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Abstract: Multi-spectral (ms) airborne lidar data are enriched relative to traditional lidar due to the
multiple channels of intensity digital numbers (DNs), which offer the potential for active Spectral
Vegetation Indices (SVIs), enhanced classification, and change monitoring. However, in case of
SVIs, indices should be calculated from spectral reflectance values derived from intensity DNs
after calibration. In this paper, radiometric calibration of multi-spectral airborne lidar data is
presented. A novel low-cost diffuse reflectance coating was adopted for creating radiometric targets.
Comparability of spectral reflectance values derived from ms lidar data for coniferous stand (2.5% for
532 nm, 17.6% for 1064 nm, and 8.4% for 1550 nm) to available spectral libraries is shown. Active
vertical profiles of SVIs were constructed and compared to modeled results available in the literature.
The potential for a new landscape-level active 3D SVI voxel approach is demonstrated. Results of a
field experiment with complex radiometric targets for estimating losses in detected lidar signals are
described. Finally, an approach for estimating spectral reflectance values from lidar split returns is
analyzed and the results show similarity of estimated values of spectral reflectance derived from split
returns to spectral reflectance values obtained from single returns (p > 0.05 for paired test).

Keywords: multispectral lidar; radiometric calibration; intensity correction; forest canopy; active
spectral vegetation indices; NDVI; vertical vegetation SVI profiles; voxels; Teledyne Optech Titan

1. Introduction

Light Detection and Ranging (lidar) established itself as a unique high-resolution remote sensing
technology due to its 3D sampling of terrain and its ability to characterize overlying vegetation structure
from treetop to ground [1]. Lidar is primarily used to construct detailed digital elevation models
(DEMs), but the intensity channel (an index of signal reflectance) is increasingly used in a similar
fashion to black and white aerial photographs or single bands in multispectral imagery. In passive
imagery, numerous Spectral Vegetation Indices (SVIs) have been developed based on reflectance values
derived from image-based digital numbers (DNs) as quantitative indicators of vegetation phenology,
including long-term patterns of loss or growth of photosynthesizing foliage [2]. Modern multi-spectral
(ms) lidar technology allows for active vertical spectral sampling of vegetation profiles opening new
application prospects in forest inventory, habitat mapping, tree species classification, forest health
assessment, and biomass and carbon stock estimation [3–5]. However, it is well known that when the
data are collected with different sensors or sensor parameters, at different locations or at different times,
the consistency of the obtained spectral information and its derivatives is not assured [6–8]. Meanwhile,
for developing comparable models [9], classification and change detection [10], and monitoring of
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yield curves and vegetation health [7,11,12], it is necessary to normalize spectral information (intensity)
from each channel or sensor [4,13].

In recent years, a few publications have considered multi-spectral lidar for land surface
classification using traditional optical classification approaches [4,14,15], as well as the development
of active SVIs [16,17]. Within a forestry context, active SVIs, specifically active normalized difference
vegetation indices (NDVIs), have been successfully used for classification of vegetation [18]. Moreover,
a potential of measuring plant physiology, leaf moisture content, and leaf-bark separation by generating
vertical profiles of spectral indices was shown through modeling and lab experiments [19–21]. This
potential exists because spectral vegetation indices can be linked to plant pigment concentration and
leaf moisture content. However, for consistency over time and comparability with other sensors and
data sets, SVIs should be calculated with spectral reflectance derived from the lidar intensity DNs after
rigorous radiometric correction [22]. For traditional single-channel lidar (e.g., 1064 nm wavelength
systems), there is over a decade of published research into target-based radiometric calibration [23–25],
but such approaches have yet to be applied in operational ms lidar SVI derivation.

Currently, two types of data output are available: Discrete-return (DR) sensor-supplied intensity
values as an index of the peak signal amplitude, (i.e., not the time-integrated backscattered light
response); and full waveform (FWF) intensity profile samples (typically 1 ns interval) of the detected
intensity signal. However, even FWF data with additional return pulse width information cannot
directly resolve the ambiguity in intensity response between area of contact of the split return and
target spectral reflectance. This constrains the analysis and interpretation of split return intensities for
SVI derivation, as it is impossible to know a priori if the intensity of any individual return is mostly
a function of contact area or spectral reflectance. However, if the spectral reflectance value of one
out of two split returns is a priori known, then, assuming homogeneous footprint illumination, it is
theoretically possible to reconstruct both illuminated areas and calculate the unknown target spectral
reflectance using the following equations:

ρ1 = ρ0
I1

I0 − I2
(1)

A2 = A0
I2

I0
(2)

Here ρ1 is the spectral reflectance of the first point target, ρ0 is the spectral reflectance of the
known target, A0 is the illuminated area of the whole footprint at nadir, A2 is the illuminated area of the
second target at nadir; I0, I1, and I2 are, respectively, the intensity responses of the single return from
the extended target, intensity of the first return, and the intensity of the last return from the target with
the same spectral reflectance as ρ0. For volumetric returns, the above equations should include pulse
width, substituting intensity values with calculated energy from a particular target cluster. A similar
approach was utilized by [26] to introduce a new method of calculating total canopy transmittance
based only on the energy of ground returns. However, Equation (1) has never been rigorously tested in
an experiment with a target of known reflectance. If such a simple algorithm proves valid, it opens up
the potential to derive spectral reflectance values for split returns with some a priori assumptions and,
consequently, increases the number of returns available for SVI calculation or robust classification from
a particular survey.

To explore issues associated with comparability of lidar derived reflectance, ms lidar data were
collected using a Teledyne Optech Titan sensor over an area of interest (AOI) with installed radiometric
targets on 7 August 2016. This experiment addressed the following research objectives: (i) To develop
large scale radiometric calibration targets and test them during an ms lidar data acquisition campaign;
(ii) to derive spectral reflectance (or spectral pseudo-reflectance) values from calibrated ms lidar
intensity DNs and compare them to ground spectral reflectance obtained by passive hyperspectral
sensors available in public spectral libraries; (iii) to develop plot level active vertical SVI profiles of
vegetation from actual field data and compare them to modeled [20] and lab [21] results published
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in the literature; (iv) to develop voxel data structure of active 3D SVIs and demonstrate its potential
on landscape level; and (v) to set up an experiment with complex radiometric targets for assessing
feasibility of estimating spectral reflectance from split returns based on Equation (1) and explore energy
losses of lidar backscatter signal in the canopy.

2. Data and Methods

2.1. Radiometric Calibration Targets

Although there are plenty of options for lidar radiometric calibration targets described in the
literature [23,27], a new version was adopted based on a low-cost diffuse reflective coating developed
by [28]. This technique is similar to work by [29] and could be considered a low-cost operational
alternative to Spectralon® targets. In comparison to passive airborne remote sensing, airborne lidar
requires larger radiometric targets due to the relatively large footprint size (Table 1), and the associated
cost can become prohibitive in some cases. Lidar allows volumetric sampling (e.g., in the case of
vegetation) and investigation of radiometric response requires targets of custom shape, dimension
and elevation. A diffuse reflective coating allows flexibility in constructing such custom radiometric
targets. In this project, it was not possible to follow the coating recipe precisely because some of the
products are no longer available. Anatase TiO2 pigment (Kronos® 1000, Kronos Worldwide Inc., Dallas,
TX, USA) and a water-borne polyurethane binder (Varathane® Interior Diamond Finish Water-based
polyurethane) were used. Water based white latex primer (Glidden Vantage®, PPG Industries Inc.,
Pittsburgh, PA, USA) was used as the base layer and three layers of coating were put on top using
a roller. The spectral reflectance of the targets was validated in the lab using an Analytical Spectral
Devices (ASD) FieldSpec full-range spectroradiometer (ASD Inc., Boulder, CO, USA) by comparison
with a “white” Spectralon® (Labspere Inc., North Sutton, NH, USA) panel of known spectral reflectance
values (~99%).

Table 1. Titan sensor laser characteristics and footprint diameter at 600 m AGL.

Channel Wavelength Forward Tilt Divergence
(1/e)

Divergence
(1/e)2

Footprint Diameter
(1/e)2 at 600 m

C1 1550 nm 3.5◦ 0.35 mrad 0.5 mrad 30 cm
C2 1064 nm 0.0◦ 0.35 mrad 0.5 mrad 30 cm
C3 532 nm 7.0◦ 0.7 mrad 1.0 mrad 60 cm

2.2. Radiometric Calibration Target Experimental Configuration

Radiometric non-transparent targets were constructed from 8′ by 4′ plywood sheets and covered
with a diffuse white coating as described above. To analyze split-return characteristics of pulses
passing through foliage, an additional elevated partial reflector surface target was constructed with an
accurately known 50% transmittance, achieved by drilling 2.5” holes in the plywood sheet. Drilled 50%
transmittance target was mounted 2 m above non-transparent target (Figure 1b,f). One non-transparent
radiometric target was installed beneath the forest canopy, while another non-transparent target
together with the elevated 50% transmittance target was installed in a nearby clearing (Figure 1).
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(a standard size and shape for a mensuration plot in forest inventory) was established inside the 

stand with 58 LP trees of average stem height 20.9 m and average DBH (Diameter at Breast Height) 

of 21 cm. The plot displayed no developed understory and a uniform upper canopy (Figures 1c,d); 

the ground surface was flat. Three additional virtual plots were chosen in random locations within 

the LP stand for further comparison (Figure 2b). 

Figure 1. Photos of the radiometric calibration targets (made from 8′ by 4′ plywood). Photos (a),
(b,c) are an open target, lifted target, and below-canopy target, respectively. Photos (d,f) illustrate
corresponding transparency of the Lodgepole Pine foliage above the target and transparency of the
lifted target.

2.3. Study Area and Lidar Data Collection

The study was conducted in Cypress Hills Interprovincial Park (SK, Canada), 75 km north of the
US border (Figure 2a). The Cypress Hills is a unique geological formation which rises on average 600 m
above the surrounding plains [30]. There are four species of trees in the Cypress Hills, two of which
are coniferous. The lodgepole pine (Pinus contorta), which is typically found in the Rocky Mountains.
The second coniferous species is white spruce (Picea glauca). There are two main deciduous tree species
in the Cypress Hills, trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera).
Almost 70% of the AOI (Figure 2b) is covered with mature lodgepole pine (LP) forest. A stand of
uniform LP cover was selected for further analysis (Figure 2b). One circle plot of 11.3 m radii (a standard
size and shape for a mensuration plot in forest inventory) was established inside the stand with 58 LP
trees of average stem height 20.9 m and average DBH (Diameter at Breast Height) of 21 cm. The plot
displayed no developed understory and a uniform upper canopy (Figure 1c,d); the ground surface was
flat. Three additional virtual plots were chosen in random locations within the LP stand for further
comparison (Figure 2b).
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Figure 2. (a) Map of Canada with highlighted Province of Saskatchewan and indicated Cypress Hills
Interprovincial Park. (b) Area of interest (AOI) inside Cypress Hills Interprovincial Park colorized by
RGB passive imagery. The lodgepole pine (LP) stand and plots (established and random virtual) are
depicted inside the AOI.

Discrete return multi-spectral lidar data were collected at three wavelengths (532 nm, 1064 nm,
and 1550 nm) using a Teledyne Optech Titan system on 7 August 2016 at an average flying altitude
of 600 m AGL. Relevant sensor characteristics are presented in Table 1, and a detailed description
of the Titan can be found in [31]. Data were collected at 100 kHz per channel with a variable scan
angle (from ±22 to ±27 degree) and scan frequency (from 29 to 35 Hz). Flight lines were spaced to
achieve approximately 50% side-lap (i.e., 200% coverage). Average aircraft speed varied from 63 to
72 m/s depending on the flight line direction due to strong winds. Following [32], return sampling
point density over vegetation is compared to pulse emission density as a description of the dataset and
average values are presented in Table 2.

Table 2. Point density per m−2 of forest covered compared to open area (second value) for one flight
line averaged over 11.3 m radii plot areas for each channel.

Channel C3 C2 C1

Wavelength 532 nm 1064 nm 1550 nm

Point density ~4.5/2.7 ~6.8/2.9 ~5.8/2.9

Raw data in the form of a range file and Smoothed Best Estimate Trajectory file (SBET) were
processed in Lidar Mapping Suite (LMS, proprietary software from Teledyne Optech) and after block
adjustment, point cloud data were obtained with verified accuracy (over available rooftops) of RMSE
<0.06 m in horizontal separation and RMSE <0.04 m in height separation.

2.4. Analysis

Lidar data were output from LMS in LAS format with intensities normalized to a range of
600 m. Firstly, due to a scan line intensity banding effect [32,33], half of the points were marked as
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compromised and omitted from the analysis. Locations of the targets were surveyed with a dual
frequency Topcon Hiper SR survey-grade Global Navigation Satellite System (GNSS) receiver and
coordinates of the target corners were post-processed using Precise Point Positioning (PPP [34], sigma
values <0.2 m). Returns from the targets were manually selected based on their spatial coincidence and
proximity to the target border. Those that illuminated edges of the targets were excluded. Only points
with the entire footprint (1/e2, Gaussian shape; Table 1) on a given target were used in the analysis
(Figure 3). Three flight lines provided returns from the targets; two because of the planned 50% overlap
between lines and an additional crossline, which was planned for increasing the number of calibration
target hits.
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As a first step, DN values corresponding to 100% spectral reflectance were derived for open target
hits from two lines, leaving the cross line open target hits for verification. The DN value (̃Il

ρ=100%)
corresponding to 100% spectral reflectance and normalized to the inverse square range (R) can be
written in the form:

Ĩl
ρ=100% =

100
ρl

0

Il
k

R2
k

R2
1

cosϑk

 (3)

with index l running through the three ms lidar channels and index k through selected points over the
calibration target; I denotes intensity DN, angle ϑ the angle between the source and the target, and
ρl

0 the known value of the calibrated target spectral reflectance for each channel. Consequently, all
single-return intensity DNs from every point (index k) can be normalized with respect to the above
value by the following formula:

ρl
k =

Il
k

Ĩl
ρ=100%

R2
k

R2 (4)

Here, ρl
k represents a spectral pseudo-reflectance of a target at a particular wavelength/channel

(index l); i.e., a peak of the backscatter signal, normalized to the response of an ideal diffuse Lambertian
target of 100% reflectance and normal to the lidar beam propagation direction.

Spectral pseudo-reflectance of LP stands (Figure 2) was calculated from single returns separately
for all points from treetop to ground, and then only for the canopy (returns higher than 10 m above
ground). The resulting two point clouds were gridded into 15 m pixel spectral reflectance raster maps
(overall 150 pixels) with average values of spectral pseudo-reflectance assigned to each pixel. Then, the
mean values of spectral pseudo-reflectance for both maps were compared to Airborne Visible/InfraRed
Imaging Spectrometer (AVIRIS), AISA Dual (Specim, Spectral Imaging Ltd.), and ASD field portable
spectrometer (ASD Inc., Boulder, Colorado) data. AVIRIS with 15 m resolution [35] for mature LP
stands (45–150 years old, noted as LP1 in [35]) from Yellowstone National Park (YNP) and ASD data
for a stack of live LP needles [36] were retrieved from United States Geological Survey (USGS) spectral
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library. AISA Dual hyperspectral sensor data with 2 m resolution for pines (unspecified species)
from the North Thompson, BC were received from Professor Olaf Niemann (Hyperspectral-LiDAR
Research Group, University of Victoria; personal communication). In addition, histograms of spectral
pseudo-reflectance for all single returns from the canopy inside an LP plot (only returns which were
higher than 10 m above ground) were output.

For developing vertical normalized differences, the vertical distribution of each channel for the
established LP plot was analyzed, and after finding a lower canopy threshold, the returns were binned
in 0.5 m increments (index h). Then, from the average of each bin spectral pseudo-reflectance value ρ̂l

h,
normalized differences nδlm

h were calculated using the following formula (indices l and m run through
Titans channels; see [32] for detailed explanation of nδlm):

nδlm
h =

ρ̂l
h − ρ̂

m
h

ρ̂l
h + ρ̂m

h

(5)

The same procedure was repeated for three additional randomly selected virtual LP plots
(Figure 2b).

For the lifted target, after normalization of each return toward the cosine of the incident angle,
the sum of the pseudo-intensity values of split returns were compared with the known spectral
reflectance of the open target. For the below-canopy target, single returns were compared with the
returns from the open target, and double and triple returns (with an assumption for triple returns that
first and second returns detected the same surface type) were used for deriving spectral reflectance
values of the canopy using Equation (1). To illustrate the ms lidar canopy voxelization approach, two
types of map were created at 20 m resolution: Ground nδ(C2,C1) map; and (canopy nδ(C2,C1) and
nδ(C2,C3) maps (see [32] for the conventions used). For the ground map, only single returns from
ground returns and those up to 0.5 m above the ground level were used. Ground nδ(C2,C1) map was
visually compared with the Digital Terrain Model (DTM) at 2 m resolution, and with low resolution
Topographic Positioning Index (TPI) derived from the 20 m resolution DTM. For canopy maps, single
returns penetrated up to almost the full depth profile of the canopy, with few single returns 2 m above
the ground. A two-sample Kolmogorov-Smirnov test on point height distributions for each pair of all
three channels was performed to find the practical threshold value for canopy height range where
vertical intensity distributions from different channels can be compared. In addition, a vertical profile
of nδ(C2,C1) was constructed with Equation (5) along a 20 m wide transect, with voxels of 20 by 20 m
in plane and 0.5 m in height.

3. Results and Discussion

3.1. Radiometric Calibration Targets

A spectral reflectance curve of the target obtained from laboratory measurements is presented
in Figure 4. Values of spectral reflectance with RMSE of measurements for Titan’s wavelengths are
presented in Table 3. Spectral reflectance values of the constructed target are similar to those reported
by [28].

Table 3. Values of spectral reflectance for wavelengths corresponding to Titan measured by ASD
(20 samples). RMSE values in brackets.

Wavelength C3 (532 nm) C2 (1064 nm) C1 (1550 nm)

Spectral reflectance % 95.5 (0.1) 95.0 (0.5) 90.5 (0.9)
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3.2. Verification of the Intensity Normalization

Calculated values of Ĩl
ρ=100% for each channel together with the cosine corrected spectral reflectance

validation derived for the open target hits from the crossline are presented in Table 4. These values are
comparable with the spectral reflectance measured in the laboratory using an ASD (Table 3).

Table 4. Values of DNs corresponding to 100% spectral reflectance, normalized to 600 m and calculated
values of spectral reflectance from the cross line. SD values and number of measurements (SD | N) are
given in brackets.

Observations C3 (532 nm) C2 (1064 nm) C1 (1550 nm)

DN normalized to 100%
spectral reflectance (600 m) 3068 (116 | 3) 3151 (52 | 5) 3267 (145 | 6)

Cross line spectral reflectance validation % 93.4 (1.8 | 4) 96.4 (2.9 | 5) 91.0 (1.4 | 5)

The derived spectral reflectance values differ by 0.5% for C1, 1.4% for C2, and 2.1 % for C3
(Tables 3 and 4). The derived target spectral reflectance was higher than lab-measured for the C1 and
C2 channels and lower for the C3 channel. Since one of the lines used to derive the calibration value
was flown 80 m lower than the second line and the crossline used for the verification, one would
expect that all derived values should be lower. Accounting for the difference in atmospheric losses
may improve the results. However, it is assumed here that the 0.5–2.1% differences between lab- and
field-calibrated target spectral reflectance is sufficient for constructing SVIs.

3.3. Spectral Pseudo-Reflectance Derived from Titan Compared to Hyperspectral Sensor Data

Comparison of Titan’s derived spectral pseudo-reflectance to the AVIRIS, AISA dual, and ASD
data is shown in Table 5. Histograms of spectral pseudo-reflectance for established LP plot canopy are
presented in Figure 5.
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Figure 5. Left to right: C1, C2, and C3 spectral reflectance (in %) histograms for single returns of the
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Table 5. Comparison of spectral pseudo-reflectance derived from Titan single returns (SD in brackets)
for LP stand in Cypress Hills to spectral reflectance data derived from different locations from AVIRIS,
AISA Dual, and ASD, and calculated two simple ratios (sρ532nm

1064nm and sρ1550nm
1064nm). p-values of two-sample

Mann-Whitney test comparing Titan’s spectral pseudo-reflectance and spectral ratios vs. AVIRIS and
AISA Dual data are presented.

Observations Pixel Size N C3 (532 nm) C2 (1064 nm) C1 (1550 nm) sρ532 nm
1064 nm sρ532 nm

1064 nm

Titan All LP, %
15 m 150

3.4 (0.5) 27.7 (3.3) 18.2 (2.8) 0.12 (0.01) 0.66 (0.07)
Vs. AVIRIS p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Vs. Aisa Dual p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Titan Canopy LP, %
15 m 150

2.5 (0.1) 17.6 (0.7) 8.4 (0.3) 0.14 (0.01) 0.48 (0.02)
Vs. AVIRIS p = 0.09 p < 0.05 p = 0.51 p = 1 p = 0.39

Vs. Aisa Dual p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

AVIRIS YNP-LP1, % 15 m 4 2.3 (0.5) 15.3 (0.9) 8.0 (1.4) 0.15 (0.02) 0.52 (0.07)

AISA Dual Pines, % 2 m 37 5.5 (0.7) 31.5 (5.4) 10.7 (2.8) 0.18 (0.02) 0.34 (0.08)

ASD LP, % * 1 19.2 (5.0) 67.1 (2.3) 38.4 (3.9) 0.28 0.57

When comparing all Titan with optical data for the full ground to canopy profile, the
spectral reflectance estimates are significantly different (p < 0.05). However, the derived spectral
pseudo-reflectance canopy values (>10 m above ground surface) do demonstrate some correspondence
with AVIRIS spectral reflectance data (Table 5) for C3 (p = 0.09) and C1 (p = 0.51) but reflectance in
C2 does appear to be distinct (p < 0.05). Simple ratios (sρ532nm

1064nm and sρ1550nm
1064nm), however, show no

significant difference between Titan derived values for canopy and AVIRIS (p = 1 and 0.39, respectively).
It should be noted that AVIRIS data were obtained over different LP stands and it is rather the similarity
in overall magnitude of values that are of interest here. For instance, spectral reflectance data from
AISA Dual sensor are almost double those for C2 and C3, and only 25% higher for C1. In contrast, the
ASD spectral reflectance values are approximately four times higher than those obtained from single
returns of ms lidar. The latter can be explained assuming that canopy does not represent a continuous
target but rather a transparent target and, thus, absolute values of spectral reflectance should be lower
than those obtained with ASD for elements of the canopy, such as needles stacked together. However,
comparison of spectral pseudo-reflectance derived from split returns to ASD data is more interesting,
because the algorithm based on Equation (1) accounts for transparency.

3.4. Lifted Target and Below-Canopy Target Experiments

Values of double returns spectral pseudo reflectance from the lifted target and percentage of the
sum in comparison to the open target response are provided in Table 6. The average loss is calculated
and presented in Table 6 for each channel.

Table 6. Lifted target calibrated digital numbers (DNs) from double returns (first and last) with the
percentage of the sum relative to the open target DN for each channel. The average loss in comparison
to the open target is shown in the bottom row.

Channel C3 (532 nm) C2 (1064 nm) C1 (1550 nm)

Double
returns

observations

first last first+last
open first last first+last

open first last first+last
open

953 1381 79.7% 2162 430 86.6% 1369 1277 84.4%
1265 1001 77.3% 1224 1240 82.3% 1344 1198 81.0%
1333 824 73.6% 1314 1192 83.7% 1778 1101 91.8%

1776 816 86.6%
Average loss 23.1% 15.2% 14.3%



Remote Sens. 2019, 11, 1556 10 of 18

Three single-return hits from the below-canopy-target were observed (one hit for each channel)
and their normalized intensities presented in Table 7 in comparison to DN values from the open target
together with the calculated percentage of loss.

Table 7. Below-canopy single return DNs vs. open target DNs and the corresponding loss in intensity
values in percentage. DN values were normalized to a 600 m range and corrected with the cosine of
incidence angle. Only one hit (N = 1) for each channel was detected for the below-canopy target.

Observations C3 (532 nm) C2 (1064 nm) C1 (1550 nm)

Below-canopy target single return hit, DN 942 2838 3054
Open target, DN 2930 2994 3136

Loss 68% 5% 3%

Table 8 presents spectral pseudo-reflectance derived from the first and second canopy returns
of the pulses with the last return on the below-canopy target and the associated illuminated area
calculated from the intensity of the last return, illustrating the algorithm output from Equations (1)
and (2). The illuminated area percentage corresponds to the fraction of pulse energy that penetrated
through the canopy to the ground.

Table 8. Canopy spectral reflectance derived from below-canopy return responses and illuminated
area on the below-canopy radiometric calibration target as a percentage of the footprint area at nadir.

Channel Target Hit
Canopy
Spectral

Reflectance, ρ1

First return
Backscatter

Intermediate
Return

Backscatter

Illuminated
Area on the

Target ( A2
A0

), %

C1

1 8.5% 6.0% 2.5% 1%
2 12.0% 12.0% 64%
3 12.1% 9.7% 2.4% 3%
4 18.1% 12.1% 6.0% 29%
5 11.4% 3.9% 7.5% 57%

C2 1 21.8% 21.8% 54%

C3

1 2.6% 1.3% 1.3% 11%
2 2.2% 2.2% 8%
3 2.4% 1.3% 1.1% 20%
4 3.1% 3.1% 18%
5 1.4% 1.4% 27%
6 1.9% 1.9% 29%

From the lifted target experiment we see that the simple algorithm from Equation (1) does not
work well; we observed losses of 14.3%, 15.2%, and 23.1% for channels C1, C2, and C3, respectively
(Table 6). Moreover, from the single returns from the below-canopy target, we observed small losses of
3% and 5% for channels C1 and C2 and a dramatic loss of 68% for channel C3 (Table 7). Aside from C3,
these results are comparable with the reported losses between 5% and 15% in [37]. However, the 68%
loss for C3 was observed for a single data point, and it may be unrepresentative (i.e., an outlier) or due
to underestimates of canopy radiant energy losses in the green wavelength region.

On the other hand, estimates of canopy spectral reflectance from Equation (1), obtained from split
pulse returns which hit the below-canopy target are all in the range derived from the single return
returns. For C1, values of spectral reflectance from 8.5% to 18.1% (Table 8) were obtained and these
values are inside the range of the histogram for C1 on Figure 5 and two sample Mann–Whitney test
fails to reject null hypothesis that two samples came from the same population (p = 0.09). There is only
one observation for channel C2 resulting in a spectral reflectance value of 21.8%, which is within one
SD from the mean of corresponding established plot values. Six observations for the channel C3 with
the values of spectral reflectance from 1.4% to 3.1% are also inside Figure 5 histogram ranges and two
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sample Mann-Whitney test also does not reject the null hypothesis (p = 0.35). All results for C1, C2,
and C3 are within the range of spectral reflectance values obtained from single returns (Table 8 and
Figure 5).

One might expect, spectral reflectance values obtained from split returns over bright radiometric
target in this study to be higher than from single returns because of a potential undetected backscatter
below signal-to-noise threshold of the receiver for the latter case. Neglecting accounting for volumetric
scattering and additional losses through the canopy because of edge effects and a complex Bidirectional
Reflectance Distribution Function (BRDF), spectral reflectance values derived from split returns with
Equation (1) ideally should approach values from the ASD measurements of canopy elements such as
branches or stacks of needles (Table 5). However, this appears not to be the case from the results here,
and is likely due to factors not considered here (i.e., volumetric nature of the canopy backscatter, edge
effects, and BRDF), which could potentially attenuate backscatter energy and lower the peak of the
detected signal in the sensor’s receiver, thus lowering absolute values of spectral reflectance.

3.5. Vertical Spectral Vegetation Indices Profiles of the Lodgepole Pine Plot

Top and side view of the established LP plot single returns derived from the spectral
pseudo-reflectance values are shown in Figure 6 for each channel to illustrate available radiometric
product after calibration.

Height distribution histograms and their kernel densities for each channel for the established LP
plot are presented in Figure 7. Table 9 shows results of Kolmogorov–Smirnov tests for two types of
height distribution; one with a cut at 10 m above ground (there is no foliage below 10 m), and the
second one with a cut at 19 m above ground. Height of 19 m represents approximate lowest level of full
crown extent (Figure 6b,d,f,h), and was chosen on the descending slope of kernel density distributions
of return heights from C1 and C2 at half-peak of the graph height (Figure 7b).
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Figure 7. Histograms of height distribution of single returns for C1, C2, and C3 over LP plot (a), and
corresponding kernel densities (b).

Table 9. Results of Kolmogorov-Smirnov test D values (p-value in brackets) for returns higher than 10
m above ground (in the upper-right), and returns higher than 19 m above ground (in the lower-left).

C1 C2 C1

C1 - 0.068 (0.46) 0.138 (<0.01)
C2 0.053 (0.89) - 0.173 (<0.01)
C3 0.085 (0.19) 0.081 (0.33) -

From Figures 5–7, it is clear that there are more canopy single returns from C3 (N = 637) than C1
(N = 374), with the lowest number of single returns detected by C2 (N = 266). The difference is partly
due to the different number of pulses emitted over the plot: 1712 for C3, 1492 for C2, and 1528 for C1.
While the pulse repetition frequency (PRF) was the same for all channels, separation in tilt angle leads
to a time separation (~1 s) in pulses hitting the same area, which results in a different point density due
to aircraft attitude changes [32] mainly in pitch and heading (automatic roll compensation reduces the
effect of aircraft attitude changes in roll). While different point density partially explains the variable
number of single returns >10 m above ground for each channel, the ratio of single returns >10 m
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above ground to the number of emitted pulses is also different: 0.37 for C3, 0.18 for C2, and 0.24 for
C1. Moreover, from the kernel density of height distributions for single returns >10 m above ground
on Figure 7b, C3 samples lower parts of the canopy compared to C1 and C2 channels (p < 0.01 in
Kolmogorov-Smirnov test, Table 9). C1 and C2 distributions are similar, and the Kolmogorov–Smirnov
test produces a small D value (0.068) with corresponding large p (0.46), thus failing to reject the
hypothesis that C1 and C2 channels sampled the same region of the canopy. These results corroborate
similar observations reported in [4]. In addition, results from the below-canopy target experiment
also show higher losses for C3 in comparison with C1 and C2 (Table 7). This effect can be caused by
three main factors: Difference in the beam divergence, difference in the tilt angle, and difference in the
spectral reflectance of vegetation. It is assumed, that the larger footprint and lower power density
per unit area (irradiance) for C3, combined with the low reflectance values from vegetation at 532 nm
leads to a higher proportion of undetected backscatter (i.e., not exceeding the signal to noise ratio of
the detector) from within-canopy foliage. This systematically diminished ability for weak foliage pulse
detection results in a higher proportion of single returns from vegetation for C3. A similar effect was
reported in [32], where the observed proportion of split returns over vegetation reduced more rapidly
with increasing survey altitude above ground for C3 relative to either C2 or C1. Higher tilt angle also
increases the average path length through the canopy, which results in greater pulse attenuation. In the
established plot (Figures 6 and 7), the highest ratio of single return count >10 m to emitted pulse count
is for C3 (tilt angle of 7◦), the second is for C1 (3.5◦), and the lowest is for C2 (at nadir). However, for
single returns >19 m above ground, all three pairs C1 vs C2, C2 vs C3, and C1 vs C3, fail to reject the
null hypothesis in the Kolmogorov–Smirnov test (p = 0.89, 0.33, and 0.19, respectively). Thus, we can
establish that constructing vertical spectral vegetation index profiles may be feasible for the C1C2 pair
through the whole vertical profile, and for pairs C2C3 and C1C3, for the upper foliage elements of the
vegetation canopy (the top 4 m in the plot used in this study, for canopy between 19 and 23 m height).

Vertical profiles of normalized differences for the LP plot canopy with the 0.5 m height bins are
shown in Figure 8. Profiles start at 14 m above ground because there are insufficient single returns
(Figure 8a) to derive indices below this canopy height.
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From Figure 8, it can be seen that all three indices become noisy below a certain height (e.g.,
18 m for Plot 1) due to decreasing single return counts as the crown extent thins. The lower voxel
elements in two out of three indices are also noisy for the same reason. Also, the nδ(C2, C3) is
almost constant through the canopy; in contrast, nδ(C2, C1) and nδ(C1, C3) have clear trends. The
decrease of the water index nδ(C2, C1) with distance from the top of the canopy might be linked to the
evapotranspiration characteristics of the vegetation and requires further investigation. The third index
nδ(C1, C3) resembles the combined behavior of the first two indices because it can be re-written as
their combination. The resulting nδ(C2, C3) on Figure 8 is comparable with the modeled response of
ms lidar in [20] and lab measurement results in [21]. However, for comparing individual canopy SVI
profiles, segmentation algorithms [38,39] should be applied to construct active SVIs for individual trees.
Individual trees SVIs profile might be useful for tree species classification and forest health monitoring.

3.6. Maps and Vertical Profile of Spectral Vegetation Indices

The map of the ground-level nδ(C2, C1) in Figure 9a shows distinct patterns across the surface
(lower values of the index). When compared to the DTM (Figure 9b) and TPI (Figure 9c, note inverted
color ramp), it illustrates some visible spatial correspondence with hills and local valleys (R = –0.35,
Pearson correlation coefficient for the TPI map). This may further suggest that the ground-level nδ(C2,
C1) was influenced by the wetness of the ground below forest canopy. The canopy nδ(C2, C1) map
on Figure 9d exhibits higher values than at ground level (mean values 0.36 and 0.15) and there are
generally higher values along the road corridor of bare ground and short vegetation (see Figure 2 for
reference) between forest covered hills. The nδ(C2, C3) map of the canopy (Figure 9e) shows relatively
high values (mean 0.75) across the whole AOI with a distinct area of higher values in the eastern part
depicting a hill with young aspen stands.Remote Sens. 2019, 11 FOR PEER REVIEW  15 
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Figure 9. AOI maps of (a) ground nδ(C2,C1), (b) DTM (Digital Terrain Model), (c) TPI (Topographic
Position Index), (d) canopy nδ(C2,C1), and (e) canopy nδ(C2,C3). Note, the AOI covers the same area
as presented in Figure 2. Blank (white) pixels represent open areas of insufficient data for canopy SVI
generation. Note inverted color ramp in (a,d) vs. (b,c).
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The voxel profile transect of nδ(C2, C1) in Figure 10b illustrates a distinct vertical gradient of the
index through the canopy. Moreover, the transect illustrates the spatial variation in index values along
the transect and its gradient from younger stands (west end), to mature LP stands (center portion) to
the more complex understory on the hill slopes and valley wetland area (east end). Thus, the vertical
profile transect in Figure 10b illustrates the potential of plot level voxelization and 3D mapping of
active spectral vegetation indices.Remote Sens. 2019, 11 FOR PEER REVIEW  16 
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4. Conclusions

Radiometric calibration targets help bridge the gap between ms lidar products and available
spectral signature libraries. The low-cost diffuse reflection coating [28] is an acceptable operational
substitute to Spectralon® (Labspere Inc., North Sutton, NH, USA) panels allowing investigation of
complex lidar backscatter without being cost-prohibitive and also allows custom calibration targets.
The algorithm described by Equation (1), is promising; however, it should be combined with an
additional model of energy losses in the canopy, and an explanation of the results of the lifted target
experiment may be a first step in creating such a model. Vertical SVIs for the canopy can be calculated
from corrected Titan DNs up to a certain penetration depth; in our study plot up to 4 m. Canopy
vertical profile of normalized difference of C2 and C3 for an LP plot looks similar to predicted profiles
of NDVI by modeling and lab measurements [20,21]. It is possible to generate vertical profiles of the
normalized difference of C1 and C2 from the Titan sensor from the top of the canopy to the ground,
providing there are enough single returns in each height bin, and ground surface remains in the lowest
bin for the spatial extent being sampled (i.e., terrain slope does not force ground surface into multiple
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height bins). The potential for plot level voxelization and 3D mapping of active spectral vegetation
indices was demonstrated with a vertical profile transect of nδ(C2, C1) across the study area.

Future work could consider development of recipes for coatings with lower spectral reflectance
values, down to 5%. Targets covered with such a coating would allow the prediction of receiver
response to low values of lidar backscatter and enable modeling of sensor Signal to Noise Ratio
(SNR) for analyzing volumetric backscatter of the canopy. Additional analysis of energy losses in
the lifted target experiment may help to understand signal attenuation in canopy foliage and allow
derivation of spectral reflectance and estimation of illuminated areas from split returns. The new
methodology of constructing voxel-based active 3D SVIs on a stand level brings new potential to
classification, comparison, and change monitoring in forest and wetland environments. However, to be
able to compare active 3D SVIs through time and space, more research is needed into standardization.
In addition, segmentation of the lidar point cloud from the forest stand into individual trees, if successful,
could provide a means to construct vertical SVI profiles for each detected tree allowing the enhancement
of species classification and forest health monitoring with ms lidar.
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