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Abstract: Current PM2.5 retrieval maps have many missing values, which seriously hinders their
performance in real applications. This paper presents a framework to map full-coverage daily average
PM2.5 concentrations from MODIS C6 aerosol optical depth (AOD) products and fill missing pixels
in both the AOD and PM2.5 maps. First, a two-stage inversed variance weights (IVW) algorithm
was adopted to fuse the MODIS C6 Terra and Aqua AOD products, which fills missing data in
MODIS standard AOD data and obtains a high coverage daily average. After that, using the fused
MODIS daily average AOD and ground-level PM2.5 in all grid cells, a two-stage generalized additive
model (GAM) was implemented to obtain the full-coverage PM2.5 concentrations. Experiments on
the Yangtze River Delta (YRD) in 2013–2016 were carefully designed to validate the performance
of our proposed framework. The results show that the two-stage IVW could not only improve the
spatial coverage of MODIS AOD against the original standard product by 230%, but could also keep
its data accuracy. When compared with the ground-level measurements, the two-stage GAM can
obtain accurate PM2.5 concentration estimates (R2 = 0.78, RMSE = 19.177 µg/m3, and RPE = 28.9%).
Moreover, our method performs better than the inverse distance weighted method and kriging
methods in mapping full-coverage daily PM2.5 concentrations. Therefore, the proposed framework
provides a good methodology for retrieving full-coverage daily average PM2.5 concentrations from
MODIS standard AOD products.

Keywords: full-coverage daily average PM2.5; MODIS C6 AOD; two-stage inverse variance weights;
two-stage generalized additive model

1. Introduction

The rapid growth of the extensive economy in China during last three decades brings about
many ecological and environmental problems, especially the air pollution problem [1–3]. Most of the
developed regions in China have been experiencing severe particulate matter pollution problems, e.g.,
the North China Plain (NCP) [4,5], the Yangtze River Delta region (YRD) [6,7] and the Pearl River Delta
region (PRD) [8,9]. Particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) is one of
most harmful particulate matters [10,11]. A high PM2.5 concentration in the air results in a greater
probability of lung cancer and mortality from it [12,13]. Therefore, monitoring PM2.5 concentrations is
of great importance for making effective air pollution control measures to reduce its harms.

Satellite-based remote sensing has been becoming a widely used technique to monitor the PM2.5

concentrations [14–16]. It can provide a large spatial coverage of PM2.5 concentrations over long periods,
and this distinct advantage is unavailable for ground monitoring stations. Many satellite sensors like
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MODIS, MISR, SeaWiFS, AVHRR and OMI collect the aerosol information in the atmosphere including
aerosol scattering and absorption [17]. Particularly, the higher spatial and temporal resolutions, larger
imaging width and shorter revisiting cycle of MODIS make it the most widely used data source [18–20],
and therefore we focus on MODIS in this study. The most recent version of MODIS C6 aerosol optical
death (AOD) products include the dark blue (DB) and dark target (DT) versions retrieved from both
Terra (10:30 a.m. in local time) and Aqua (1:30 p.m. in local time) satellites [21–23]. The AOD is
a measure of columnar light extinction by aerosol scattering and absorption. The MODIS satellite
estimates large-scale coverage of PM2.5 concentrations via the retrieval model between ground PM2.5

and the satellite-based AOD [15,24].
Many retrieval modes have been proposed to estimate PM2.5 concentrations from MODIS AOD,

and they can be roughly classified into three types [25]: (1) the scaling factor models [26,27], the
semi-empirical physical analysis models [15,28], and the empirical statistical models [29]. The earliest
are the scaling factor models, which determine the sale factor between MODIS AOD and ground PM2.5

concentrations to estimate spatial distributions of PM2.5. These models can be applied in atmospheric
regions without ground PM2.5 monitoring sites, but they always bring about low accuracy and are
particularly unsuitable for estimating short-term average PM2.5 concentrations (e.g., daily average,
monthly average and even seasonal average) [29]. After that, the semi-empirical physical models were
presented to improve the accuracy of PM2.5 and they have been shown to behave better than the scale
factor models. They investigate physical relationships between MODIS AOD and ground PM2.5 and
adopt physical parameters (e.g., humidity, particle size and vertical profile characteristics of AOD)
to formulate retrieval functions [30,31]. Unfortunately, the involved physical parameters could not
fully explain the complicated relationships between MODIS AOD and ground PM2.5. Meanwhile,
the difficulty in obtaining some key parameters severely limits their application performance [32].
In contrast, empirical statistical models also involve physical parameters and could generate more
accurate distribution retrievals of PM2.5 concentrations than the above two kinds of models [33].
In particular, the advanced statistical models could well delineate spatial–temporal variations in
the relations between MODIS AOD and ground PM2.5 measurements. Typical examples are the
geographical weighted regression model (GWR) [34,35], the linear mixed effects (LME) [36] and the
geographically and temporarily weighted regression model (GTWR) [37].

Numerous achievements have been made based on advanced statistical models to monitor
large-scale spatial distribution of PM2.5 concentrations, and much supporting data can be found in
the literature, e.g., Liu [17,38], Ma [16,36], Van [39,40], Kloog [41,42]. However, obtaining accurate
PM2.5 concentrations with full coverage is still challenging [16,43,44], because of data incompleteness
of MODIS AOD and drawbacks of statistical models. On the one hand, the cloud contamination
and the characteristics of AOD inversion algorithms result in missing data in the MODIS AOD
product [45]. This reduces the number of AOD samples available for PM2.5 retrieval modeling and
leads to bias and incompleteness of estimated PM2.5 concentrations in spatial distributions. On the
other hand, the PM2.5 estimates from empirical statistical models depend on the correlations between
ground PM2.5 and MODIS AOD. These models could not offer spatially distributed PM2.5 estimates
without ground PM2.5 observations. Fortunately, some researchers have tried to fill missing MODIS
AOD data and estimate full-coverage daily PM2.5 concentrations [46]. Bi et al. [47] examined the
impacts of snow and cloud cover on AOD and PM2.5 and made full coverage PM2.5 predictions by
considering the relationship of snow–AOD. Daily gap filling models with snow/cloud fractions and
meteorological covariates were developed to estimate the missing AOD, using the random forest
algorithm. Hu et al. [48] adopted the fixed rank smoothing to fill the data gaps in 3 km AOD data, and
proposed a spatiotemporal regression kriging (STRK) model to obtain accurate daily PM2.5 estimations
with full-coverage. Zhao [49] and Vu [50] used the random forest model to estimate the corresponding
full-coverage AOD data. Xue et al. [51] developed a machine learning model with high dimensional
expansion of numerous predictors and incorporated a generalized additive model into the model
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to obtain a full-coverage PM2.5 estimation. However, many of the above works have some specific
prerequisites, which might limit their performances in realistic applications.

The YRD region is one of the fast-growing economic areas in China and has been experiencing
severe PM2.5 pollution. Ma presented a nested linear mixed effects (LME) model to estimate the high
resolution PM2.5 concentrations in the YRD of China from 3 km MODIS AOD [36]. The LME model
has been proven to successfully describe the nested month-, week-, and day-specific random effects of
PM2.5–AOD relationships. Unfortunately, the LME model does not handle the problem of missing
AOD values and cannot obtain full-coverage of PM2.5 concentrations in the YRD. Later, Xiao proposed
a multiple imputation (IM) method to fill missing AOD values and predicted the full-coverage PM2.5

concentrations in the YRD from 2013 to 2014 [52]. The IM combines the multiangle implementation of
atmospheric correlation (MAIAC) AOD with community multiscale air quality (CMAQ) simulations
to fill missing AOD values, and it implements a two-stage statistical model to estimate the daily
ground PM2.5 concentrations. The specific MAIAC AOD product and the complicated CMAQ model
limit the applicability of the IM method. In this paper, we would like to propose an innovative
framework to retrieve full-coverage daily average PM2.5 concentrations from MODIS C6 AOD data
in the YRD for 2013–2016. Our idea is to fill partial missing MODIS AOD values and then predict
the full-coverage PM2.5 concentrations. Both the MODIS C6 AOD data and the idea of the proposed
framework are different from above studies. More specifically, our framework is formulated on the
statistical relationships between PM2.5 concentrations and MODIS AOD, and it is much easier to
implement than others. The spatial–temporal correlations between MODIS DB and DT AOD data from
Terra and Aqua satellites provide a high probability of accurately estimating the missing AOD values
in the standard product. Therefore, a two-stage version of the inverse variance weights (IVW) [53]
algorithm is presented to iteratively fuse the MODIS DB and DT AOD from the Terra and Aqua
satellites. By considering the divergent weights of different MODIS AOD data in the fusion procedure,
the first-stage IVW fuses the DB and DT AOD data from the Terra and Aqua satellites, respectively.
The second IVW performs a further fusion of the filled Terra and Aqua data to continue improving
the spatial coverage of MODIS AOD data. After that, using the fused daily average MODIS AOD
data, a two-stage generalized additive model (GAM) is implemented to obtain the full-coverage PM2.5

concentrations. The GAM model considers complicated nonlinear relations between ground-level
PM2.5 and AOD and other explanatory variables (e.g., meteorological and geographic factors), and can
automatically select smooth functions to fit explanatory variables and formulate the proper retrieval
model [54]. The first-stage GAM investigates the temporal variations of ground PM2.5 and predicts the
PM2.5 concentrations from the fused MODIS AOD, and the second-stage GAM adopts more spatial
smooth factors to retrieve PM2.5 concentrations for the pixels without the corresponding MODIS AOD.

The rest of our paper is arranged as follows. Section 2 describes the study area and the data used
in the study. Section 3 presents the main methodology. Section 4 presents the experiments on the YRD
region over four years, i.e., 2013–2016. Section 5 discusses the experimental results and Section 6 draws
the conclusions.

2. Study Area and Data

2.1. Ground-Level PM2.5 Observations

Our study area is located in the YRD region of China, including Shanghai city, Zhejiang, Jiangsu,
and Anhui provinces. The YRD region covers an area of 350,600 km2, taking 3.63% of the total area of
China [1,2]. It belongs to a typical monsoon climate, having warm and humid weather in summer and
cold and dry weather in winter. Ground-level hourly PM2.5 concentration observations from 2013–2016
were downloaded from the China air quality real-time release system of the Chinese Ministry of
Environmental Protection (available at http://106.37.208.233:20035). The PM2.5 concentrations were
measured by tapered element oscillating microbalances (TEOM) or the beta attenuation method (BAM
or β-gauge). The data has an uncertainty less than 0.75%, with its accuracy reaching up to ±1.5 µg/m3
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for the hourly average, and hence it is accurate enough as ground truth for PM2.5 concentration
measurements. Figure 1 illustrates the 245 ground monitoring stations of PM2.5 in the YRD in 2016.

2.2. MODIS C6 and AERONET AOD Data

The latest MODIS AOD product version Collection 6 is constructed from the MODIS imagery
using both the enhanced DB and DT algorithm, and the AOD product is adaptable for both dark and
bright surfaces. In this study we utilized the MODIS C6 DB/DT AOD products from Level 2 and the
Atmosphere Archive & Distribution System of NASA, and the DB/DT AOD products have two versions
of MOD04 (Terra) and MYD04 (Aqua) [55] (available at https://ladweb.nascom.nasa.gov/search/).
Considering the data quality of the MODIS C6 AOD product, the data with flags from 1 to 3 were used,
and the data with flag = 0 were discarded.

The ground AERONET AOD data was used to validate the accuracy of retrieved AOD from
MODIS satellite imagery [56]. The AERONET collaboration network provides globally distributed
observation of AOD (available at https://AERONET.gsfc.nasa.gov/), and the AERONET data has three
data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and level 2.0 (cloud-screened and
quality-assured). Six AERONET sites exist in the YRD region as shown in Figure 1, i.e., Xuzhou_CUMT,
SONET_Zhoushan, SONET_Nanjing, SONET_Shanghai, SONET_Hefei and Taihu. The 440 nm and
675 nm AERONET AOD with level 1.5 in 2013–2016 was used in the study because of its larger coverage
and relatively better data quality in the YRD.
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Figure 1. Study area and distribution of ground-level PM2.5 and AERONET monitoring sites.

2.3. Meteorological Data

Eight meteorological factors were used to help retrieve the PM2.5 concentrations, including
planetary boundary layer height (PBLH), precipitation (PRECTOT), wind speed (WS), air pressure
(PS), temperature at 2m above the ground (T2M), wind speed and direction at 10 m above the ground
(U10M, V10M), cloud fraction (CLOUD), and relative humidity (RH). The majority of particle mass
loading resides in the lower troposphere, and the particle mass distribution below the planetary
boundary layer tends to be more homogeneous due to the active mixing. The PM2.5 is usually well
mixed in the planetary boundary layer, and accordingly the PM2.5 is large for a small mixed layer
height corresponding to the same AOD [57]. The precipitation in wet seasons increases soil moisture
and suppresses wind-induced PM2.5 emissions from the ground. The relative humidity affects the
AOD–PM2.5 through changing the optical properties of the aerosols. An increase in humidity reflects
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an updraft of boundary layer air masses to the 3 km level, leading to a higher level of air pollution.
High surface temperature or high air pressure accelerates the atmospheric vertical motion to transport
ground pollutants into higher places. Wind speed is an effective index of quantifying surface motions
of air flow because it affects the horizontal transport of ground pollutants. When the wind speed is
greater than zero, wind direction is another factor to revise the weights calculated by distances.

Daily meteorological data from 2013–2016 was MERRA (The Modern Era Retrospective-analysis
for Research and Applications) assimilation data, which were obtained from the Goddard Earth
Sciences Data and Information Services Center (https://gmao.gsfc.nasa.gov/GMAOproducts/).

2.4. Geographic Data

Several widely used geographic data were also manually selected to retrieve the PM2.5

concentrations, including population density (Pop), road coverage (Road) and forest coverage (Fore).
The increasing population density, building coverage and road coverage correlate closely with the PM2.5

emissions in China that result from rapid urbanization in the YRD region. The reason for selecting
forest coverage is that the forest ecosystems can block and capture PM2.5 from the air. In particular,
forests with luxuriant foliage are most effective in removing PM2.5 from the air.

The population density data were obtained from the China Global Change Science Research
Data Publishing & Repository (available at http://geodoi.ac.cn/WebCn/doi.aspx?Id=131), which is 1 m
grid cell data cropped from the Chinese Gregorian Grid Population Distribution Data Set. Forest
coverage and building coverage data were extracted from the 300 m global land cover product
Glob Cover 2009, and the grid data were made by the European Space Agency (ESA) (available at
http://due.esrin.esa.int/page_globcover.php). Road coverage is estimated from the vector data of roads
of the YRD region, which was obtained from the National Geomatics Center of China (available at
http://ngcc.cn/).

2.5. Data Pre-Processing and Integration

Table 1 summarizes the data used in our study. The ground-level PM2.5 data, AOD data,
meteorological and geographic data have different formats, sources and spatio-temporal resolutions.
and some preprocessing works are required to unify all the datasets into the same spatial and temporal
frameworks. All the above datasets were transformed into the WGS84 geographic coordinate system,
and the YRD region was digitized into grid cells with a fixed grid size of 1 degree. The passing times
of MODIS Terra and Aqua satellites are around 10:30 and 14:00 in the local time of the YRD region,
which is almost the same as Beijing time. Accordingly, the 3-h meteorological data in Beijing time
10:00–15:00 was averaged and then resampled into grid cells of 1 degree. The population density rate
was estimated by the total population in the area of each grid cell, and we adopted a similar method to
obtain the road coverage rate and forest coverage rate in all grid cells.

The AERONET AOD does not have the same band of 550 nm as the MODIS AOD, and the
Angstrom algorithm was employed to interpolate the AERONET AOD data at 550 nm from those of
both 440 nm and 576 nm. After that, a spatial buffer of 10 km around all six AERONET sites was created,
and the average of MODIS AOD within each buffer was registered into the nearest AERONET AOD
site. The median AERONET AOD in Beijing time 10:00–15:00 was chosen as the ground truth of its
corresponding MODIS AOD. Finally, using overlay analysis, the averages of MODIS AOD, AERONET
AOD and ground PM2.5 within each grid cell were assigned as corresponding values of its grid cell.

Previous studies show that some outliers negatively affect the accuracy and robustness of PM2.5

retrieval modelling [49–51,58]. Therefore, in our study, we excluded PM2.5 and AOD data in three
conditions: (1) the AOD < 2.5; (2) the AOD > 0.5 and PM2.5 < 10 µg/m3; and (3) the PM2.5 < 3 µg/m3.
Conditions (1) and (2) were to eliminate the effects from cloud contamination, and condition (3) was to
exclude the ineffective and small PM2.5 from modelling. Moreover, the daily threshold of 30 records was
manually chosen to guarantee a sufficient number of validated daily records of AOD and ground-level

https://gmao.gsfc.nasa.gov/GMAOproducts/
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PM2.5 concentrations. The reason for that is a very small number of daily records could not reflect the
real spatial coverage of PM2.5 concentrations on the same day.

Table 1. The list of data in our study.

Type Data Units Time Frequency Spatial Parameters

Ground-level
PM2.5

PM2.5 µg/m3 Hourly 245 stations

AOD Data
MODIS AOD DB/DT N/A Hourly 10 km

AERONET AOD N/A Hourly 6 stations

Meteorological
Data

Planetary boundary layer
height (PBLH) m Hourly 2/3 Lon*1/2 Lat

Total surface precipitation
flux (PRECTOT) kg·m−2

·s−1 Hourly 2/3 Lon*1/2 Lat

Wind speed (WS) m·s−1 Hourly 2/3 Lon*1/2 Lat

Time averaged surface
pressure (PS) Pa Hourly 2/3 Lon*1/2 Lat

Temperature at 2 m above
the displacement height

(T2M)
K Hourly 2/3 Lon*1/2 Lat

Eastward wind at 10 m
above displacement height

(U10M)
m s−1 Hourly 2/3 Lon*1/2 Lat

Northward wind at 10 m
above the displacement

height (V10M)
m·s−1 Hourly 2/3 Lon*1/2 Lat

Relative humidity (RH) % 3-hourly 2/3 Lon*1/2 Lat,
Level = 72

Cloud fraction (CLOUND) % 3-hourly 2/3 Lon*1/2 Lat,
Level = 72

Geographic Data

Population(pop) count year 1 km

Forest coverage(fore) % - 300 m

Building coverage(build) % - 300 m

road coverage(road) % - -

3. Methodology

Our methodology included two main steps: (1) fusing MODIS C6 Terra and Aqua AOD using
the two-stage IVW algorithm; (2) retrieving PM2.5 with the fused MODIS daily average AOD and
two-stage GAM model. Figure 2 illustrates the flowchart of our methodology. The first step was to fill
missing data in MODIS standard AOD and obtain high coverage daily average MODIS AOD; and
the second step was to obtain full coverage PM2.5 concentrations using the interpolated daily average
MODIS AOD and two-stage GAM.

3.1. Fusing MODIS Terra and Aqua AOD via Two-Stage IVW

The original MODIS C6 AOD product has many missing pixels due to cloud contamination and
other factors, which severely impacts the daily PM2.5 retrievals and its further application. Fortunately,
the MODIS Terra and Aqua satellites have the same revisiting period, same bands and a small difference
in the passing time. Meanwhile, the DT AOD is made for a dark surface, and the second generation
of DB AOD is created for both dark and bright surfaces. These produce strong spatial–temporal
correlations between DB and DT AOD from two satellites in the same area, and provide a high
probability of making spatial complementarity. On the other hand, the different data quality of AOD
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will greatly affect the fusion result, and accordingly the weights of AOD data accuracy should be
incorporated into the procedure. Accordingly, we propose the two-stage IVW to fuse the four AOD
products (Terra DB, Terra DT, Aqua DB and Aqua DT) and improve the spatial coverage of daily
MODIS AOD product. The Two-stage IVW includes the following three steps.

(1) The DB and DT AOD products of Terra and Aqua with different QA (i.e., 1, 2, and 3) were
evaluated by comparing them with the AERONET AOD. The data evaluation is to guarantee the
proper input for the next step of fusion. In the procedure, several popular accuracy indicators are
utilized, i.e., root mean square (RMSE), coefficient of determination (R2), relative percentage error
(RPE) and expected error (EE). The EE is a deviation interval between MODIS C6 and AERONET AOD,
and the interval in this study is manually set as 0.05 + 0.2 × AERONET AOD [59].
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(2) The first stage of the IVW algorithm was implemented to fuse the DB and DT AOD data for
both Terra and Aqua satellites separately. Taking the Terra satellite as an example, with over 10 pairs of
evaluated daily MODIS Terra DT and DB AOD on the same grid cells, two linear regression equations
can be separately formulated as [16]:

τDT = β1 + α1 × τDB (1)

τDB = β2 + α2 × τDT (2)

where τDB and τDT are daily Terra MODIS DB and DT AOD, respectively, β1 and β2 are intercepts
of regression functions, respectively, and α1 and α2 are slopes, respectively. For the grid cells with
DB AOD, Equation (1) is to predict and fill the missing DT AOD with the DB AOD; for the grid cells
with DT AOD, Equation (2) is to fill the missing DB AOD with the DT AOD. The two equations
are formulated using the linear correlations between DB AOD and DT AOD, but they could not
simultaneously be used to predict the AOD on the same grid cells. After that, the filled DB AOD and
DT AOD were compared with the AOD of its nearest AERONET sites. The standard variance of filled
DB AOD and DT AOD within the same season shows the degree of deviation of the data from its
expected values (i.e., AERONET AOD), and a larger variance indicates a worse data quality of the
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MODIS AOD. Accordingly, taking the variance reciprocals of MODIS DB and DT AOD as weights, the
IVW fuses MODIS DB and DT AOD as:

τc =
τDT_ f /VarDT + τDB_ f /VarDB

1/VarDT + 1/VarDB
(3)

where τc is the IVW fused Terra daily AOD from DB and DT; τDB_ f and τDT_ f are filled DB and DT
AOD using linear regressions in (1) and (2), respectively; VarDB and VarDT are the variances of DB and
DT AOD against AERONET AOD in the same season, respectively.

(3) Following Step 2, the fused AOD data of Terra and Aqua was also fused with the IVW. The two
linear regression functions between fused Terra AOD and Aqua AOD were separately formulated to
predict and fill the missing Aqua AOD and Terra AOD in the same grid cells. After that, the weights of
filled Aqua AOD and Terra AOD were computed by comparing with the nearest AERONET AOD. The
daily average MODIS AOD was finally obtained by linearly fusing the filled Aqua and Terra AOD
with the variance reciprocals as weights.

3.2. Retrieving PM2.5 from Fused MODIS AOD and Two-Stage GAM

The above fusion procedures improved the spatial coverage of daily MODIS AOD, but could not
accurately estimate all the missing AOD. The missing AOD still degrades the utility performance of
PM2.5 retrievals. The GAM could better consider nonlinear correlations between PM2.5 concentrations
and geographic and meteorological data. Therefore, we adopted the two-stage GAM model to retrieve
the PM2.5 concentrations and obtain full coverage PM2.5 data in the study area. Among all the datasets,
the PM2.5 and AOD data had missing values, and accordingly we manually divided the two datasets
in all the grid cells into four groups: (i) PM2.5 and AOD; (ii) AOD but missing PM2.5; (iii) PM2.5 but
missing AOD; and (iv) missing PM2.5 and AOD. The two-stage GAM incorporates the following
two procedures.

(1) Group (i) was used to model the first-stage GAM model and predict the PM2.5 with the AOD
in group (ii). Except the fused daily average AOD, the first-stage GAM utilizes meteorological data as
auxiliary factors to reflect the time variability of PM2.5 concentrations as:

(PM2.5GAM1)i j = µ0 + f (AOD) j + f (PBLH) j + f (RH) j + f (T2M) j + f (U10M, V10M) j + εi j (4)

where (PM2.5GAM1)i j is the predicted average PM2.5 in the grid cell j on the data i from the first-stage
GAM; µ0 is the constant term; f (PBLH) j, f (RH) j, f (T2M) j and f (U10M, V10M) j are smooth functions
of planetary boundary layer height, relative humidity, temperature at 2 m above the ground, and the
wind speed and direction at 10 m above the ground in the grid cell j, respectively; and εi j is the residual
error of grid cell j at data i.

(2) Group (i) and the predicted PM2.5 in group (ii) were integrated with geographic data to model
the second-stage GAM. In our study, the second-stage GAM adopts the smooth functions of population,
forest coverage, road coverage and spatial locations as main factors to predict the spatial variability of
PM2.5 in group (iv). The second-stage GAM model was formulated as:

(PM2.5GAM2)i j = µ1 + f (Lon, Lat) j + f (log(Fore)) j + f (log(Road)) j + f (log(Pop)) j + εi j (5)

where (PM2.5GAM2)i j is the predicted average PM2.5 in the grid cell j on the data i from the second-stage
GAM; f (Lon, Lat) j, f (log(Fore)) j, f (log(Road)) j and f (log(Pop)) j are smooth functions of spatial
locations (i.e., longitude, latitude), forest coverage rate, road coverage rate and population density
respectively; µ1 is the constant term and εi j is residual error of grid cell j at data i.
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3.3. Model Evaluation and Validation

In this study, we implemented two main schemes to evaluate the performance of both two-stage
IVW in fusing daily MODIS AOD data and two-stage GAM in retrieving PM2.5 concentrations. For the
two-stage IVW, the fused daily average MODIS AOD was compared with its nearest AERONET AOD,
and several popular indicators were used to quantify the accuracy, including RMSE, R2, and RPE.
Meanwhile, the spatial coverage rate (SCR) of fused daily average MODIS AOD was also computed
and compared with those from the first-stage IVW and the original MODIS AOD product.

The performance of two-stage GAM was evaluated from its two stages separately. For the
first-stage GAM, the ten-fold cross validation (10-fold CV) was utilized, and the adopted indicators
were scatter plots of true and predicted PM2.5, RMSE, R2 and RPE. The modelling performance of
second-stage GAM was assessed from three different aspects. The feasibility evaluation of geographic
factors in the second-stage GAM was evaluated by modelling fitting with MODIS AOD and PM2.5 data
in group (i). Meanwhile, ten-fold CV was used to evaluate the second-stage GAM on the integration
of group (i) and predicted PM2.5 in group (ii). Moreover, the PM2.5 in group (iii) was implemented
as the ground truth to compare with the predicted PM2.5 from two-stage GAM to further validate
its performance.

4. Experimental Results

4.1. Experiments on Fused Daily Average MODIS AOD

4.1.1. Accuracy Evaluation of MODIS AOD from Two-Stage IVW

Table 2 lists the R2 of MODIS standard AOD, the fused MODIS Terra and Aqua AOD from
first-stage IVW and the fused daily average MODIS AOD from second-stage IVW in the YRD in
2013–2016. The R2 was estimated by comparing the above three AOD products with those of
AERONET AOD sites. The first-stage IVW slightly lowers the accuracy of MODIS standard AOD, and
the second-stage promotes the accuracy of fused MODIS Terra and Aqua AOD. The average accuracy
of MODIS standard AOD during 2013–2016 did not change much after the two-stage IVW fusion.

Table 2. The comparison in R2 among MODIS standard AOD, fused AOD from first-stage IVW and
fused daily average MODIS AOD from two-stage IVW.

Data
R2

MODIS Standard AOD Fused MODIS AOD
from First-Stage IVW

Fused Daily Average MODIS
AOD from Two-Stage IVW

Terra 2013 0.57 0.60
0.66Aqua 2013 0.44 0.55

Terra 2014 0.74 0.60
0.64Aqua 2014 0.66 0.74

Terra 2015 0.70 0.67
0.60Aqua 2015 0.64 0.60

Terra 2016 0.64 0.56
0.68Aqua 2016 0.64 0.58

Average 0.63 0.60 0.63

4.1.2. The SCR Evaluation of MODIS AOD from Two-Stage IVW

Table 3 lists the spatial coverage rates of MODIS standard AOD, fused MODIS AOD from first-stage
IVW and fused daily average MODIS AOD from two-stage IVW during 2013–2016. The average SCR of
original MODIS standard AOD is as low as 11.88%, and the first-stage IVW greatly improves the spatial
coverage rate of original MODIS AOD product up to 29.19%. Moreover, after the second-state IVW,
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the SCR of fused daily average MODIS AOD reaches up to 39.29%, and improves about 230% against
the original MODIS AOD. Moreover, Figure 3 compares the annual coverage information of MODIS
standard AOD and fused daily average MODIS AOD from two-stage IVW. The annual coverage days
of MODIS AOD after two-stage IVW have been greatly promoted, particularly in the north region of
YRD. The promotion of coverage days in Taihu Lake and coastal areas of south YRD is not obvious,
and the explanation for that is their rain and cloudy weather easily reduce the effectiveness of MODIS
AOD data.

Table 3. Comparison in spatial coverage rate (SCR) among MODIS standard AOD, fused daily AOD
from first-stage IVW and from two-stage IVW.

Dataset
SCR

MODIS Standard AOD Fused MODIS AOD
from First-Stage IVW

Fused Daily Average MODIS
AOD from Two-Stage IVW

Terra 2013 15.95% 34.82%
45.84%Aqua 2013 15.28% 34.81%

Terra 2014 12.27% 30.61%
40.90%Aqua 2014 11.22% 29.77%

Terra 2015 10.44% 26.12%
35.17%Aqua 2015 9.45% 25.86%

Terra 2016 11.07% 26.29%
35.23%Aqua 2016 9.32% 25.27%

Average 11.88% 29.19% 39.29%
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4.2. Experiments on PM2.5 Retrieved from Two-Stage GAM

This section explores the performance of two-stage GAM in retrieving full-coverage PM2.5 in
the YRD region during 2013–2016. We used the Pearson correlation on meteorological factors (T2M,
PBLH, RH, V10M, U10M) and geographic factors (Pop, Fore, and Road) to avoid collinearity problems
among them. All the above factors showed good independent statistical behaviors and were used in
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the experiments. The geographic data were transformed into logarithmic formats to alleviate their
spatial homogeneity.

4.2.1. The Performance Verification of First-Stage GAM

Figure 4 depicts the regression results with zero intercept between our predicted PM2.5 of group
(i) against observed PM2.5 measures using the 10-fold CV scheme in 2013–2016. The first-stage GAM
showed slight overfitting throughout all the four years when compared with their model fitting results.
Fortunately, the higher R2, low RMSE and RPE proves the robustness and reliability of the model, and
therefore we suggest the predicted PM2.5 in group (ii) can be used in the second-stage GAM model.
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4.2.2. The Performance Verification of Second-Stage GAM

Combing the data in groups (i) and (ii), we further implemented the PM2.5 and fused MODIS
AOD to verify the second-stage GAM model in Equation (5). Figure 5 shows the scatter plots between
the predicted and observed PM2.5 in groups (i)+(ii), where the predicted PM2.5 of group (ii) in the
first-stage GAM was utilized as the ground truth in this model. The results show the second-stage
GAM model behaves well in model fitting and the 10-fold CV test, and no clear overfitting exists in
the model. The explanation for this is the involvement of PM2.5 in group (i) and the predicted PM2.5

in group (ii) improves the robustness of the second-stage GAM model. Meanwhile, Figure 6 shows
the scatter plots of predicted PM2.5 from second-stage GAM and the observed PM2.5 in group (iii).
The high averaged R2 = 0.78, low averaged RMSE = 19.177 µg/m3 and averaged RPE = 28.9% also
support the above observations of the second-stage GAM model.
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4.2.3. Comparison with Other Spatial Interpolation Methods

We further compared our full-coverage PM2.5 concentration results with those of two widely used
spatial interpolation methods; the inverse distance weighted method (IDW) and ordinary kriging (OK).
IDW interpolates values at unknown grid cells using weighted known neighborhood PM2.5 measures,
and the weights are inversely proportional to the distance to the target grid cells. Different from other
kriging approaches, the most commonly used OK estimates the unknow PM2.5 on certain grid cells
by using weighted linear combinations of the neighboring measures. We did not implement more
complicated methods because there are too many prerequisites in essential datasets. For example, the
multiple imputation model [52] by Xiao requires the atmospheric correction AOD with community
multiscale air quality (CMAQ) simulations, whereas the parameters of CMAQ are unavailable for our
study areas.

We then implemented the three methods on the ground observations to obtain full-coverage PM2.5

in the YRD in 2013–2016. We benchmarked the performance of all three methods using five-fold cross
validation. In detail, we randomly removed 20% of the ground stations and predicted their PM2.5

concentrations as measured at the stations. Each model was trained using 80% of the ground PM2.5

concentrations, and then tested on the remaining 20% of the observations. Table 4 lists the comparison
results of all three methods, where RMSE, RPE, R2 and mean absolute percentage error (MAPE) were
used to quantify the differences between retrieved PM2.5 concentrations and ground observations. Our
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method performed the best, achieving the largest R2 and the smallest MAPE and RPE, particularly in
the year 2013.

Table 4. Geospatial prediction models evaluation.

Years Models
Quantitative Measures

MAPE RMSE RPE R2

2013
IDW 35.510 23.210 34.46% 0.697
OK 30.578 23.256 35.47% 0.757

Ours 15.722 21.419 28.39% 0.806

2014
IDW 37.770 20.910 31.88% 0.658
OK 30.484 25.206 34.88% 0.731

Ours 20.523 23.212 31.15% 0.742

2015
IDW 37.608 18.170 32.78% 0.654
OK 36.644 22.531 40.42% 0.671

Ours 21.062 17.513 29.70% 0.778

2016
IDW 38.019 19.265 40.74% 0.673
OK 35.436 18.886 39.72% 0.707

Ours 19.097 17.416 32.70% 0.733

5. Discussion

The above three experiments comprehensively investigated the performance of our proposed
framework in the retrieval of full-coverage daily average PM2.5 during 2013–2016. The first experiment
verifies the accuracy and SCR of fused daily average MODIS AOD from two-stage IVW. Experimental
results show that the R2 of fused daily average MODIS AOD offers no clear difference from the original
MODIS standard AOD product, but the SCR (i.e., spatial coverage rate) was greatly improved by 230%
when compared with the original MODIS AOD. Therefore, the two-stage IVW could satisfy the fusing
requirements of MODIS DB and DT AOD from Terra and Aqua satellites and yield high-coverage daily
average MODIS AOD data.

The fused daily average MODIS AOD and ground PM2.5 were classified into four groups, and the
two-stage GAM were designed to retrieve the ground PM2.5 in group (ii) and (iv) to obtain full-coverage
daily average PM2.5 in the YRD region. The data in group (i) was used to model the first- stage GAM
to predict the ground PM2.5 in group (ii). The accuracy evaluation result in the first-stage GAM shows
that the predicted PM2.5 in group (i) has high R2, low RMSE and RPE and could satisfy the practical
requirements in predicting that of group (ii). The performance of second-stage GAM was evaluated by
comparing the predicted PM2.5 in groups (i) and (ii) with the observed, where the predicted PM2.5 in
group (ii) in the first-stage GAM was regarded as the observed in the second-stage GAM. Experimental
results show that the second-stage GAM model behaves well, with no clear overfitting, but a higher
accuracy makes it useful in predicting PM2.5 in group (iv). Meanwhile, the accuracy evaluation of
second-stage GAM on the data in group (iii) also supports the above observations. The two-stage
GAM model has good performance in retrieving the ground PM2.5 in groups (ii) and (iv), and the
full-coverage daily average PM2.5 can be obtained via the combination of the above results.

The third experiment compared the performance of our methods with two widely used spatial
interpolation methods IDW and OK. The observations show that all three methods could obtain
full-coverage PM2.5 concentration maps, but our retrieved results are superior to those of IDW and OK.
This verifies the advantages of combining satellite AOD and ground-observed PM2.5 concentrations
against the single data source of ground measures in mapping full-coverage PM2.5 concentrations,
which coincides with previous studies [46,52]. The IDW and OK methods highly rely on the spatial
distributions of ground stations, and the sparse or nonexistent PM2.5 measures in the YRD would
negatively affect the estimated full-coverage map. In contrast, the implemented GAM models in our
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presented framework could describe the spatial inference of PM2.5 concentrations well, and accordingly
perform better than IDW and OK.

Unfortunately, our study has some limitations. The first is regarding the data quality of MODIS
DB/DT AOD. We used the MODIS standard AOD with QA = 1, 2 and 3 in the two-stage IVW model
to ensure sufficient AOD data. The poor data quality of QA = 2 and 3 negatively affects the fusion
procedure and may make the two-stage IVW ineffective in improving the accuracy of daily average
MODIS AOD. The AOD with good quality, with QA = 1, in long series, will be implemented to
obtain daily average MODIS AOD with a higher accuracy. The second is regarding the selection
of meteorological and geographic factors in the two-stage GAM model. In our experiment, we
followed previous studies, selected the most popular factors and did not carefully analyze the specific
characteristic of the YRD region. The future work will involve more meteorological and geographic
factors. The third is that we only implemented the MODIS C6 AOD product, which might not capture
the variability of daily PM2.5 distribution on the intra-urban scale. The newly released MODIS MAIAC
AOD [60–62] with 1 km spatial resolution will be used to further investigate the performance of our
framework. The fourth is that we only compared our proposed framework with the IDW and OK.
More state-of-the-art full-coverage PM2.5 concentrations like machine learning models [49–51] will be
used to make comparisons with our method on much larger study areas, e.g., the whole of China or
the whole continent.

6. Conclusions

Satellite-based remote sensing techniques have been widely used in mapping PM2.5 concentrations
in the YRD region, particularly using the MODIS AOD product. However, current PM2.5 concentrations
retrieved from the MODIS AOD product have severe missing data, and cannot obtain a full-coverage
PM2.5 concentration map. This severely degrades its utility performance in many realistic applications.
This paper proposes an innovative framework to retrieve full-coverage daily average PM2.5 from the
MODIS C6 AOD product. The two-stage IVW algorithm was utilized to fuse MODIS DB and DT
AOD from Terra and Aqua satellites. This greatly improves the coverage rate of the MODIS AOD
product. After that, the two-stage GAM model was employed to retrieve ground PM2.5 concentrations
from the fused daily average MODIS AOD data, and the full-coverage daily PM2.5 map was finally
achieved. Using the MODIS AOD data from 2013–2016, two groups of experiments were carefully
designed in order to comprehensively testify the performances of our proposed framework in both
fusing MODIS AOD and retrieving full-coverage PM2.5. Experimental results show that the two-stage
IVW could improve spatial coverage of MODIS AOD against the original standard product by 230%,
meanwhile maintaining the data accuracy of MODIS AOD data. The average spatial coverage ratio of
daily MODIS AOD in 2013–2016 of YRD reaches up to 39.29% after the fusion operation of second-state
IVW. The annual coverage days of MODIS AOD after two-stage IVW has been clearly improved,
especially in the north of the YRD region. Moreover, the experiments on two-stage GAM show that the
first-stage GAM can predict the ground PM2.5 of group (ii) (i.e., AOD but missing PM2.5) well, with
slight overfitting throughout the years of 2013–2016. That explains the robustness and reliability of the
first-stage GAM model. Meanwhile, experimental results show that the second-stage GAM predicts
the PM2.5 concentrations in groups (iii) (PM2.5 but missing AOD) and (iv) (i.e., missing PM2.5 and
AOD) well. Furthermore, we compared our framework with two widely used spatial interpolation
methods, i.e., IDW and OK, in mapping the full-coverage daily PM2.5 concentrations. The results
show that our retrieved full-coverage PM2.5 result has higher accuracies than those of IDW and OK,
achieving the largest R2 and the smallest MAPE and RPE in the year of 2013. Therefore, our proposed
framework provides a good methodology for mapping full-coverage daily average PM2.5 from the
MODIS AOD product.
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