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Abstract: Super-resolution (SR) is significant for hyperspectral image (HSI) applications. In single-frame
HSI SR, how to reconstruct detailed image structures in high resolution (HR) HSI is challenging since
there is no auxiliary image (e.g., HR multispectral image) providing structural information. Wavelet
could capture image structures in different orientations, and emphasis on predicting high-frequency
wavelet sub-bands is helpful for recovering the detailed structures in HSI SR. In this study, we propose
a multi-scale wavelet 3D convolutional neural network (MW-3D-CNN) for HSI SR, which predicts
the wavelet coefficients of HR HSI rather than directly reconstructing the HR HSI. To exploit the
correlation in the spectral and spatial domains, the MW-3D-CNN is built with 3D convolutional
layers. An embedding subnet and a predicting subnet constitute the MW-3D-CNN, the embedding
subnet extracts deep spatial-spectral features from the low resolution (LR) HSI and represents the
LR HSI as a set of feature cubes. The feature cubes are then fed to the predicting subnet. There are
multiple output branches in the predicting subnet, each of which corresponds to one wavelet sub-band
and predicts the wavelet coefficients of HR HSI. The HR HSI can be obtained by applying inverse
wavelet transform to the predicted wavelet coefficients. In the training stage, we propose to train
the MW-3D-CNN with L1 norm loss, which is more suitable than the conventional L2 norm loss
for penalizing the errors in different wavelet sub-bands. Experiments on both simulated and real
spaceborne HSI demonstrate that the proposed algorithm is competitive with other state-of-the-art
HSI SR methods.
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1. Introduction

Hyperspectral image (HSI) is collected in contiguous bands over a certain electromagnetic
spectrum, and the spectral and spatial information in HSI is helpful for identifying and discriminating
different materials in the scene. HSI has been applied to many fields, including target detection [1],
environment monitoring [2], and land-cover classification [3]. However, the spatial resolution of HSI is
often limited due to the trade-off between the spatial and spectral resolutions. Some Earth Observation
applications, such as urban mapping [4] and fine mineral mapping [5], require high resolution (HR)
HSI. Therefore, enhancing the spatial resolution of HSI is of significance for the application of HSI.

There are several ways to enhance the spatial resolution of HSI. Some auxiliary images, e.g., panchromatic
image and multispectral image (MSI), often have higher spatial resolution [6]. Hyperspectral pan-sharpening
reconstructs HR HSI by fusing the low resolution (LR) HSI with a HR panchromatic image taken over
the same area at the same time (or a similar period). Pan-sharpening could be implemented by
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different methods, such as component substitution methods [7], multi-resolution analysis methods [8],
and variational methods [9]. As an effective model in extracting features and representing mapping
function, deep learning, particularly convolutional neural network (CNN), has attracted more and
more interest in pan-sharpening [10,11]. In [12], a pan-sharpening CNN network (PNN) was proposed
to learn the mapping between the LR MSI, HR panchromatic image and HR MSI. Combined with
residual learning, the performance of PNN could be further boosted [13]. In order to preserve detailed
structures, the pan-sharpening network could also be learned in the high-pass filtering domain rather
than image domain [14]. In [15], Yuan et al. proposed a multi-scale and multi-depth CNN (MSDCNN)
for pan-sharpening, in which multi-scale features in HSI can be exploited.

HSI-MSI fusion, which fuses the LR HSI with a HR MSI taken over the same area, is another
option to enhance HSI resolution [16]. HSI-MSI fusion methods can be classified into four categories:
unmixing based method, dictionary learning based method, variational method, and deep learning
method. HR HSI can be reconstructed with the endmembers of LR HSI and the abundance of MSI.
Utilizing this idea, several unmixing based fusion methods have been proposed. For example, in [17],
the LR HSI and the MSI were alternatively unmixed via nonnegative matrix factorization, the HR HSI
was reconstructed with the endmembers of LR HSI and the abundance of MSI. HR HSI can also be
reconstructed using a dictionary. In [18], a spatial dictionary was learned from HR MSI, and the HR HSI
was then reconstructed via joint sparse coding. In [19], a spectral dictionary was learned from LR HSI,
then it was used to reconstruct the HR HSI based on the abundance of MSI. The HSI-MSI fusion problem
could also be solved in a variational framework [20–22]. Sparsity [20], vector-total-variation [21], and
low rank [22] could be utilized as regularizers for fusion in the variational framework. CNN has also
shown its potential in HSI-MSI fusion. In [23], a CNN with two branch architecture was proposed for
HSI-MSI fusion, deep features of LR HSI and HR MSI can be extracted and fused by the two CNN
branches. In [24], the LR HSI and the MSI was fused in a deep learning model with low rank used as
prior information.

Single-frame HSI super-resolution (SR) tries to reconstruct HR HSI using only one LR HSI [25].
Compared with pan-sharpening and HSI-MSI fusion, it does not require any auxiliary data and is more
flexible. A basic single-frame HSI SR involves interpolating the LR HSI band-by-band (e.g., bicubic
interpolation). Such methods are simple and fast, but the image details in HR HSI are prone to
being blurred. In [26], a sparse representation based HSI SR method was proposed, and sparsity
and non-local similarity regularizers were exploited. In [27], in order to exploit the self-similarity
in spatial and spectral domains, a group sparse representation method was proposed for HSI SR.
HSI can be represented as a tensor, and a tensor-based HSI SR method was proposed in [28] via
non-local low-rank tensor approximation. In [29], a CNN was used to initially super-resolve the LR
HSI band-by-band, then the HR HSI was refined via collaborative matrix factorization. The authors
in [30] proposed a spectral difference convolutional network (SDCNN) to learn the mapping of spectral
differences between the LR and HR HSIs, and the SDCNN could be further integrated with a spatial
error correction model to rectify the artifacts of HR HSI [31]. 3D convolution could exploit the
spectral-spatial correlation in HSI, a 3D CNN based HSI SR method was proposed in [32], where the
mapping between the LR and HR HSIs was represented by 3D CNN.

Despite the above progress, the deep learning based single-frame HSI SR technology still faces the
challenge in reconstructing detailed structures of HR HSI due to the fact that there is no HR auxiliary
data providing structural information. In order to accurately reconstruct detailed structures in HSI
without HR auxiliary data, the information in the spectral and spatial domains of LR HSI should
be fully exploited for SR. Extracting deep spectral-spatial features from the HSI is an effective way
to exploit the information in HSI. On the other hand, in wavelet domain, global topology and local
textural information of different scales and orientations can be captured by different wavelet sub-bands.
Training a deep learning network that predicts the wavelet coefficients, particularly the high-frequency
wavelet sub-bands, would encourage the network to produce more structural details in the image SR
problem [33–36].
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In this study, we propose a single-frame HSI SR method based on multi-scale wavelet 3D CNN
(MW-3D-CNN) that predicts the wavelet package coefficients of the latent HR HSI, rather than directly
inferring the HR HSI. The network is built on 3D convolutional layers, which could extract hierarchical
features from both spectral and spatial domains of HSI. Specifically, the MW-3D-CNN consists of
two subnets, one is an embedding subnet and another one is a predicting subnet. The embedding
subnet projects the LR HSI into a feature space and represents it with deep spectral-spatial feature
cubes. The feature cubes are then fed to the predicting subnet. The predicting subnet is composed
of multiple output branches, each of which corresponds to one wavelet sub-band and predicts the
wavelet coefficients of the latent HR HSI. By applying inverse wavelet package transformation to
the predicted wavelet coefficients, the HR HSI can be obtained. It should be noted that the wavelet
coefficients have larger values in the low-frequency sub-band but smaller values in the high-frequency
sub-bands. Previous L2 norm loss will over-penalize the larger errors in the low-frequency sub-band
while neglect the smaller errors in the high-frequency sub-bands [37]. Therefore, we propose to train
the MW-3D-CNN with L1 norm loss, which is more suitable to equally penalize the errors in both low-
and high- frequency sub-bands. Furthermore, the L1 norm loss could lead to SR result with sharper
and clearer structures [38,39].

We consider four characteristics of the proposed HSI SR method:

• Unlike the previous deep learning models that reconstruct HR HSI directly [29–32], the proposed
network predicts the wavelet coefficients of the latent HR HSI, which is beneficial for reconstructing
detailed textures in HSI.

• In the predicting subnet, different branches corresponding to different wavelet sub-bands are
trained jointly in a unified network, and the inter sub-band correlation can be utilized.

• The network is built based on 3D convolutional layers, which could exploit the correlation in both
spectral and spatial domains of HSI.

• Instead of the conventional L2 norm, we propose to train the network with the L1 norm loss,
which is fit for both low- and high- frequency wavelet sub-bands.

The remainder of the paper is organized as follows. In Section 2, we introduce some related works.
In Section 3, we present the proposed HSI SR method, including the architecture and training of the
network. The experimental results are given in Section 4. In Section 5, we present some analyses and
discussion on the experiment. In Section 6, we conclude with observations specific to the potential of
our approach to single-frame HSI SR.

2. Related Works

2.1. CNN Based Single Image SR

CNN could extract features from the local neighborhood of image by convolving with trainable
kernels, which makes it easy to exploit spatial correlation in an image. CNN has become the most
popular deep learning model in many image processing tasks, particularly in image SR [40–46].

In [38], Dong et al. proposed to learn the mapping between the LR and HR images using a
CNN. The HR image can be inferred from its LR version with the trained network. Inspired by this
idea, several CNN based single image SR methods have been proposed [41–46]. In [41], a very deep
CNN for SR was proposed and trained with a residual learning strategy. Trainable parameters would
drastically increase in very deep CNN, and a recursive CNN was proposed to address this issue by
sharing the parameters of different layers in [42]. Most CNN SR methods employed the high-level
features for reconstruction and neglected the low- and mid- level features. In [43,44], the authors
proposed a residual dense network for SR, in which layers were densely connected to make full use of
the hierarchical features. To address the challenge of super-resolving an image by large factors, the
authors in [45] proposed progressive deep learning models to upscale the image gradually. Similarly, a
Laplacian Pyramid SR CNN (LapSRN) was proposed in [46], which could progressively reconstruct
the high-frequency details of different sub-bands of the latent HR image.
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2.2. Application of Wavelet in SR

Wavelet describes image structures in different orientations. Employing wavelet in image SR,
particularly the high-frequency wavelet sub-bands, is beneficial for preserving the detailed image
structures. Many wavelet based SR methods have been proposed [47–50]. In [47], the LR image was
decomposed into different wavelet sub-bands, the high-frequency sub-bands were interpolated and
then combined with the LR image to generate HR image via inverse wavelet transformation. Similarly,
the LR image was decomposed by two types of wavelets, and the high-frequency sub-bands of the two
wavelets were then combined and followed by inverse wavelet transformation [48]. In [49,50], edge
prior was utilized in the high-frequency sub-bands estimation to make the SR result sharper. Wavelet
could also be used in CNN to better infer image details and enhance the sparsity of the network.
For example, in [34,35], the mapping between the LR and HR images was learned by a CNN in wavelet
domain for single image SR. However, these SR methods were designed for a single image, therefore
applying these methods to HSI in band-by-band fashion would neglect the spectral correlation in HSI
and lead to high spectral distortion.

3. Multi-Scale Wavelet 3D CNN For HSI SR

In this study, we transform the HSI SR problem into predicting the wavelet coefficients of HSI.
In this section, we first introduce some basics on wavelet package analysis and 3D CNN, then we
propose the MW-3D-CNN for HSI SR, including the architecture and the loss function.

3.1. Wavelet Package Analysis

Wavelet package transformation (WPT) could transform an image into a serial of wavelet
coefficients sub-bands with the same size. An example of WPT with Haar wavelet function is given in
Figure 1. The one-level decomposition is shown in Figure 1b. It can be found that the low-frequency
sub-band (i.e., the top-left patch) describes the global topology. The detailed structures in vertical,
horizontal, and diagonal orientations can be captured by different high-frequency sub-bands (i.e., the rest
patches). By repeating the decomposition to each sub-band recursively, we can obtain higher-level WPT
results, such as the two-level decomposition in Figure 1c. It is noted that the decomposition is applied
to both the low- and high-frequency sub-bands, so the sub-bands of higher-level decomposition are of
the same size. The original image can be reconstructed from these sub-bands via inverse WPT.
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Figure 1. An example of wavelet package transformation (WPT) of different levels: (a) the
original image, cropped from the 100th band of Pavia University data, (b) one-level decomposition,
(c) two-level decomposition.

3.2. 3D CNN

For HSI, both spatial and spectral domains should be exploited in feature extraction. By convolving
with 3D kernels, 3D CNN could extract features from different domains of volumetric data. The activity
of the k-th feature cube in the d-th layer following formulation in [51] can be written as
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where, c means the set of feature cubes in the (d-1)-th layer connected to the k-th feature cube in the
d-th layer, $d,k,c

(u,v,w)
is the value at position (u, v, w) of the 3D kernel associated with the k-th feature

cube. The size of the 3D kernel is U ×V ×W. Fd,k
(x,y,z)

is the value at position (x, y, z) of the k-th feature

cube in the d-th layer. g(·) is a non-linear activation function such as Rectified Linear Unit (ReLU) and
Sigmoid function, etc. By convolving with different kernels, several 3D feature cubes can be extracted
in each layer of 3D CNN, as shown in Figure 2b. Pixels of spatial neighborhood and adjacent bands
are involved in 3D convolution, and the spectral-spatial correlation in HSI can be jointly exploited in
feature extraction [52,53].
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Figure 2. The illustration of (a) 2D and (b) 3D convolutional operations, feature maps and feature cubes
are generated in each layer of 2D convolutional neural network (CNN) and 3D CNN respectively.

3.3. Network Architecture of MW-3D-CNN

The correlation exists not only in the spatial and spectral domains, but also among the wavelet
package sub-bands of HSI. Considering the inter wavelet package sub-bands correlation, an embedding
subnet is designed to learn shared features for different wavelet package sub-bands. These shared
features are then fed to a predicting subnet to infer the wavelet package coefficients. Both of the
embedding and predicting subnets are built based on 3D convolutional layers, which could naturally
exploit the spectral-spatial correlation in HSI. The overall architecture of MW-3D-CNN is shown in
Figure 3.

3.3.1. Embedding Subnet

The embedding subnet projects the LR HSI into deep feature space and represents it as a set of
feature cubes that are shared by different wavelet package sub-bands. 3D convolutional layers and
non-linear activation layers are alternatively stacked in the embedding subnet. The embedding subnet
extracts feature cubes from the LR HSI X ∈ Rm×n×L, where m, n, and L are the number of rows, columns,
and spectral bands, respectively. Both spectral and spatial information of HSI can be encoded by 3D
convolution during the feature extraction, after several 3D convolutional layers, the LR HSI X could
be represented by a serial of spectral-spatial feature cubes, which are expressed as ψ(X) ∈ Rm×n×L×S,
where S is the number of feature cubes, ψ : Rm×n×L

→ Rm×n×L×S denotes the function of embedding
subnet. It is noted that zero padding is adopted in each convolutional layer to make the feature cubes
the same size with the LR HSI.

3.3.2. Predicting Subnet

The embedding subnet is followed by a predicting subnet, which infers wavelet package coefficients.
There are multiple output branches in the predicting subnet, each of which corresponds to one wavelet
package sub-band. The predicting subnet takes the feature cubes extracted by the embedding subnet
as input, each branch of the predicting subnet is trained to infer the wavelet coefficients at each
sub-band. Similar to the embedding subnet, each branch in the predicting subnet is also stacked by
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3D convolutional layers and non-linear activation layers with zero padding strategy adopted, and
the predicted wavelet coefficients have the same spatial size with the LR HSI. The desired HR HSI is
obtained by applying inverse WPT to the predicted wavelet coefficients, so the upscaling factor of SR
depends on the number of WPT levels. Specifically, suppose the number of WPT levels is l, there would
be Nw = 4l wavelet package sub-bands, and the number of output branches in the predicting subnet
is also 4l. Taking the shared feature cubes ψ(X) as input, the i-th branch ϕi predicts the i-th wavelet
package sub-band as ϕi(ψ(X)) ∈ Rm×n×L, where ϕi : Rm×n×L×S

→ Rm×n×L , i = 1, 2, . . . , Nw denotes
the function of the i-th branch. The output of MW-3D-CNN can be denoted as a set of wavelet
package coefficients:{

ϕ1(ψ(X)),ϕ2(ψ(X)), . . . ,ϕi(ψ(X)), . . . ,ϕNw(ψ(X))
}
, i = 1, 2, . . . , Nw. (2)

In the training stage, the MW-3D-CNN learns the mapping between the LR HSI and the wavelet
package coefficients of the latent HR HSI. In the testing stage, given the LR HSI, the MW-3D-CNN
would infer the wavelet package coefficients at each sub-band. Applying inverse WPT to the predicted
wavelet package coefficients, the HR HSI can be obtained:

Ŷ = φ
{
ϕ1(ψ(X)),ϕ2(ψ(X)), . . . ,ϕi(ψ(X)), . . . ,ϕNw(ψ(X))

}
, (3)

where, φ denotes inverse WPT, Ŷ ∈ R(r×m)×(r×n)×L is the estimated HR HSI, r = 2l is the upscaling
factor of SR.

Different wavelet sub-bands share the common deep layers in the embedding subnet due to
the inter wavelet sub-bands correlation. The embedding subnet learns the shared feature cubes and
the predicting subnet optimizes with respect to each wavelet package sub-band. The embedding
subnet connects different branches into a unified predicting subnet and allows them to be jointly
optimized. Specifically, the errors in each wavelet package sub-band can be jointly back-propagated to
the embedding subnet to learn the shared features, and the embedding subnet will refine different
branches in the predicting subnet. Compared with training each branch independently, such joint
training could make different branches facilitate each other and implicitly capture the correlation
among different wavelet sub-bands.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 22 

 

is also stacked by 3D convolutional layers and non-linear activation layers with zero padding strategy 
adopted, and the predicted wavelet coefficients have the same spatial size with the LR HSI. The 
desired HR HSI is obtained by applying inverse WPT to the predicted wavelet coefficients, so the 
upscaling factor of SR depends on the number of WPT levels. Specifically, suppose the number of 
WPT levels is l, there would be 4l

wN =  wavelet package sub-bands, and the number of output 
branches in the predicting subnet is also 4l . Taking the shared feature cubes ( )ψ X  as input, the i-
th branch iϕ  predicts the i-th wavelet package sub-band as ( ( )) m n L

iϕ ψ × ×∈X  , where 
:  m n L S m n L

iϕ
× × × × ×→  , 1,2,..., wi N=  denotes the function of the i-th branch. The output of MW-3D-

CNN can be denoted as a set of wavelet package coefficients: 

1 2{ ( ( )), ( ( )),..., ( ( )),..., ( ( ))} 1,2,...,
wi N wi Nϕ ψ ϕ ψ ϕ ψ ϕ ψ =X X X X , . (2) 

In the training stage, the MW-3D-CNN learns the mapping between the LR HSI and the wavelet 
package coefficients of the latent HR HSI. In the testing stage, given the LR HSI, the MW-3D-CNN 
would infer the wavelet package coefficients at each sub-band. Applying inverse WPT to the 
predicted wavelet package coefficients, the HR HSI can be obtained: 

1 2
ˆ { ( ( )), ( ( )),..., ( ( )),..., ( ( ))},

wi Nφ ϕ ψ ϕ ψ ϕ ψ ϕ ψ=Y X X X X  (3) 

where, φ  denotes inverse WPT, ( ) ( )ˆ r m r n L× × × ×∈Y   is the estimated HR HSI, 2lr =  is the upscaling 
factor of SR. 

Different wavelet sub-bands share the common deep layers in the embedding subnet due to the 
inter wavelet sub-bands correlation. The embedding subnet learns the shared feature cubes and the 
predicting subnet optimizes with respect to each wavelet package sub-band. The embedding subnet 
connects different branches into a unified predicting subnet and allows them to be jointly optimized. 
Specifically, the errors in each wavelet package sub-band can be jointly back-propagated to the 
embedding subnet to learn the shared features, and the embedding subnet will refine different 
branches in the predicting subnet. Compared with training each branch independently, such joint 
training could make different branches facilitate each other and implicitly capture the correlation 
among different wavelet sub-bands. 

 
Figure 3. The architecture of the proposed multi-scale wavelet (MW)-3D-CNN, the number and the 
size of convolutional kernels are denoted at each layer, and the embedding subnet and predicting 
subnet have three and four layers respectively. 

Our MW-3D-CNN focuses on predicting the wavelet package coefficients of HR HSI, compared 
with predicting the HR HSI directly, we consider three advantages. Firstly, wavelet coefficients 

Embedding Subnet Predicting Subnet

Sub-band 1

Sub-band 2

Sub-band

Inverse 
WPT

LR HSI

HR HSI

Output Wavelet 
Coefficients of HR HSI

3D conv+ReLU 3D conv+ ReLU

3D conv.+ReLU 3D conv.+ReLU

( )ψ X
X

Nw

1( ( ))ϕ ψ X

2 ( ( ))ϕ ψ X

( ( ))Nwϕ ψ X

32@3×3 ×3 32@3×3 ×3

16@3×3 ×3 16@3×3 ×3 1@3×3 ×3

16@3×3 ×3 16@3×3 ×3 1@3×3 ×3

16@3×3 ×3 16@3×3 ×3 1@3×3 ×3

Estimated Wavelet
Coefficients

Input

Figure 3. The architecture of the proposed multi-scale wavelet (MW)-3D-CNN, the number and the
size of convolutional kernels are denoted at each layer, and the embedding subnet and predicting
subnet have three and four layers respectively.
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Our MW-3D-CNN focuses on predicting the wavelet package coefficients of HR HSI, compared
with predicting the HR HSI directly, we consider three advantages. Firstly, wavelet coefficients
describe the detailed textural information in HSI. Training the MW-3D-CNN to predict the wavelet
coefficients is beneficial for recovering the detailed structures in HSI [33,36]. Secondly, a network
with sparse activations is easier to be trained [34,35]. Wavelet coefficients have sparsity characteristics
in the high-frequency sub-bands, and predicting wavelet coefficients promotes the sparsity of
the MW-3D-CNN and makes the training easier and the trained network more robust. Finally,
the MW-3D-CNN extracts features from the LR HSI directly. Compared with extracting features from
the interpolated LR HSI, such as in [40,41], information in larger receptive field can be exploited.

3.4. Training of MW-3D-CNN

All the convolutional kernels and bias in the embedding and predicting subnets are trained in
an end-to-end manner. L2 norm, which measures mean square error, is often used in loss function
in the conventional CNN based image SR methods. However, the output of our network is the
wavelet coefficients, which have larger values in the low-frequency sub-band and smaller values in the
high-frequency sub-bands, as shown in the histograms in Figure 4. The L2 norm loss penalizes heavily
on larger errors and is less sensitive to smaller errors [37]. On the contrary, the L1 norm loss penalizes
equally on both larger and smaller errors, and it is more suitable than the L2 norm loss for wavelet
coefficients prediction. In addition, compared with the L2 norm loss, the L1 norm loss is helpful for
recovering sharper image structures with faster convergence [38]. Therefore, we propose to train the
MW-3D-CNN with the L1 norm loss, the loss function is written as

L =
1

NNw

N∑
j=1

Nw∑
i=1

λi

∣∣∣∣∣∣∣∣Ci
j − Ĉi

j

∣∣∣∣∣∣∣∣
1
, (4)

where, Ci
j and Ĉi

j = ϕi(ψ(X j)) are the ground truth and the predicted wavelet package coefficients of
the i-th sub-band respectively, j = 1, 2, . . . , N, N is the number of training samples, i = 1, 2, . . . , Nw,
Nw = 4l is the number of sub-bands. X j is the LR HSI of the j-th training sample. λi is the weight
balancing the trade-off between different wavelet sub-bands, which is set to 1 for simplicity in the
experiment. The loss function is optimized using the adaptive moment estimation (ADAM) method
with standard back propagation. The trainable convolutional kernels and bias are updated according
to the following rule [54]:

θ(t) = θ(t−1) − α · m̃(t)/(
√

ṽ(t) + ε) (5)

where, θ(t) denotes the trainable parameters (i.e., convolutional kernels and bias) at the t-th iteration,
α is learning rate, ε is a constant to stabilize the updating, which is set to 10−6. m̃(t) and ṽ(t) are
bias-corrected first and second moment estimates respectively:

m̃(t) = m(t)/(1− β
t
1), (6)

ṽ(t) = v(t)/(1− β
t
2), (7)

m(t) = β1 ·m(t−1) + (1− β1) ·
∂L(t−1)

∂θ
, (8)

v(t) = β2 · v(t−1) + (1− β2) · (
∂L(t−1)

∂θ
)

2

, (9)

where
∂L(t−1)
∂θ is the gradient with respect to the trainable parameters θ. β1 and β2 are two exponential

decay rates for the moment estimation. In our implementation, the learning rate α is initially set to
0.001 and decreased by half for every 50 training epochs. The exponential decay rates β1 and β2 are set
to 0.9 and 0.999 respectively. The batch size is set to 64. The number of training epochs is 200.
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4. Experimental Results

In this section, we compare the MW-3D-CNN with other state-of-the-art HSI SR methods on
several simulated HSI datasets. In order to demonstrate the applicability of MW-3D-CNN, we also
validate it on real spaceborne Hyperion HSI. Since there is no reference HSI for SR assessment in real
data case, we use the no-reference HSI assessment method in [55] to evaluate the SR performance.

4.1. Experiment Setting

Three datasets were used in the experiment. The first one is the Reflective Optics System Imaging
Spectrometer (ROSIS) dataset, which contains two images taken over Pavia University and Pavia Center
with sizes of 610 × 340 and 1096 × 715, respectively. The spatial resolution is 1.3 m. After discarding
the noisy bands, there are 100 bands remained in the spectral range 430~860 nm. The second dataset
was collected by Headwall Hyperspec-VNIR-C imaging sensor over Chikusei, Japan, on July 29,
2014 [56]. The size is 2517 × 2335 with spatial resolution 2.5 m. There are 128 bands in the spectral
range of 363~1018 nm. The third dataset is 2018 IEEE GRSS Data Fusion Contest data (denoted as
“grss_dfc_2018”), which was acquired by the National Center for Airborne Laser Mapping (NCALM)
over Houston University, on February 16, 2017 [57]. The size of this data is 1202 × 4172. The spatial
resolution is 1 m. It has 48 bands in the spectral range of 380~1050 nm.

The above data was treated as original HR HSI, the LR HSI was simulated via Gaussian
down-sampling, which is a process of simulating LR HSI via applying a Gaussian filter to HR HSI and
then down-sampling it in both vertical and horizontal directions. The Gaussian down-sampling was
implemented using the “Hyperspectral and Multispectral Data Fusion Toolbox” [16]. For down-sampling
by a factor of two, the Gaussian filter was of size 2 × 2 with zero mean and standard deviation 0.8493;
for down-sampling by a factor of four, the Gaussian filter was of size 4 × 4 with zero mean and standard
deviation 1.6986. All these parameters in down-sampling are suggested in [16,17].

We cropped three sub-images with rich textures from the original HSI as testing data, and the
remainder was used as training data. About 100,000 LR-HR pairs were extracted as training samples
to train the MW-3D-CNN. Each LR HSI sample was of size 16 × 16 × 16. For training the MW-3D-CNN
by an upscaling factor of two, there were four branches in the predicting subnet, the output wavelet
coefficients in each branch were of size 16 × 16 × 16, and the corresponding HR HSI sample was of size
32 × 32 × 16. For training the MW-3D-CNN by an upscaling factor of four, there were 16 branches in the
predicting subnet, the output wavelet coefficients in each branch were also of size 16 × 16 × 16, and the
corresponding HR HSI sample was of size 64 × 64 × 16. It is noted that there was no overlapping
between the training and testing regions. The network parameters of MW-3D-CNN were set according
to network parameters in Figure 3. Haar wavelet function was used in WPT.
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4.2. Comparison with State-of-the-Art SR Methods

In this sub-section, we compare the proposed method with other state-of-the-art HSI SR methods.
Spectral-spatial group sparse representation HSI SR method (denoted as SSG) [27], and two CNN
based SR algorithms, i.e., SRCNN [40] and 3D-CNN [32], were used for comparison. As an often used
benchmark, bicubic interpolation was also compared. All the parameters of SSG, SRCNN, and 3D-CNN
followed the default setting as described in [27,40], and [32]. The training samples and training epochs
of SRCNN and 3D-CNN were the same with that of MW-3D-CNN, which guarantees the fairness
of comparison.

The SR performance was assessed using peak-signal-noise-ratio (PSNR, dB), structural similarity
index measurement (SSIM) [58], feature similarity index measurement (FSIM) [59], and spectral angle
mean (SAM). We compute the PSNR, SSIM, and FSIM indices on each band, and then calculated the
mean values over all the spectral bands.

The assessment indices of different SR methods are given in Tables 1 and 2. The scores of our
method are better than the compared methods in most cases. The 3D-CNN in [32] could extract
spectral-spatial features from HSI and jointly reconstruct different spectral bands, so it could lead to
less spectral distortion than the SRCNN, as shown in Tables 1 and 2. Both 3D-CNN and MW-3D-CNN
are in the framework of 3D CNN, and the MW-3D-CNN predicts the wavelet coefficients of the
HR HSI, rather than directly predicting the HR HSI. Focusing on the wavelet coefficients makes the
MW-3D-CNN more effective in preserving structures in HR HSI, so the results of MW-3D-CNN have
higher PSNR values. In order to test the robustness of MW-3D-CNN over larger upscaling factor,
we also implemented the SR by a factor of four and report the indices in Table 2. It can be found
that the MW-3D-CNN can also achieve competitive results in most cases by an upscaling factor of
four. In Figure 5, we plot the PSNR indices of different SR methods on each band. It is clear that the
proposed method outperforms other methods on most spectral bands.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 22 

 

CNN based SR algorithms, i.e., SRCNN [40] and 3D-CNN [32], were used for comparison. As an 
often used benchmark, bicubic interpolation was also compared. All the parameters of SSG, SRCNN, 
and 3D-CNN followed the default setting as described in [27,40], and [32]. The training samples and 
training epochs of SRCNN and 3D-CNN were the same with that of MW-3D-CNN, which guarantees 
the fairness of comparison. 

 

Figure 5. Peak-signal-noise-ratio (PSNR) indices of each bands of different hyperspectral image super-
resolution (HSI SR) methods by an upscaling factor of two, (a) on Pavia University, (b) on Chikusei (c) 
on Houston University (grss_dfc_2018). 

The SR performance was assessed using peak-signal-noise-ratio (PSNR, dB), structural similarity 
index measurement (SSIM) [58], feature similarity index measurement (FSIM) [59], and spectral angle 
mean (SAM). We compute the PSNR, SSIM, and FSIM indices on each band, and then calculated the 
mean values over all the spectral bands. 

The assessment indices of different SR methods are given in Tables 1 and 2. The scores of our 
method are better than the compared methods in most cases. The 3D-CNN in [32] could extract 
spectral-spatial features from HSI and jointly reconstruct different spectral bands, so it could lead to 
less spectral distortion than the SRCNN, as shown in Tables 1 and 2. Both 3D-CNN and MW-3D-
CNN are in the framework of 3D CNN, and the MW-3D-CNN predicts the wavelet coefficients of the 
HR HSI, rather than directly predicting the HR HSI. Focusing on the wavelet coefficients makes the 
MW-3D-CNN more effective in preserving structures in HR HSI, so the results of MW-3D-CNN have 
higher PSNR values. In order to test the robustness of MW-3D-CNN over larger upscaling factor, we 
also implemented the SR by a factor of four and report the indices in Table 2. It can be found that the 
MW-3D-CNN can also achieve competitive results in most cases by an upscaling factor of four. In 
Figure 5, we plot the PSNR indices of different SR methods on each band. It is clear that the proposed 
method outperforms other methods on most spectral bands. 

Table 1. The assessment indices of different HSI SR methods by an upscaling factor of two. 

Data Indices Bicubic SSG [27] 
SRCNN 

[40] 
3D-CNN 

[32] 
MW-3D-

CNN 

Pavia 
University 

PSNR (dB) 30.4032 31.7092 32.1961 33.1397 34.9394 
SSIM 0.8867 0.9132 0.9234 0.9398 0.9537 
FSIM 0.9191 0.9460 0.9517 0.9643 0.9754 
SAM 4.0979° 4.6845° 3.7519° 3.5470° 3.3302° 

Chikusei 

PSNR (dB) 24.7892 26.7419 26.9271 28.0397 28.4288 
SSIM 0.8596 0.9148 0.9301 0.9344 0.9396 
FSIM 0.8889 0.9313 0.9408 0.9483 0.9544 
SAM 4.2283° 3.7700° 3.0919° 2.9650° 2.9248° 

Houston 
University 

(grss_dfc_2018) 

PSNR (dB) 31.2005 32.5020 33.5990 34.9816 35.5552 
SSIM 0.9280 0.9480 0.9596 0.9669 0.9710 
FSIM 0.9878 0.9953 0.9991 0.9993 0.9997 
SAM 2.5757° 3.4858° 2.4268° 2.1029° 1.9252° 

 

(a) (b) (c)

Figure 5. Peak-signal-noise-ratio (PSNR) indices of each bands of different hyperspectral image
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(c) on Houston University (grss_dfc_2018).

Table 1. The assessment indices of different HSI SR methods by an upscaling factor of two.

Data Indices Bicubic SSG [27] SRCNN [40] 3D-CNN [32] MW-3D-CNN

Pavia
University

PSNR (dB) 30.4032 31.7092 32.1961 33.1397 34.9394
SSIM 0.8867 0.9132 0.9234 0.9398 0.9537
FSIM 0.9191 0.9460 0.9517 0.9643 0.9754
SAM 4.0979◦ 4.6845◦ 3.7519◦ 3.5470◦ 3.3302◦

Chikusei

PSNR (dB) 24.7892 26.7419 26.9271 28.0397 28.4288
SSIM 0.8596 0.9148 0.9301 0.9344 0.9396
FSIM 0.8889 0.9313 0.9408 0.9483 0.9544
SAM 4.2283◦ 3.7700◦ 3.0919◦ 2.9650◦ 2.9248◦

Houston
University

(grss_dfc_2018)

PSNR (dB) 31.2005 32.5020 33.5990 34.9816 35.5552
SSIM 0.9280 0.9480 0.9596 0.9669 0.9710
FSIM 0.9878 0.9953 0.9991 0.9993 0.9997
SAM 2.5757◦ 3.4858◦ 2.4268◦ 2.1029◦ 1.9252◦
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Table 2. The assessment indices of different HSI SR methods by an upscaling factor of four.

Data Indices Bicubic SSG [27] SRCNN [40] 3D-CNN [32] MW-3D-CNN

Pavia
University

PSNR (dB) 27.5136 27.6828 27.8132 28.7122 29.1069
SSIM 0.7187 0.7328 0.7327 0.7745 0.7928
FSIM 0.7905 0.8186 0.8058 0.8450 0.8620
SAM 6.1537◦ 7.7461◦ 5.9707◦ 5.6644◦ 5.8828◦

Chikusei

PSNR (dB) 19.8308 20.3108 21.0739 21.1284 20.6069
SSIM 0.5623 0.6280 0.6723 0.6741 0.6853
FSIM 0.7039 0.7646 0.7985 0.7979 0.7934
SAM 7.8073◦ 7.9160◦ 6.5647◦ 6.5458◦ 7.2638◦

Houston
University

(grss_dfc_2018)

PSNR (dB) 25.3139 26.0628 26.7927 27.8006 28.4968
SSIM 0.7410 0.7703 0.7971 0.8259 0.8514
FSIM 0.8988 0.9233 0.9372 0.9528 0.9653
SAM 4.6611◦ 6.9780◦ 4.2034◦ 4.0398◦ 3.6881◦

The SR results are presented in Figures 6–10. Some selected bands of the reconstructed HR HSIs
are shown in Figures 6, 8 and 10. To compare the difference of the SR methods, in Figures 7, 9 and 11,
we also give the residual maps of SR results, in which reconstruction error at each pixel can be reflected.
In Figure 6, it is clear that the result of MW-3D-CNN is closer to the reference image, and the results of
other compared methods are much brighter than the original HR image, which means that the spectral
distortion is heavier. We also display some small areas by enlarging them to highlight the details of
the SR results. In Figures 6 and 10, both SSG and SRCNN results suffer from artifacts with stripe-like
patterns. By comparing the details in Figure 10, it can be found that our MW-3D-CNN SR results are
sharper than the 3D-CNN results.

In the residual maps, it can be observed that all the SR results contain errors in the edges and details.
Compared with other methods, our MW-3D-CNN method generates less errors. For example, in
Figure 11, the error values in the MW-3D-CNN residual map are much sparser, which also demonstrates
that predicting the wavelet coefficients is helpful for recovering the edges and detailed structures in
the HR HSI.

We also present running time comparison of different SR methods in Tables 3 and 4. Most of
the SR methods could infer HR HSI quickly. In the SSG method, dictionary learning and sparse
coding is time consuming, so SSG takes the longest time to reconstruct HR HSI. The running time
of MW-3D-CNN is comparable to 3D-CNN, as both of them could super-resolve HSI within 2 s.
The running time comparison in Tables 3 and 4 indicates that our proposed method could achieve
competitive performance in both SR accuracy and running time.

Table 3. The running time of different SR methods by an upscaling factor of two.

Data Bicubic SSG [27] SRCNN [40] 3D-CNN [32] MW-3D-CNN

Pavia University 0.42 s 2.37 h 233.45 s 0.96 s 1.18 s
Chikusei 0.44 s 2.86 h 241.84 s 1.14 s 1.30 s

Houston University 0.97 s 4.33 h 402.71 s 1.76 s 1.92 s

Table 4. The running time of different SR methods by an upscaling factor of four.

Data Bicubic SSG [27] SRCNN [40] 3D-CNN [32] MW-3D-CNN

Pavia University 0.24 s 2.28 h 237.58 s 1.12 s 1.16 s
Chikusei 0.28 s 2.77 h 247.75 s 1.20 s 1.42 s

Houston University 0.49 s 4.21 h 409.54 s 1.76 s 1.87 s
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Figure 6. The SR results (band 85) of different methods by an upscaling factor of two, the testing data is
cropped from Pavia University with size 256 × 256. (a) Result of Bicubic, (b) result of spectral-spatial
group sparse representation HSI SR method (SSG) [27], (c) result of super resolution CNN (SRCNN) [40],
(d) result of 3D-CNN [32], (e) result of the proposed MW-3D-CNN, and (f) original HR image.
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Figure 7. The residual maps on Pavia University by an upscaling factor of two. (a) Bicubic result, (b) SSG
result [27], (c) SRCNN result [40], (d) 3D-CNN result [32], and (e) the proposed MW-3D-CNN result.
The residual maps are displayed by scaling to the minimum and maximum errors.
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Figure 8. The SR results (band 20) of different methods by an upscaling factor of two, the testing data
is cropped from Chikusei with size 256 × 256. (a) Result of Bicubic, (b) result of SSG [27], (c) result
of SRCNN [40], (d) result of 3D-CNN [32], (e) result of the proposed MW-3D-CNN, and (f) original
HR image.
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Figure 9. The residual maps on Chikusei by an upscaling factor of two. (a) Bicubic result, (b) SSG
result [27], (c) SRCNN result [40], (d) 3D-CNN result [32], and (e) the proposed MW-3D-CNN result.
The residual maps are displayed by scaling to the minimum and maximum errors.
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Figure 10. The SR results (band 5) of different methods by an upscaling factor of four, the testing data is
cropped from Houston University (grss_dfc_2018) with size 512 × 512. (a) Result of Bicubic, (b) result of
SSG [27], (c) result of SRCNN [40], (d) result of 3D-CNN [32], (e) result of the proposed MW-3D-CNN,
and (f) original HR image.
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result. The residual maps are displayed by scaling to the minimum and maximum errors.

4.3. Application on Real Spaceborne HSI

In this sub-section, we also apply the MW-3D-CNN to real spaceborne HSI SR to demonstrate
its applicability. Earth Observing-1 (EO-1)/Hyperion HSI was used as testing data. The spatial
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resolution of Hyperion HSI is 30 m. There are 242 spectral bands in the spectral range of 400~2500 nm.
The Hyperion HSI suffers from noise, and after removing the noisy bands and water absorption bands,
83 bands remain. The Hyperion HSI in this experiment was taken over Lafayette, LA, USA on October
2015. We cropped a sub-image with size 341 × 365 from it as the study area.

As there is no HR HSI in real application, we used the Wald protocol to train the networks [24].
The original 30 m HSI was regarded as HR HSI, and LR HSI with resolution 60 m was simulated via
down-sampling. The LR-HR HSI pairs were used to train the MW-3D-CNN that could super-resolve
HSI by a factor of two. The trained MW-3D-CNN was then applied to the 30 m Hyperion HSI, and
HR HSI with 15 m resolution could be obtained. The super-resolved Hyperion HSIs are shown in
Figure 12. In Figures 13 and 14, we show, in zoom, the results of the compared methods. The resolution
of Hyperion HSI is enhanced significantly through SR. Compared with other methods, the proposed
MW-3D-CNN generates HSI with sharper edges and clearer structures, as indicated by the area
highlighted in the dashed boxes.

Since there is no reference image for assessment, the traditional evaluation indices such as
PSNR cannot be used here. We used the no-reference HSI quality assessment method in [55], which
measures the deviation of reconstructed HSI from pristine HSI, to evaluate the super-resolved Hyperion
HSIs. The original Hyperion images were first screened for noisy bands and water absorption bands.
The remaining bands were used as training data, quality-sensitive features were extracted from the
training data and a benchmark multivariate Gaussian model was learned for the no-reference HSI
assessment. The no-reference HSI quality scores after SR are listed in Table 5. It shows that by an
upscaling factor of two where the SR image is at 15 m resolution, the proposed MW-3D-CNN performs
better than other methods with a lower score, which means that the SR result deviates less from the
pristine HSI than other SR results.
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Figure 12. False color composite (band 45, 21, 14) of different Hyperion SR results. The upscaling factor
is two, the size of the enhanced image is 682 × 780 with 15 m resolution. (a) result of Bicubic, (b) result
of SSGS [27], (c) result of SRCNN [40], (d) result of 3D-CNN [32], and (e) result of MW-3D-CNN.
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Figure 13. False color composite (band 45, 21, 14) of the enlarged area in the blue box of Figure 12.
The size of the area is 200 × 200. (a) Result of Bicubic, (b) result of SSGS [27], (c) result of SRCNN [40],
(d) result of 3D-CNN [32], and (e) result of MW-3D-CNN.
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Figure 14. False color composite (band 45, 21, 14) of the enlarged area in the yellow box of Figure 12.
The size of the area is 200 × 200. (a) Result of Bicubic, (b) result of SSGS [27], (c) result of SRCNN [40],
(d) result of 3D-CNN [32], and (e) result of MW-3D-CNN.

Table 5. The no-reference assessment scores of super-resolved 15 m Hyperion HSI.

SR Methods Bicubic SSGS [27] SRCNN [40] 3D-CNN [32] MW-3D-CNN

Scores 31.3888 28.3041 26.9271 25.6205 25.4930
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5. Analysis and Discussions

5.1. Sensitivity Analysis on Network Parameters

It is theoretically hard to estimate the optimal network parameters of a deep learning architecture.
We empirically tuned the network parameters and presented them in Figure 3. In this sub-section,
we give the sensitivity analysis of MW-3D-CNN over the network parameters. We vary one network
parameter and fix others, then observe the SR performance.

The sensitivity analysis over the size of 3D convolutional kernel is in Table 6. Proper large
convolutional kernel size is necessary for collecting spatial and spectral information for HSI SR. It is
clear that the best performance is achieved with convolutional kernel size 3 × 3 × 3. The performance
decreases when the convolutional kernel size is set to 5 × 5 × 5. More spatial and spectral information
can be exploited by larger convolutional kernel, but higher complexity of the network will be caused,
and more parameters need to be trained. This may explain why the performance drops with the
increase of kernel size.

The number of 3D convolutional kernels determines the number of feature cubes extracted by
each layer. In our MW-3D-CNN, we set 32 convolutional kernels for each layer of the embedding
subnet and 16 convolutional kernels for each layer of the predicting subnet, which leads to the best
performance in most cases, as shown in Table 7. With the increase of convolutional kernel number,
more feature cubes could be extracted, but the complexity of the network would be increased.

Usually, the deeper the network, the better the performance. With deeper architecture, the network
would have larger capacity. In Table 8, it is shown that the best performance can be obtained in most
cases when the number of convolutional layers in the embedding subnet and predicting subnet is set
to three and four.

Table 6. PNSR (dB) indices of the sensitivity analysis of MW-3D-CNN over the size of 3D convolutional
kernels. The upscaling factor is two.

Size of 3D Conv. Kernel Pavia University Chikusei Houston University

1 × 1 × 1 30.3859 23.3061 31.0492
3 × 3 × 3 34.9394 28.4288 35.5552
5 × 5 × 5 34.5399 27.9122 35.4294

Table 7. PSNR (dB) indices of the sensitivity analysis of MW-3D-CNN over the number of 3D
convolutional kernels in embedding and predicting subnets. The upscaling factor is two.

Number of 3D Conv. Kernels Pavia University Chikusei Houston University

16 (embedding subnet),
8 (predicting subnet) 34.8725 28.3497 35.6839

32 (embedding subnet),
16 (predicting subnet) 34.9394 28.4288 35.5552

64 (embedding subnet),
32 (predicting subnet) 34.8568 28.2704 35.3547

Table 8. PSNR (dB) indices of the sensitivity analysis of MW-3D-CNN over the number of 3D
convolutional layers in embedding and predicting subnets. The upscaling factor is two.

Number of 3D Conv. Layers Pavia University Chikusei Houston University

2 (embedding subnet),
3 (predicting subnet) 34.9282 28.3663 35.4573

3 (embedding subnet),
4 (predicting subnet) 34.9394 28.4288 35.5552

4 (embedding subnet),
5 (predicting subnet) 35.1095 28.3744 35.4720
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5.2. The Rationality Analysis of L1 Norm Loss

In order to verify the rationality of L1 norm loss, we trained the MW-3D-CNN using the L2 norm
loss written as

loss =
1

NNw

N∑
j=1

Nw∑
i=1

λi

∣∣∣∣∣∣∣∣Ci
j − Ĉi

j

∣∣∣∣∣∣∣∣
2
, (10)

then compared it with the one trained using the L1 norm loss in Equation (4). The comparison is
presented in Table 9. The L1 norm loss could mitigate the unbalance in penalizing low- and high-
frequency wavelet package sub-bands caused by the L2 norm loss, so the MW-3D-CNN trained with
the L1 norm loss performs better than the L2 norm loss on the testing data, as shown in Table 9.

In the training stage, the errors of the i-th wavelet package sub-band predicted by the MW-3D-CNN
can be expressed as (Ci

j − Ĉi
j), where j = 1, 2, . . . , N, N is the number of training sample. We present

the histograms of the errors after 200 training epochs in Figure 15. It is clear that the errors of different
wavelet package sub-bands have similar statistics, as most of the errors are close to zero and tend
to follow Laplacian distributions. Compared with the L2 norm, the L1 norm is more suitable for
penalizing the Laplacian-like errors, which demonstrates the rationality of the L1 norm loss as well.

Table 9. PSNR (dB) of MW-3D-CNN trained with different losses. The upscaling factor is two.

Loss Functions Pavia University Chikusei Houston University

L1 Norm Loss 34.9394 28.4288 35.5552
L2 Norm Loss 34.6417 28.3176 35.2615
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5.3. The Rationality Analysis of 3D Convolution

In this sub-section, in order to analyze the advantage of 3D convolution over 2D convolution for
HSI SR, we replaced all the 3D convolutional layers in the MW-3D-CNN with 2D convolutional layers.
In this case, it reduces to the architecture as the wavelet-SRNet method in [36]. Then we compared the
MW-3D-CNN with the wavelet-SRNet. The loss function of wavelet-SRNet was originally designed
with L2 norm in [36]. Here, we also trained the wavelet-SRNet with L1 norm as loss function, and the
corresponding results are denoted as wavelet-SRNet-L2 and wavelet-SRNet-L1. The comparison
between the MW-3D-CNN and the wavelet-SRNet is presented in Table 10.

In Table 10, it can be found that the MW-3D-CNN performs better than the wavelet-SRNet on the
three datasets. The MW-3D-CNN is based on 3D convolutional layers, which could naturally exploit
the spectral correlation and reduce the spectral distortion in HSI SR. We could also find that when the
L1 norm is used as loss function for the wavelet-SRNet, the SR performance is slightly better than the
L2 norm, which also demonstrates the effectiveness of L1 norm.
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Table 10. PSNR (dB) of MW-3D-CNN and wavelet-SRNet with upscaling factor two.

Methods Pavia University Chikusei Houston University

MW-3D-CNN 34.9394 28.4288 35.5552
Wavelet-SRNet-L2 32.2569 27.0149 34.1717
Wavelet-SRNet-L1 32.3658 27.0903 34.1537

5.4. Robustness over Wavelet Functions

In the experiment, we used Haar wavelet function in WPT. In this sub-section, we also perform
the MW-3D-CNN with other two wavelet functions, Daubechies-2 and biorthogonal wavelet functions,
to evaluate the robustness of MW-3D-CNN over the wavelet function. In Table 11, it can be found
that the SR performance with different wavelet functions is close to each other. The SR performance
changes slightly with different wavelet functions, which demonstrates the robustness of MW-3D-CNN
over the wavelet functions.

Table 11. PSNR (dB) indices of MW-3D-CNN with different wavelet functions in WPT. The upscaling
factor is two.

Wavelets Pavia University Chikusei Houston University

Haar wavelet 34.9394 28.4288 35.5552
Daubechies-2 wavelet 35.0468 28.6751 35.5202
Biorthogonal wavelet 34.9695 28.4213 35.5594

The MW-3D-CNN is implemented on Tensorflow [60], with a NVIDIA GTX 1080Ti graphic card.
It takes about 7 h and 20 h to train the MW-3D-CNN with upscaling factor two and four respectively.
In the testing stage, inferring a HR HSI only takes less than two seconds, it is fast because there is only
feed forward operation involved.

6. Conclusions

In this study, a MW-3D-CNN for HSI SR was proposed. Instead of predicting the HR HSI directly,
we predicted the wavelet package coefficients of the latent HR HSI, and then reconstructed the HR
HSI via inverse WPT. The MW-3D-CNN is constituted by an embedding subnet and a predicting
subnet, both of which are built on 3D convolutional layers. The embedding subnet projects the input
LR HSI into feature space and represents it with a set of feature cubes. These feature cubes are then
fed to the predicting subnet, which consists of several output branches. Each branch corresponds
to a wavelet package sub-band and predicts the wavelet package coefficients of each sub-band.
The HR HSI can be reconstructed via inverse WPT. The experiment results on both simulated and real
spaceborne HSI demonstrate that the proposed MW-3D-CNN could achieve competitive performance.
The MW-3D-CNN learns the knowledge from the external training data for HSI SR. HSI has its prior
information in both spectral and spatial domains, such as the structural self-similarity [26] and low
rank prior [61–63]. Exploiting these prior information helps regularize the ill-posed HSI SR problem.
How to combine such internal prior with external learned knowledge in the deep learning will need to
be examined in future work. Furthermore, integrating adversarial loss [64] in training the network is
another direction to boost the SR performance.
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