radar (SAR) dataset covering the test site of Remningstorp.

Band Sensor Polarization Look Angle Data Sets Time Interval

X TerraSAR-X Single-pol (HH or VV) 22◦–51◦ 62 201410–201510

C Sentinel-1A Dual-pol (VV, VH) 39◦ 33 201410–201510

L ALOS-2
PALSAR-2

Dual pol (HH, HV)
Full pol. (HH, HV, VV) 28◦–36◦ 24 201409–201510

Table 2. SAR dataset covering the test site of Krycklan.

Band Sensor Polarization Look Angle Data Sets Time Interval

X TerraSAR-X Single-pol (HH or VV) 19◦–48◦ 21 201407–201510

C Sentinel-1A Dual-pol (VV, VH) 39◦ 78 201410–201510

L ALOS-2
PALSAR-2

Dual pol (HH, HV)
Full pol. (HH, HV, VV) 28◦–36◦ 15 201408–201510

SAR Data Processing

The SAR images were ordered in Single Look Complex (SLC) format except for Sentinel-1, in which
case the Ground Range Detected (GRD) format was preferred to limit processing time and given the
high quality of the GRD data sets in terms of radiometric and geometric precision compared to SLC
data. Each image was processed to form a terrain geocoded stack of co-registered SAR backscatter
images. The processing sequence is outlined in the flowchart of Figure 2.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 25 

 

 

Figure 2. Flowchart of processing for a SAR image. DEM: Digital Elevation Model. MLI: 
Multi-looked Intensity. 

Each SAR image was first imported in the processing environment [25]. Images available as 
SLC were detected to form image of the SAR backscattered intensity. Thereafter, calibration and 
noise reduction were applied with the calibration gain and the noise factors reported in the original 
image metadata and auxiliary data files for TerraSAR-X and Sentinel-1 data. Precise orbit 
information was used to replace state vectors provided in the original metadata of the image in the 
case of Sentinel-1 images. 

Taking into account that the lowest resolution was the range resolution of the ALOS-2 
PALSAR-2 data, it was decided to set up the processing to obtain geocoded images with a pixel size 
of 20 m × 20 m. Hence, each image was first multi-looked to approximately the same pixel size, 
which also decreased speckle noise. This image is referred to as multi-looked intensity (MLI). We 
have quantified the speckle noise with an estimate of the Equivalent Number of Looks (ENL) [26]. 

ENL = μ2 / σ2,           (1) 

where μ2 and σ2 represent the squared mean value of the backscattered intensity of a target and 
its variance. The ENL is commonly estimated by computing the mean and the variance of the 
backscatter within a polygon including an area of homogeneous scattering (e.g., a field or a forest 
stand). In Table 3, the ENL is reported in the form of averages of estimates from several polygons 
characterized by homogeneous backscatter for the SAR backscatter images obtained after 
multi-looking and after an additional multi-channel filtering, which is described further on in this 
Section. 

Table 3. Estimates of Equivalent Number of Looks (ENL) for each of the spaceborne SAR sensors 
used in this study. 

Sensor ENL After Multi-Looking ENL After Multi-Channel Filtering 
TerraSAR-X 12 168 
Sentinel-1 5 40 

ALOS-2 PALSAR-2 10 20 
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looked Intensity.

Each SAR image was first imported in the processing environment [25]. Images available as
SLC were detected to form image of the SAR backscattered intensity. Thereafter, calibration and
noise reduction were applied with the calibration gain and the noise factors reported in the original
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image metadata and auxiliary data files for TerraSAR-X and Sentinel-1 data. Precise orbit information
was used to replace state vectors provided in the original metadata of the image in the case of
Sentinel-1 images.

Taking into account that the lowest resolution was the range resolution of the ALOS-2 PALSAR-2
data, it was decided to set up the processing to obtain geocoded images with a pixel size of 20 m ×
20 m. Hence, each image was first multi-looked to approximately the same pixel size, which also
decreased speckle noise. This image is referred to as multi-looked intensity (MLI). We have quantified
the speckle noise with an estimate of the Equivalent Number of Looks (ENL) [26].

ENL = µ2/σ2, (1)

where µ2 and σ2 represent the squared mean value of the backscattered intensity of a target and its
variance. The ENL is commonly estimated by computing the mean and the variance of the backscatter
within a polygon including an area of homogeneous scattering (e.g., a field or a forest stand). In Table 3,
the ENL is reported in the form of averages of estimates from several polygons characterized by
homogeneous backscatter for the SAR backscatter images obtained after multi-looking and after an
additional multi-channel filtering, which is described further on in this Section.

Table 3. Estimates of Equivalent Number of Looks (ENL) for each of the spaceborne SAR sensors used
in this study.

Sensor ENL After Multi-Looking ENL After Multi-Channel Filtering

TerraSAR-X 12 168

Sentinel-1 5 40

ALOS-2 PALSAR-2 10 20

The transformation of a SAR image from radar to map geometry was implemented in the form
of a geocoding look-up table [27]. For each SAR image, the look-up table was created with the
aid of orbital parameters and SAR image processing parameters and elevation information in a
Digital Elevation Model (DEM). In this study, we used the freely available Swedish national DEM
grid 50+ (https://www.lantmateriet.se/en/Maps-and-geographic-information/Elevation-data-/GSD-
Hojddata-grid-50-/), oversampled to 20 m. Because of the gentle topography at both sites, this
oversampling was assumed to have negligible impact on the processing. To compensate for the
geo-location error in the look-up table due to imprecise image parameters or orbital parameters, offsets
were estimated by means of a cross-correlation technique between the SAR image and a simulated
SAR image obtained from the DEM. Offsets were estimated at multiple positions throughout the area
covered by the SAR image in order to capture possible dependencies of the offsets upon range and
azimuth position. The offsets estimates were then used in a least squares regression to estimate the
parameters of a polynomial describing the shift to be applied to each pixel of the look-up table in order
to then match the output geometry:

y = a + b * range_offset + c * azimuth_offset. (2)

The co-registration error described by the standard deviation of the residual shift was mostly
below 0.4 times the pixel size, i.e., <10 m. With the refined look-up table, the image in the SAR
geometry was projected onto the output geometry.

To compensate for slope-induced modulation of the SAR backscatter, we computed a normalization
factor that accounted for the true size of the pixel instead of the size of the pixel on a flat terrain
as assumed when generating the SLC and GRD image data products [28]. The area of each pixel
in an image was estimated using the DEM, the orbital parameters in the SAR image metadata and
the geocoding look-up table. Each normalized SAR image was re-projected to a pre-defined output

https://www.lantmateriet.se/en/Maps-and-geographic-information/Elevation-data-/GSD-Hojddata-grid-50-/
https://www.lantmateriet.se/en/Maps-and-geographic-information/Elevation-data-/GSD-Hojddata-grid-50-/
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geometry meaning that all images formed a stack of co-registered SAR backscatter images. Accordingly,
all normalized and spatially filtered images were geocoded to the same geometry.

Given the availability of multi-temporal data at each frequency band, we implemented the
multi-channel filtering approach originally proposed in [29]. We used a spatially adaptive version of
the filter to allow better estimates of the radar cross-section over textured terrain. For this reason, the
multi-channel filter was driven with a spatially filtered version of the multi-looked SAR image obtained
with the texture-based GAMMA MAP filter [30]. For the SAR backscatter images obtained after the
multi-channel filtering, the ENL increased substantially (Table 3). The largest ENL of 168, corresponding
to a residual noise of 0.32 dB was obtained for TerraSAR-X data thanks to the substantially higher
spatial resolution compared to Sentinel-1 and ALOS-2. The ENL of 40 for the Sentinel-1 dataset,
corresponding to 0.64 dB, was a result of the very dense stack of observations (Table 1). On the contrary,
the ENL of 20 for ALOS-2 PALSAR-2 images, corresponding to 0.88 dB, was a consequence of the
rather small number of images available and the strong correlation of observations in time [31].

To each forest inventory plot, we associated the area-weighted mean value of the SAR backscatter
of pixels located within the perimeter. For the 0.5 ha inventory plots of Remningstorp, this corresponded
to averaging over the area of approximately 12 pixels. For the 0.03 ha inventory plots of Krycklan,
the average backscatter was computed over the area of slightly less than one pixel. Such averages
formed the dataset of SAR backscatter observations used to train the retrieval models and estimate
stem volume.

4. Methods

The SAR backscatter was expressed as a function of the stem volume of a forest with a Water
Cloud Model (Equation 3). The Water Cloud Model (WCM) is a rather slim formulation of the
scattering physics in a vegetated layer expressed in the form of a small number of model parameters.
The drawback is that a forest is highly idealized, thus the vegetation structure is not entirely represented
by the model. A physically based parametric model was preferred to an empirical regression and
non-parametric models because two of the objectives of this study were to understand the relationship
between remote sensing observations and in situ measurements, and how it varies in time and across
different forest landscapes.

We used the WCM rewritten to express the total backscatter as a function of stem volume, V, [32]:

σ0
f or = σ

0
gre
−βV + σ0

veg

(
1− e−βV

)
. (3)

The derivation of Equation (3) is here omitted since it has been extensively discussed [32,33]. It is
assumed that multiple scattering terms are negligible for the frequencies considered in this study.
The coefficients σ0

gr and σ0
veg represent the backscattering coefficients of the ground and vegetation

layer, respectively. The exponential in Equation (3) represents the two-way forest transmissivity.
The exponent was modeled as a linear function of stem volume [34], in which the semi-empirical
coefficient βwas assumed to combine gap and vegetation transmissivity properties [33].

For a given measurement of the SAR backscatter, stem volume was estimated with Equation (4),
representing the inverse of the WCM in Equation (3). For the inversion, the model parameters σ0

gr,
σ0

veg and β need to be estimated first.

V = −
1
β

ln

σ
0
veg − σ

0
f or

σ0
veg − σ

0
gr

. (4)

Particular care was taken in case a backscatter measurement is not within the range of σ0
gr and

σ0
veg [33]. For backscatter observations, σ0

for, smaller than the estimate of σ0
gr in case the model predicts

an increase of backscatter with increasing stem volume or larger than σ0
gr in case the model predicts a

decrease of backscatter, a stem volume of 0 m3/ha was assumed. For backscatter observations, σ0
for,
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larger than the estimate of σ0
veg in case the model predicts an increase of backscatter with increasing

stem volume or smaller than σ0
veg in case the model predicts a decrease of backscatter, a stem volume

equal to the maximum stem volume was assumed.
The availability of multiple observations of the SAR backscatter allowed for multiple estimates of

stem volume for a given sampling unit. The accuracy of the stem volume estimates then depends on
several factors such as the sensitivity of the backscatter to stem volume, the environmental conditions
at image acquisition, polarization, look angle and forest structural parameters. To improve the retrieval
accuracy, it is therefore advisable to combine the estimates from individual backscatter observations
according to some predefined rule that maximize the contribution of estimates from images with
strongest sensitivity of the backscatter to stem volume while neglecting those estimates that are virtually
characterized by random noise. Here, we extended the concept of the multi-temporal combination
presented in [6,7,33] to all datasets in the data pool of SAR observations

Vmt =

∑N
i=1 wiVi∑N

i=1 wi
. (5)

The weights wi were set equal to the inverse of the retrieval root mean square error (RMSE) of
the dataset used for training the model. The weights were furthermore reinforced with the fraction
of samples having a backscatter within the range of modeled backscatter values, ptrain and ptest [33].
This was considered to be a compact way of expressing the reliability of a dataset to retrieve stem volume

wi =
ptrain,i·ptest,i

(RMSEtrain,i)
2 . (6)

To quantify the agreement between stem volumes from the dataset of in situ measurements acting
as reference and values retrieved from the SAR data, we used the relative RMSE in Equation (7), i.e.
the retrieval root mean square error divided by the average stem volume from the dataset of the
reference measurements, and the bias in Equation (8), i.e., the difference of the averages from the sets
of estimated and reference stem volumes. M refers to the number of samples included in the dataset
used to compute the statistics

relative RMSE =

√∑M
i=1(V̂mt,i−Vre f ,i)

2

M∑M
i=1 Vre f ,i

M

, (7)

bias =

∑M
i=1 V̂mt,i

M
−

∑M
i=1 Vre f ,i

M
. (8)

5. Results

The complementarity of multiple short-wavelength datasets of the SAR backscatter in the context
of forest biomass estimation was approached by performing a signature analysis of the backscatter at a
given frequency and polarization, and through time (Section 5.1). We then investigated the properties
of the WCM for each dataset (Section 5.2) and quantified the retrieval error per dataset based on a
combination of estimates of stem volume (Section 5.3). For this, all samples available at each test site
were used, i.e., the 48 0.5 ha inventory plots in Remningstorp and the 325 0.03 ha inventory plots
in Krycklan. A separate assessment of the short-wavelength multi-frequency retrieval approach is
presented and discussed in Section 5.4, where the model is trained and tested with datasets independent
from each other.
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5.1. Signatures of Forest Backscatter as a Function of Stem Volume

At first, an analysis of the relationship between the SAR backscatter and stem volume was
undertaken for each frequency band and polarization available. The scope of this analysis was twofold:
identify patterns in multi-frequency data and cross-check patterns at the two test sites. Although
it is acknowledged that the relationship between SAR backscatter and stem volume is non-linear,
an analysis of the correlation coefficient (Pearson's) gave indication on the strength and the sign of
such relationship. In addition, the extensive multi-temporal and multi-frequency datasets allowed to
identify broad patterns in seasonal variability and polarization configuration.

In Figure 3, we illustrate the correlation coefficient for each image as a function of day-of-year
(DOY). The correlations have been grouped in terms of frequency band and polarization and presented
for each test site. Additionally, we visualize dates characterized by frozen and unfrozen environmental
conditions with blue and red symbols, respectively. Images acquired on days when the minimum
temperature was well above the freezing point, here set to 3 ◦C, were labeled as unfrozen. Images
acquired on days when temperature was close to the freezing point were allocated to the category
of frozen conditions. Using a higher threshold, did not have any impact on the conclusions
drawn for unfrozen conditions but would have created some ambiguity when interpreting the
correlation coefficients of images acquired when the minimum temperature was below such higher
threshold temperature.

In Remningstorp, the sensitivity of the SAR backscatter to stem volume was highest at X-band,
particularly at HH- and VV-polarization (Figure 3a). The correlation coefficient was mostly below −0.5
(average: −0.67) indicating a strong decreasing trend of the SAR backscatter as a function of stem
volume. The same trend was observed at cross-polarization even though it was not as marked as at
HH- and VV-polarization. Frozen conditions often seemed to be characterized by a somewhat higher
correlation (in absolute sense) between SAR backscatter and stem volume than unfrozen conditions,
in particular for cross-polarized data, as shown by the blue and red crosses in the X-band panels of
Figure 3a. At C-band, the correlation was also negative, i.e., decreasing SAR backscatter with increasing
stem volume, with values between −0.5 and −0.1. Images acquired under frozen conditions were more
sensitive to stem volume than data acquired under unfrozen conditions, as shown by the blue and red
crosses, respectively, in Figure 3a for the C-band panels. These signatures appeared to be independent
from polarization. At L-band, the correlation coefficient was high and positive, this corresponding to a
marked increase of backscatter with stem volume. Somewhat higher correlation corresponding to a
stronger sensitivity of the SAR backscatter to stem volume was observed for several acquisitions under
unfrozen conditions compared to frozen conditions (see L-band panels in Figure 3a).

In Krycklan, the sensitivity of the X-band SAR backscatter to stem volume was weak, particularly
at HH-polarization. In addition, there was no sign of a dependency of such relationship upon seasonal
conditions (see X-band panels in Figure 3b). At C-band, the correlation was mostly between 0.3 and
0.5, indicating slight increase of backscatter with stem volume. This result appeared to be independent
from polarization (see C-band panels Figure 3b). At L-band, the correlation coefficient was highest
and positive, corresponding to a marked increase of backscatter with stem volume (see L-band panels
in Figure 3b). Seasonal conditions seemed to have an effect on the relationship between L-band
backscatter and stem volume, with slightly higher correlation coefficients corresponding to stronger
sensitivity of the backscatter to stem volume for some of the images acquired under unfrozen conditions
(red crosses).
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Figure 3. Correlation coefficient of SAR backscatter and stem volume as a function of day-of-year,
(DOY) at Remningstorp for 48 inventory plots (a) and Krycklan for 325 inventory plots (b). Colors
refer to the minimum temperature on the day of image acquisition. Crosses are blue or red depending
whether the temperature was below or above 3 ◦C.
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5.2. Estimates of the WCM Parameters

Model training was undertaken by estimating the parameters σ0
gr and σ0

veg with non-linear
least squares regression. For simplicity and robustness, the β coefficient was set a priori given the
large spread of the SAR backscatter measurements as a function of stem volume (Figure 4). For
C- and L-band, values published in previous studies for the two sites were used, i.e., 0.0055 and
0.0042 ha/m3, respectively [7,27]. For X-band, we assumed the same value as for C-band because of
similar wavelengths. We did not make any distinction between frozen and unfrozen conditions since
we did not have exact information on such conditions for each date of image acquisition. Reducing the
number of degrees of freedom of the WCM from three to two was a sensible approach since the WCM
was fitted to data characterized by a typically weak correlation.
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Figure 4. Measured and modeled SAR backscatter as a function of stem volume for the 48 0.5-ha
forest plots at Remningstorp. Crosses and vertical bars represent the average and the range of SAR
backscatter values in 50 m3/ha wide intervals of stem volume. The blue curves represent the Water
Cloud Model (WCM) fitted to the observations.

Figure 4 shows panels with one example of fitted WCM that is representative for each dataset
in terms of sensor and polarization for the Remningstorp dataset. Similarly, in Figure 5, we show
examples of the fitted WCM for the datasets acquired over Krycklan. The examples correspond to
data acquired under unfrozen conditions (whenever possible) and for similar seasonal conditions
(autumn). In Remningstorp, the relationship between SAR backscatter and stem volume changed from
decreasing to increasing from X- to L-band (Figure 4). In Krycklan, instead, the backscatter always
increased with increasing stem volume (Figure 5). We interpret this result as different soil properties at
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the two sites. Remningstorp is characterized by predominantly peaty soils, these being wetter than soil
on which pines grow, as at Krycklan so that the contribution to the total backscatter from the forest
floor is enhanced. Nonetheless, the decreasing trend of the backscatter with increasing stem volume
occurred under frozen and unfrozen conditions, so that it is believed that the soil surface roughness
may have an important role in explaining the decreasing trend at Remningstorp as well.
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Figure 5. Measured and modeled SAR backscatter as a function of stem volume for the 325 0.03-ha
forest plots at Krycklan. For an explanation of symbols and curves, it is referred to the caption of
Figure 4.

At Remningstorp, X-band backscatter was more sensitive to stem volume than L-band backscatter
(Figure 4). C-band data instead showed the weakest sensitivity to stem volume (Figure 4). More
specifically, at X-band, the SAR backscatter decreased by 3–4 dB for increasing backscatter and the
sensitivity of the backscatter to stem volume was very similar at all polarizations. The decreasing trend
characterized the C-band data as well, even though the sensitivity of the backscatter to stem volume
was smaller than at X-band; the backscatter decreased by less than 1 dB for co-polarization and by
1–2 dB for cross-polarization. At L-band, the backscatter increased with stem volume regardless of
polarization; cross-polarized data showed the highest sensitivity with 3–4 dB. Taking into account that
the uncertainty with the ENL values reported in Table 3 was always below 1 dB and it further reduced
because of averaging observations within each of the 0.5 ha inventory plot, all trends reported here can
be considered to be significant.

At Krycklan, the sensitivity of the SAR backscatter to stem volume increased with increasing
wavelength (Figure 5). X- and C-band presented the weakest sensitivity to stem volume, with an
increase of less than 1 dB (Figure 5). At L-band the backscatter increased steadily with increasing
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stem volume by 3–4 dB for cross-polarized data and 2–3 dB for co-polarized data (Figure 5). Again,
the trends appeared to be significant when relating to the ENL estimated at each frequency.

It is remarked that the spread of the observations along the model was large at all frequencies;
in addition, by comparing Figure 4 (based on 0.5 ha larger plots) and Figure 5 (based on 0.03 ha large
plots), one can also appreciate that the spread was smaller when the reference dataset consisted of
stands or large plots. This is a valuable indication on how scales affect the retrieval or, from another
point of view, at which scale the retrieval of biomass from SAR data can be considered reliable.

In an attempt to identify systematic effects explaining the spread of the backscatter observations,
local incidence angle was plotted against the SAR backscatter observations, always restricting to a
narrow range of stem volumes (i.e., 50 m3/ha). This study was undertaken at Krycklan only because of
the inventory plots in Remningstorp were located on flat terrain. The correlation coefficients between
local incidence angle and SAR backscatter varied in time and were often below 0.3, thus not allowing
any conclusion whether local slope could explain the variability of backscatter in this study. It needs,
however, to be considered that the setting for undertaking such an experiment was sub-optimal.
The SAR backscatter was taken at pixel level (20 m) while the DEM used throughout SAR processing
had a spatial resolution of 50 m.

The overall behavior of the relationship between SAR backscatter and stem volume in time is
summarized in Tables 4 and 5 in the form of trend indicator, dynamic range and relative root mean
square error (RMSE). These parameters were derived after fitting Equation (3) for each frequency band
and polarization using all samples in the reference dataset as training set. The trend indicates whether
the modeled backscatter increased or decreased for increasing stem volume, i.e., σ0

gr < σ0
veg or σ0

gr >

σ0
veg. The dynamic range represents the difference σ0

veg − σ0
gr (in absolute terms) thus being a measure

of the sensitivity of the backscatter to stem volume. The relative RMSE represents the retrieval error
for estimates of stem volume using Equation (7). It is remarked that the relative RMSE in Table 4 was
computed using the same samples used for model training, thus not being a measure for the actual
retrieval error of the methods here presented. For each frequency band and polarization, we illustrate
the individual estimates of σ0

gr and σ0
veg together with measurements of temperature, precipitation

and snow depth, as well as a measure of the stem volume retrieval error for each SAR backscatter
image in the supplement.

Table 4. Multi-temporal characteristics of the relationship between SAR backscatter and stem volume
at Remningstorp for a given frequency band and polarization.

Sensor Band-Polarization Trend Backscatter vs. Stem Volume Dynamic Range Rel. RMSE

TerraSAR-X XHH Decreasing 3–4 dB ~50%

TerraSAR-X XHV Decreasing 1–4 dB (*) ≥50%

TerraSAR-X XVV Decreasing 3–4 dB ~50%

Sentinel-1 CVH Decreasing 0–2 dB (*) ~70–100%

Sentinel-1 CVV Decreasing 0–1 dB (*) ~90–110%

ALOS-2 LHH Increasing 1–2 dB (**) ~50–60%

ALOS-2 LVV Increasing 2–3 dB (**) ~50–60%

(*) larger dynamic range under frozen conditions (i.e., min temperature below 0 ◦C)
(**) larger dynamic range under unfrozen conditions (i.e., min temperature above 0 ◦C)
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Table 5. Multi-temporal characteristics of the relationship between SAR backscatter and stem volume
at Krycklan for a given frequency band and polarization.

Sensor Band-Polarization Trend backscatter vs. Stem Volume Dynamic Range Rel. RMSE

TerraSAR-X XHH Decreasing/constant <1 dB (*) ~110%

TerraSAR-X XVV Increasing 1 dB ~95%

Sentinel-1 CVH Increasing ~1 dB 80–100%

Sentinel-1 CVV Increasing ~1 dB 80–100%

ALOS-2 CHH Increasing 3 dB ~60%

ALOS-2 CHV Increasing 5 dB 50–70%

(*) larger dynamic range under steep look angles (< 20◦)
(**) larger dynamics range under unfrozen conditions (i.e., min temperature above 0◦C)

In Remningstorp, the X-band σ0
gr was always larger than σ0

veg (Table 4 and Figure S1).
The difference did not seem to be affected by seasonal or environmental conditions. The fluctuations of
σ0

gr and σ0
veg were due to different look angles (Table 1) and flight directions. For the HV-polarized

backscatter (Table 4 and Figure S2), the difference between σ0
gr and σ0

veg was smaller when the
minimum temperature was above the freezing point, i.e., after the spring thaw at the end of April.
At C-band, σ0

gr was always larger than σ0
veg under frozen conditions (i.e., when the minimum daily

temperature was below or equal to 0 ◦C) (Table 4 and Figures S3 and S4). Under unfrozen conditions,
the two model parameters were rather similar (Figures S3 and S4). As in the case of X-band, the smaller
difference was related to an increase of σ0

veg. At L-band, σ0
gr was always smaller than σ0

veg (Table 4
and Figures S5–S7). The very few observations under frozen conditions indicated weaker sensitivity of
the backscatter to stem volume. The look angles between 28◦ and 36◦ (Table 1) did not seem to have
any effect on the relationship between SAR backscatter and stem volume.

In Krycklan, images were acquired under unfrozen conditions when σ0
gr was always comparable

to or smaller than σ0
veg at X-band (Table 5 and Figure S8). The dynamic range was somewhat larger

at VV-polarization than HH-polarization (Figure S8). At C-band, σ0
veg was larger than σ0

gr both at
VV-and VH-polarization (Table 5 and Figures S9 and S10) and the sensitivity of the SAR backscatter to
stem volume remained unchanged under frozen and unfrozen conditions (Table 5). The estimates of
σ0

gr were always smaller than σ0
veg at L-band, with slightly less sensitivity of the backscatter to stem

volume under frozen conditions (Table 5 and Figures S11 and S12). The impact of look angle was
similar to what observed at Remningstorp (Table 5).

When comparing the model parameters estimates with measurements of daily precipitation,
we could not identify any systematic pattern; lack of soil moisture measurements and vegetation water
content did not allow to further investigate the impact of moisture/wetness conditions on the forest
backscatter. The presence of snow on the ground did not influence the backscatter except in the case of
wet snow conditions, occurring under mostly unfrozen conditions, in which case the dynamic range of
the backscatter was close to 0 dB.

The retrieval error was closely related to the dynamic range. Combinations of frequency band
and polarization presenting the strongest sensitivity of the SAR backscatter to stem volume were also
characterized by the smallest retrieval error (see Tables 4 and 5, and Figures S1–S12). The relative
RMSE as a function of dynamic range are illustrated in Figure 6 for each test sites and grouped in terms
of frequency band and polarization. The relationship between dynamic range and relative RMSE was
practically linear, regardless of frequency band, polarization, look angle, and environmental conditions.
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5.3. Retrieval of Stem Volume Using Single and Multiple Observations

Once stem volume had been estimated for each SAR backscatter image, different combinations of
estimates using Equation (5) were tested in order to understand the benefit of the multiple dimensions
available to this study (time, polarization and frequency band). Specifically, we investigated the
following combinations:

• Single frequency band, single polarization, multi-temporal data (MT combination),
• Single frequency band, multi-polarized and multi-temporal data (MTP combination),
• Multiple frequency bands, multi-polarization and multi-temporal data (MTPF combination).

Figures 7–10 show in situ and estimated stem volumes for each of these combinations. On top
of each panel, the relative RMSE and the estimation bias are reported. As for the results illustrated
in Tables 4 and 5 and Figures S1–S12, the test set coincided with the training set, i.e., the WCM was
trained with all samples and inverted using the same samples. Since the aim of this analysis was
to identify strengths and weaknesses of different types of combinations, we preferred maximizing
the number of samples used to train and test the method bearing in mind that the retrieval statistics
should not be interpreted as an absolute measure of the retrieval accuracy. This aspect is dealt with in
Section 5.4 when the method here proposed is trained and tested with two independent datasets.

Figures 7 and 8 show the scatter plots of in situ and retrieved stem volume at Remningstorp
in the case of MT retrievals for a given frequency band and polarization and MTP retrievals for a
given frequency band, respectively. For CHH, the number of observations was insufficient to create a
multi-temporal combination.
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Figure 7. Scatter plots of measured and retrieved stem volume at Remningstorp for a multi-temporal
combination of estimates obtained at a given frequency band and polarization.

Figures 9 and 10 show the scatter plots for MTPF combinations in the case of two and three
frequencies, respectively. The scatter plot in Figure 10 is detailed in terms of tree species to highlight
that the retrieval accuracy was influenced by tree architectures, management practices of pine, spruce
and birch forests as well as the soil type (see Section 2).
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Figure 10. Scatter plot of measured and retrieved stem volume at Remningstorp for a combination of
all estimates obtained at X-, C-, and L-band. Blue, red, and green circles refer to inventory plots with at
least 50% spruce, pine, or birch trees, respectively.

At Krycklan, the agreement between in situ and retrieved stem volumes obtained with a
multi-temporal combination of estimates for a single frequency band and polarization (MT) is shown
in Figure 11. For XHV, CHH, and LVV, the number of observations was insufficient to create a
multi-temporal combination. The combination of multiple estimates from a given frequency band is
shown in Figure 12 (MTP retrieval). The agreement between in situ and retrieved stem volume for a
combination of estimates from images acquired at two frequencies and three frequencies is shown in
Figures 13 and 14, respectively.
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Figure 11. Scatter plots of measured and retrieved stem volume at Krycklan for a multi-temporal
combination of estimates obtained at a given frequency band and polarization.
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5.4. Assessing the Multi-Frequency Retrieval of Stem Volume

The retrieval statistics reported in the previous Section suggested that an assessment of the
multi-frequency retrieval would have been of appeal only in the case of large forest plots. The XCL-bands
retrieval was, therefore, tested by sorting the 48 0.5-ha forest field inventory plots at Remningstorp for
increasing stem volume and including each sample alternately in either the training set or the test set.
Although this was not rigorously sound from a statistical point of view, it was a safe procedure to ensure
that the same distribution of stem volumes is represented in both sets. Figure 15 shows the agreement
between the in situ and the retrieved stem volumes for the test set consisting of 24 large plots.
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Figure 15. Scatter plots of measured and retrieved stem volume for 24 0.5-ha forest field inventory
plots at Remningstorp. The retrieved stem volume was obtained with a combination of all estimates
from SAR backscatter images acquired at X-, C-, and L-band.

Since the estimates of stem volume where obtained with a weighted average in which weights were
defined on the basis of the relative RMSE (Equation (6)), plotting the individual RMSEs as a function of
polarization and frequency band gave an indication of the relative importance of each image used to
obtain the results in Figure 15. Figure 16 shows that the largest weights were attributed to several
L-band HV-polarized images, followed by L-band co-polarized and X-band images. The Sentinel-1
C-band VV- and VH-polarized images contributed only marginally to the final stem volume estimates.
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shown in Figure 15. The individual relative RMSE values have been grouped in terms of frequency
band and polarization.

6. Discussion

The availability of multi-temporal and multi-polarized SAR backscatter observations for each
of the three frequency bands investigated in this study allowed for a detailed assessment of the
relationship of the SAR backscatter as a function of stem volume. The relationship between SAR
backscatter and stem volume from the two test sites indicated no optimal configuration in terms of
frequency band, polarization, and season to estimate stem volume. At Krycklan, the sensitivity of
the SAR backscatter to stem volume increased for increasing wavelength, i.e., from X- to L-band,
as shown by the increasing correlation coefficient (Figure 3b) and the relationship between the two
variables was always characterized by positive values (Figure 3b), i.e., a positive slope (Figure 5 and
Table 5). In contrast, at Remningstorp, we observed correlation coefficients between stem volume
and SAR backscatter that went from negative at X-band to positive at L-band (Figure 3a), i.e., and
functional dependency with a slope that went from negative at X-band to positive at L-band (Figure 4
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and Table 4). Our understanding of the observations was that, at X- and C-band, the relationship
between the SAR backscatter and stem volume was affected by forest structural properties as well as
additional terms that can be considered site-specific but could not be clearly identified (Figures 4 and 5).
The contribution of the backscatter from the soils was stronger at Remningstorp than at Krycklan,
as evidenced by the higher backscatter in low stem volume forest compared to high stem volume forest
(Figure 4) where it can be reasonably assumed that the proportion of backscatter from the soil under
the canopy is of minor relevance. The assumption according to which the wetter soils at Remningstorp
explain the higher backscatter could neither be confirmed or rejected because of the unavailability of
soil moisture measurements at the time of image acquisition. Interestingly, the largest dynamic range
was observed during winter-time (Table 4) when the moisture content of the soil should be lowest
because of frequent periods of frozen conditions. We may hypothesize that frozen soils allow for an
increased penetration and the backscatter originates deeper in the soil. This assumption would need to
be confirmed by measurements, which are currently being taken with a tower-based scatterometer
and in situ observations [35]. At L-band, the relationship between SAR backscatter and stem volume
seemed to be consistent among test sites and in line with previous experimental results [7]. In addition,
the information provided by VV-polarization appears to be negligible when HH- and HV-polarized
data are available (Figures 4 and 5). This behavior was frequency-specific, since at C- and X-band we
could not observe a difference in terms of sensitivity of the SAR backscatter to stem volume at HH-
and VV-polarization (Figures 4 and 5).

The RMSE values reported in Tables 4 and 5 for individual images confirm that a retrieval based on
a single observation does not perform well and advocate for a combination of estimates, regardless of
frequency band, polarization, and time of the year when the image was acquired. Nonetheless, there are
important differences in terms of retrieval error, which can be explained in terms of the dynamic range,
i.e., the sensitivity of the SAR backscatter to stem volume for a given frequency band, polarization
and set of environmental conditions (Figure 6). At both sites, the most favorable configuration to
retrieve stem volume corresponded to L-band and HV-polarization (Figure 6). Thereafter, X-band data
proved to be more suited to retrieve stem volume at Remningstorp but not at Krycklan, where also
C-band outperformed the retrieval based on X-band data (Figure 6 and Tables 4 and 5). In addition,
we observed lower relative RMSEs at Remningstorp than at Krycklan (Figure 6), which could be
explained by the larger size of the reference inventory plots.

As a consequence of the site-specific relationship between SAR backscatter and stem volume,
the accuracy of the retrieved stem volume differed at the two sites when combining multiple estimates.
At Remningstorp, the strongest agreement in the case of a multi-temporal combination was obtained
at X-band for co-polarized data, at L-band for HV-polarization and at C-band for VH-polarization
(Figure 7). The scatter plots of in situ and retrieved stem volumes presented light asymmetry caused
by the limited sensitivity of the SAR backscatter with respect to stem volume in high biomass forest.
Despite the larger number of observations available at C-band compared to X- and L-band (Table 1),
the retrieval with C-band data performed poorly, particularly at VV-polarization due to the overall weak
sensitivity of the backscatter to stem volume (see Figure 4 and Figures S3 and S4). The combination of
estimates obtained from all images acquired at a given frequency band (MTP combination) shown in
Figure 8 consolidated the results obtained with the MT combination but did not improve estimates
compared to the best single-polarization case shown in Figure 7. Because of the reasonable sensitivity
of X- and L-band backscatter to stem volume (Figure 4), any of the dual-frequency combinations
(MTPF) performed well and slightly improved the retrieval with respect to a combination of estimates
for a single frequency band (Figure 9). Combining estimates from data acquired at all three frequencies
resulted in the strongest agreement between in situ and retrieved stem volumes with a 32.8% relative
RMSE and a bias of −20.4 m3/ha (Figure 10), although C-band data were marginal to the result.
The worse performance of the retrieval for pine and broadleaved forests than spruce forests (Figure 10)
was explained by the fact that the training set was dominated by inventory plots containing spruce
forests; given the different properties of the backscatter in pine and spruce forest at Remningstorp



Remote Sens. 2019, 11, 1563 21 of 25

as discussed in Section 5, the results indicate that with a model tuned to a spruce type of forest, the
retrieval did not perform equally well in other forest types, thus suggesting that models should be
made adaptive to the forest structure to avoid biases in the retrieved stem volumes. This aspect has
been investigated more specifically in [13] where it was proven that species-specific modeling and
retrieval could improve retrieval accuracy compared to a generic model applied to all species.

Differently than at Remningstorp, the performance of the multi-temporal combination at Krycklan
improved with increasing wavelength. The scatter plots did not show remarkable differences for co-
and cross-polarized data, which is probably due to the size of the inventory plots causing a large spread
of the backscatter observations when related to stem volume. The combination of all data acquired at
one frequency (MTP) showed slight improvement with respect to the single polarization retrievals
(Figure 12). The agreement between in situ and retrieved stem volume increased for increasing
wavelength. The retrieval further improved when combining estimates of stem volume from data
acquired at two or three frequencies (MTPF) (Figures 13 and 14). The relative RMSE for the retrieval
based on X-, C- and L-band was almost twice the value obtained at Remningstorp (50.3% vs. 32.8%).
The difference shall be seen as a consequence of the much smaller size of the forest field inventory plots
(0.03 ha vs. 0.5 ha) and confirms that the retrieval of biomass with SAR backscatter performs poorly
when assessed at the level of inventory units having a size comparable to the pixel of the SAR image.

The assessment of the retrieval accuracy with a multi-frequency retrieval based on the X-, C-, and
L-band SAR backscatter datasets at Remningstorp revealed strong agreement of in situ and retrieved
stem volume throughout the range of values represented (Figure 15). The relative RMSE of 31.3% and
the bias of −17 m3/ha were strongly influenced by the plot with the highest stem volume for which
the retrieval predicted slightly less than 400 m3/ha. For this plot, the backscatter was consistently
in the range of values observed for forests with a stem volume of 300–400 m3/ha. The inventory
measurements, however, did not reveal any similarity in terms of basal area, tree density and tree
height so that the reason for such result remains unexplained. When neglecting this plot, the relative
RMSE was 25% with a negligible bias. The multi-frequency retrieval results obtained here outperform
single frequency retrievals undertaken at X-, C-, and L-band in this study (Figure 16) as well as in
previous studies when considering retrieval accuracies for similar types of reference data (Table 6).
Only at P-band and at the VHF frequency band did the retrieval perform with higher accuracy (Table 6),
as also demonstrated in [13].

Table 6. Overview of previous studies dealing with retrieval of forest stem volume and above-ground
biomass at the two test sites using SAR backscatter. Studies based on interferometric, polarimetric and
polarimetric interferometric SAR observables are not considered because off-topic.

Band Sensor Test Sites Reference Data Remarks Reference

L ALOS PALSAR Remningstorp
and Krycklan Hectare-scale stands Multi-temporal dataset

RMSE: 35% and 44%. [7]

L E-SAR Remningstorp
Sub hectare-scale stands
Laser scanning data and

10- radius inventory plots

Single-image retrieval
RMSE: 31–46% [18]

P E-SAR Remningstorp
Sub hectare-scale stands
Laser scanning data and

10- radius inventory plots

Single-image retrieval
RMSE: 18–27% [18]

P E-SAR Remningstorp
and Krycklan Hectare-scale stands

RMSE: 28–42% at Krycklan.
RMSE of 22–33% using the

backscatter model
developed at Krycklan

[19]

VHF CARABAS Remningstorp Hectare-scale stands Multiple viewing directions
RMSE: 11–25% [36]
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7. Conclusions

This study aimed at investigating the retrieval of forest stem volume in Swedish forests using
short wavelength SAR backscatter data. The relevance of this study lies in the current scenario of
observations by spaceborne sensors at X-, C-, and L-band. Thanks to the availability of multiple
observations at each frequency, it has been demonstrated that the retrieval of forest stem volume
profits from the availability of multiple observations acquired at the three frequencies. The retrieval
improved with respect to single image and multi-temporal single frequency retrievals because of the
larger array of observations available, which were optimally combined to maximize the information
content on stem volume across all frequencies. The weighted average of estimates obtained from
each of the images forming the multi-frequency dataset was key to achieving an improved estimate
with respect to the input data. Differently than stacking observations at a single frequency, where
specific systematic errors and uncertainties embedded in the signal still affect the retrieved biomass,
the combination of estimates of biomass obtained at different frequencies allows for compensating
frequency-specific nuances.

The retrieval was shown to perform better at the stand (i.e., hectare) level; a retrieval error of
approximately 25% was achieved with X-, C-, and L-band. Retrieval of biomass at plot level performed
poorer because at such scale, the link between the biomass measured in a plot and how this biomass
impacts the signal backscattered to the radar is weak. When using a multi-frequency retrieval based
on the inversion of the WCM, we achieved a retrieval accuracy of 40% at best. By selecting different
models for the inversion depending on SAR frequency, an error of about 30% was achieved with C-, L-,
and P-band.

Our results do not seem to support the common understanding that the retrieval of forest
biomass improves with increasing wavelength. The different environmental settings, forest structural
characteristics and forest management of the two sites significantly shaped the relative contribution
of different scattering mechanisms as function of increasing biomass, not allowing for a definite
conclusion on which frequencies should be preferred and what would be the minimum number
of observations required to achieve a certain accuracy. However, having available multi-temporal
observations at multiple frequencies, the combination of many observations in time and in frequency
allows for the most accurate retrieval achievable with short wavelength SAR backscatter data. This
result appears to be independent from the specific structural properties of the forest. Nevertheless,
even if in combination, short wavelength SAR backscatter observations are not able to achieve the
highest possible retrieval accuracy, as demonstrated for the same sites in the case of long wavelength
SAR systems operating at P- or VHF-band.

Looking at current and forthcoming spaceborne SAR missions, multi-frequency observations are
a reality and their number will further increase in the next decade with the launch of missions carrying
onboard radar instruments operating between X- and P-band. Given the encouraging results obtained
in this study on the complementarity of short-wavelength multi-frequency SAR data to retrieve forest
biomass, we also see a need to further investigate retrieval approaches in other forest biomes to improve
the understanding of multi-frequency SAR data towards the retrieval of forest biomass.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/13/1563/s1.
Figure S1: Estimates of σ0

gr and σ0
veg for each X-band co-polarized image over Remningstorp (left: TerraSAR-X

HH-polarization; right: TerraSAR-X VV-polarization) together with profiles of daily temperature extremes,
precipitation and snow depth. The panel at the bottom illustrates the retrieval error for the model tested with the
same samples used for the training. Figure S2: Estimates of σ0

gr and σ0
veg for each X-band HV-polarized image

over Remningstorp (TerraSAR-X) together with profiles of daily temperature extremes, precipitation and snow
depth. The panel at the bottom illustrates the retrieval error for the model tested with the same samples used
for the training. Figure S3: Estimates of σ0

gr and σ0
veg for each C-band VV-polarized image over Remningstorp

together with profiles of daily temperature extremes, precipitation and snow depth. The panel at the bottom
illustrates the retrieval error for the model tested with the same samples used for the training. Figure S4: Estimates
of σ0

gr and σ0
veg for each C-band cross-pol image over Remningstorp together with profiles of daily temperature

extremes, precipitation and snow depth. The panel at the bottom illustrates the retrieval error for the model tested
with the same samples used for the training. Figure S5: Estimates of σ0

gr and σ0
veg for each L-band HH-polarized

http://www.mdpi.com/2072-4292/11/13/1563/s1


Remote Sens. 2019, 11, 1563 23 of 25

image over Remningstorp together with profiles of daily temperature extremes, precipitation and snow depth.
The panel at the bottom illustrates the retrieval error for the model tested with the same samples used for the
training. Figure S6: Estimates of σ0

gr and σ0
veg for each L-band VV-polarized image over Remningstorp together

with profiles of daily temperature extremes, precipitation and snow depth. The panel at the bottom illustrates
the retrieval error for the model tested with the same samples used for the training. Figure S7: Estimates of σ0

gr

and σ0
veg for each L-band HV-polarized image over Remningstorp together with profiles of daily temperature

extremes, precipitation and snow depth. The panel at the bottom illustrates the retrieval error for the model tested
with the same samples used for the training. Figure S8: Estimates of σ0

gr and σ0
veg for each X-band co-polarized

image over Krycklan (left: TerraSAR-X HH-polarization; right: TerraSAR-X VV-polarization) together with profiles
of daily temperature extremes, precipitation and snow depth. The panel at the bottom illustrates the retrieval error
for the model tested with the same samples used for the training. Figure S9: Estimates of σ0

gr and σ0
veg for each

C-band VV-polarized image over Krycklan together with profiles of daily temperature extremes, precipitation and
snow depth. The panel at the bottom illustrates the retrieval error for the model tested with the same samples used
for the training. Voids in the temporal profiles represent image acquisition dates with only partial coverage of the
test site. Figure S10: Estimates of σ0

gr and σ0
veg for each C-band VH-polarized image over Krycklan together

with profiles of daily temperature extremes, precipitation and snow depth. The panel at the bottom illustrates the
retrieval error for the model tested with the same samples used for the training. Voids in the temporal profiles
represent image acquisition dates with only partial coverage of the test site. Figure S11: Estimates of σ0

gr and
σ0

veg for each L-band HH-polarized image over Krycklan together with profiles of daily temperature extremes,
precipitation and snow depth. The panel at the bottom illustrates the retrieval error for the model tested with the
same samples used for the training. Voids in the temporal profiles represent image acquisition dates with only
partial coverage of the test site. Figure S12: Estimates of σ0

gr and σ0
veg for each L-band HV-polarized image over

Krycklan (left: ALOS-1; right: ALOS-2) together with profiles of daily temperature extremes, precipitation and
snow depth. The panel at the bottom illustrates the retrieval error for the model tested with the same samples
used for the training. Voids in the temporal profiles represent image acquisition dates with only partial coverage
of the test site.
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