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Abstract: True-color three-dimensional (3D) imaging exploits spatial and spectral information and can
enable accurate feature extraction and object classification. The existing methods, however, are limited
by data collection mechanisms when realizing true-color 3D imaging. We overcome this problem and
present a novel true-color 3D imaging method based on a 32-channel hyperspectral LiDAR (HSL)
covering a 431–751 nm spectral range. We conducted two experiments, one with nine-color card
papers and the other with seven different colored objects. We used the former to investigate the
effect of true-color 3D imaging and determine the optimal spectral bands for compositing true-color,
and the latter to explore the classification potential based on the true-color feature using polynomial
support vector machine (SVM) and Gaussian naive Bayes (NB) classifiers. Since using all bands of
HSL will cause color distortions, the optimal spectral band combination for better compositing the
true-color were selected by principal component analysis (PCA) and spectral correlation measure
(SCM); PCA emphasizes the amount of information in band combinations, while SCM focuses on
correlation between bands. The results show that the true-color 3D imaging can be realized based on
HSL measurements, and three spectral bands of 466, 546, and 626 nm were determined. Comparing
reflectance of the three selected bands, the overall classification accuracy of seven different colored
objects was improved by 14.6% and 8.25% based on SVM and NB, respectively, classifiers after
converting spectral intensities into true-color information. Overall, this study demonstrated the
potential of HSL system in retrieving true-color and facilitating target recognition, and can serve as a
guide in developing future three-channel or multi-channel true-color LiDAR.

Keywords: hyperspectral LiDAR; true-color composition; wavelength selection; target classification

1. Introduction

Target imaging has attracted significant research attention in remote sensing, and widely employs
in resource exploration, agriculture, and forestry management [1–3]. Target imaging can be realized
using spatial and spectral information, acquired by various types of sensors [4–6], and can realize
non-destructive measurement of physiological processes of a target in a non-contact manner [7]. Target
imaging also allows repeated observations, thus making it possible to detect in real-time, and reduce
time and cost. The ultimate goal of imaging is to fully understand and classify detected objects based on
information acquired from a target. With the continuous development of remote sensing technologies,
imaging methods have become diversified [8,9].

The spectral imaging has been realized by passive multispectral/hyperspectral techniques, and is
employed in medicine, agriculture and management of natural resources [10–12]. However, passive
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multispectral/hyperspectral imaging lacks information on the vertical dimension, which is essential
in estimating old-growth forest canopy and vegetation biomass [13,14]. Laser scanning enables
3D imaging, yet it lacks the ability to acquire the spectral information, which is significant for
bio-chemical parameter detection of plants [15]. To combine the strengths of both passive and active
sensors, researchers have attempted to fuse point clouds and images [16,17]. Nonetheless, these
methods face significant spatial and temporal registration problems due to the variation in detection
mechanisms [18]. As a result, in recent years, multispectral/hyperspectral LiDAR (MSL/HSL) systems
were developed; some even have been commercialized such as the Optech Titan system [19–22].
However, current MSL/HSL data application research mainly focuses on the inversion of vegetation
biochemical parameters and target classification [23–25]. False-color 3D imaging has been realized
based on MSL data [26], but color point clouds have yet to be fully explored. In particular, true-color
3D imaging is useful for accurate object classification, and has not been realized based on LiDAR data.

As a non-destructive and non-contact active detection technique, HSL systems using the
supercontinuum laser source and detector arrays [27], could simultaneously obtain spatial information
and backscatter intensities in a broad spectral range. The backscatter intensities in visible light regions
are serviceable for compositing true-color. Color, as one of the external manifestations of the target
characteristics, is closely interrelated to the reflection spectrum. The color changes with the illumination
source. True-color display is a special case of the reflection spectrum. It is a composition using reflection
spectrum of different bands in the visible light regions based on the color matching function. The color
matching function was proposed by William David Wright and John Guild in the late 1920s [28,29],
and carried out under the CIE 1931 color space [30]. Many industrial color evaluation methods are
based on CIE 1931 color space [31]. Combined with true-color composition, true-color 3D imaging of
targets can be realized with 3D point clouds acquired by HSL.

For a certain color seen by the human eyes, the three primary color components of R, G, and B are
fixed values. Color components closely connects to the selected spectral bands. Given that the energy
of the supercontinuum laser source and the quantum efficiency of detectors in the blue-violet light
regions are weak, effective reflection intensities lack. In the lack of partial spectral intensities in visible
light regions, using spectral bands of HSL to composite true-color would cause the three primary color
components of RGB to be inaccurate, further leading to color distortions [32]. However, the case in
which true-color composition is inaccurate will be improved by wavelength selection. It is significant to
select the optimal spectral bands for compositing true-color from available spectral bands. The optimal
band combination owns the largest amount of information and the smallest correlation, thus there
are two wavelength selection methods to be used, namely principal component analysis (PCA) and
spectral correlation measure (SCM). They have widely used in selecting optimal spectral bands in
hyperspectral remote sensing [33–35]. The former regards the amount of information of each band
mapped to principal component as wavelength selection criterion to ensure that the optimal spectral
band combination contains the largest amount of information. The latter focuses on the correlation of
band combinations.

Color, as one of the basic attributes of the target characteristics, can be used as a feature for target
classification. Previous studies of target classification using airborne and terrestrial single-wavelength
LiDAR primarily relied on the spatial characteristic and a single-wavelength spectral intensity [36,37].
However, they barely used color information, especially true-color by the limitation in detection
wavelengths. For example, the Titan LiDAR system has three detection wavelengths of 532, 1064
and 1550 nm [22], which are not useful for true-color composition. The 1064 and 1550 nm spectral
bands are outside the visible light regions. However, the spectral bands obtained by HSL covering
the great mass of visible light regions are beneficial to invert true-color. To investigate the true-color
classification potential, RGB values and the spectral reflectance served as input features to train
support vector machine (SVM) and naive Bayes (NB) models. SVM is a classical supervised learning
algorithm. It is relatively insensitive to training sample size and can successfully work with limited
quantity and quality of training samples [38,39]. SVM was introduced originally by Vapnik to solve
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binary-classification problems [40], but after continuous optimization by many researchers, the SVM
has become a popular machine learning method for classification, regression, and other learning
tasks [41]. NB is a popular and fast supersized classification algorithm based on the Bayes theorem,
and it is appropriate for many variables, both discrete and continuous [42].

This article proposes a novel true-color 3D imaging method based on HSL measurements.
The present study aimed to realize true-color 3D imaging of targets by selecting the three optimal
spectral bands for compositing true-color, combining the 3D information, in the case of low signal to
noise in partial visible light regions. Then, the potential of true-color feature was assessed in target
classification by SVM and NB models. The results of this study are beneficial for developing true-color
LiDAR and the accurate discrimination of targets robustly.

2. System Description and Experimental Design

The equipment used in this experiment was a 32-channel HSL designed and established by
Gong [18]. In this system, a supercontinuum laser source and photomultiplier tube (PMT) arrays
employed to emit a laser beam and convert photoelectric signals. Two experiments were conducted, one
with nine-color card papers and the other with seven different colored objects. The two experimental
datasets are small, owing to the system scanning mechanism and experimental scene set.

2.1. System Description

The spatial and spectral information of targets can be obtained in one shot by using the terrestrial HSL
system. The HSL system consists of four parts: laser source, optical receiver component, light-splitting
component and signal detection component. The total power of the supercontinuum laser source (YSL
Photonics, SC-OEM) is more than 8 W, and the spectral range covers 400–2400 nm. The frequency of the
laser pulse is 0.01–200 MHz with 100 ps pulse duration. A high-precision two-dimensional scanning
turntable equipped with high reflectivity mirrors utilized to ensure the quality of the signal acquisition.
A Schmidt–Cassegrain telescope with a 0.2 m diameter collects the backscattered optical signals in a board
spectral range. With a 150 g/mm blazed grating and 32-element photomultiplier tube (PMT) arrays, we
acquired 32-dimensional spectral bands, covering 431–751 nm. The spectral resolution of each channel is
10 nm. The specific parameters of the system were described in detail by Gong et al. [18].

2.2. Experimental Design

The experiment was conducted in complete darkness at the laboratory of Wuhan University.
The first experiment was composed of card papers with nine colors (black, yellow, orange, red, purple,
cyan, blue, pink, and white). The card paper was made of environmentally friendly pulp with thickness
of approximately 180 g/m−2. These colorful card papers are regularly set up in two rows and posted
on the black card paper. They are placed approximately 3.4 m away from the supercontinuum laser
source. A total of 1120 scanned points was measured. The scanning scene as shown in Figure 1.
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The second experiment was composed of seven different colored targets: black card paper, aloe
leaves, white ceramic pot, red surface of a Rubik’s Cube, brown box, and green and orange parts
of a ceramic doll. Among them, the white ceramic pot and the ceramic doll are the same material,
but the colors are different. The targets, apart from the black card paper, were placed on a small
horizontal platform at nearly the same distance from the laser source as the first experiment. A total of
2800 scanned points was measured. The scanning scene as shown in Figure 2.
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3. Methods

3.1. Data Preprocessing

The availability of calibrated laser-based reflective intensity would be significant with respect to
further spectral application [43]. The backscattered spectral intensities received by detectors are affected
by laser incidence angle, distance, systematic noise, and surrounding atmospheric environment [44–46].
In this research, we considered only the laser incidence angle and distance factor, because the data
was obtained in a clean dark laboratory where the atmospheric effect was minor. The accuracy of
backscatter intensity was improved by using the distance and angle calibration model based on laser
radar equation [47,48].

3.2. True-Color Composition

The color property depends on not only the illumination source, but also the visual characteristics
of the human eyes. The reflective intensity of different bands in the visible light regions acquired by
HSL creates a necessary condition for compositing true-color. The spectral intensities of different bands
are different for perception of the human eyes, thus the spectral tristimulus values were established
based on this visual characteristics [49]. The tristimulus values indicate the amount of radiant energy
of the different bands in visible light regions, which will enter the human eyes. It takes two steps to
convert spectral intensities into true-color. First, the chromaticity values are calculated based on the
relationship between the spectral tristimulus values and the spectral intensities of the different bands
by numerical integration method. The numerical integration was in the 431–751 nm spectral range.
Second, the true-color values were obtained by converting the chromaticity values. Two processes
performed in the CIE 1931 color space using a small visual angle 2◦.

The color attributes were described by three component of hue, brightness, and saturation [50].
The hue refers to the style of color, which depends on the wavelength of light. The brightness indicates
the lightness degree of color to the human eyes, while the saturation directs the purity of color.
The calculated chromaticity values only denote the hue and saturation of the composition color, while
the brightness cannot be obtained. To determine a certain color, in addition to determining the hue
and saturation information, the brightness characteristic needs to be given. To intuitively represent
color brightness, the Commission International de l’Eclairage ruled that the spectral tristimulus value
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y(λ) was equivalent to the photopic luminous efficacy function [51]. Thus, an adjustment factor
K introduced.

K =
1∫

γ(λ)y(λ)dλ
(1)

X = K
∫

R(λ)x(λ)dλ
Y = K

∫
R(λ)y(λ)dλ

Z = K
∫

R(λ)z(λ)dλ
(2)

where X, Y, and Z are the chromaticity values. γ(λ) is the backscatter intensity of spectral bands.
R(λ) is the incident intensity of corresponding spectral bands. x(λ), y(λ), and z(λ) are the tristimulus
values of corresponding spectral bands in the CIE 1931 XYZ color space.

The using of sRGB is to define a rendered color space for data interchange in multimedia [52].
The true-color was obtained by converting chromaticity values into the sRGB color space. As the
supercontinuum laser source simulated sunlight, the conversion matrix was determined based on
standard illuminants of D65 [53]. 

R
G
B

 = MXYZ→RGB


X
Y
Z

 (3)

In terms of the principle of three primary colors, true-color composition requires at least three
spectral bands. Besides, the true-color composition is closely associated to the three primary color
components of RGB, which were calculated using spectral intensities in the selected bands. Color
distortions will occur if the color components are inaccurate. Therefore, the number and central
wavelength of selected bands have an influence on the three primary color components. To verify the
above statement, we selected different numbers and central wavelength of spectral bands by arithmetic
progression from the 32 bands (Table 1) to composite true-color. The selected result consists of six
schemes using 32, 16, 8, 5, and 3 spectral bands, especially in the fifth and sixth schemes, with the same
number of bands, but different central wavelengths of the three bands.

Table 1. Selection results of different number spectral bands.

Scheme Number Serial Number Central Wavelength

a 32 1 2 3 4 . . . 29 30 31 32 436 446 456 466 . . . 716 726 736 746
b 16 1 3 5 . . . 27 29 31 436 456 476 . . . 696 716 736
c 8 2 6 10 . . . 22 26 30 446 486 526 . . . 646 686 726
d 5 3 10 17 24 31 456 526 596 666 736
e 3(1) 3 14 25 456 566 676
f 3(2) 2 12 22 446 546 646

The composition effect of true-color could be assessed via qualitative and quantitative analyses.
Color vision is based on the physiological basis of visual perception, which can be seen as a powerful
tool for evaluating the degree of color similarity. In quantitative analysis, the color similarity between
the natural color of passive image (Figure 1) and the true-color composited by spectral intensities was
assessed using linear discriminant analysis. We determined the pixel position in the passive image of
each point in the point cloud by direct linear transformation [54]. Referring to a diffuse whiteboard
(SpectraLon), which reaches approximately 100% reflectance, the three RGB channels reflectance of
passive pixels and true-color point cloud were calculated. The three RGB channels reflectance of
the true-color composited using spectral intensities was defined as the X-axis, while the three RGB
channels reflectance of passive pixels was defined as the Y-axis. R-squared (R2) and root mean squared
error (RMSE) were used as the assessment criteria for linear discriminant analysis. R2 indicates similar
degree of color, while RMSE shows the deviation between truth-values and inversion values.
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3.3. Wavelength Selection

Lacking partial spectral intensities in visible light regions, the color composition of three primary
color components will be inaccurate, further leading to true-color distortions. The color distortions
will also occur on our HSL system, yet it can be improved through wavelength selection method
determining an optimal spectral band combination, which contains the largest amount of information
and smallest correlation among all combinations. Two wavelength selection methods of PCA and SCM
are selected based on this characteristic of the optimal combination [33,35]. The former highlights the
amount of information of bands combination, while the latter centers the correlation between bands.
Besides, in view of the cost of configured detection channels of HSL, three spectral bands were selected
eventually from 32 spectral bands for compositing true-color.

In the PCA algorithm, principal component transformation are performed to calculate the
contribution of each band to principal components, which is as an indicator for selecting optimal
spectral bands. The spectral data, X = (x1, x2, . . . , xn), have the sample number m and dimension n.

Yn×m = X′n×m × Pm×k (4)

where Y is the result of the principal component transformation, X′ is the matrix generated by
subtracting the mean of each column from each column of spectral data X, and P is the matrix of
principle component transformation. Transformation matrix P reflects the contribution between the ith
wavelength (Xi) and the jth principal component (Yj). We can select an optimal band combination
from 32 spectral bands based on this relation.

The correlation coefficient of spectral bands can be calculated by SCM [55]. The smaller is
the correlation among the band combinations, the better is the independence and the lower is the
redundancy. The optimal spectral bands can be determined by summing and ranking the correlations
among the selected bands.

T =
σxy

2

σxx2σyy2 =

∑(
T − T

)(
R−R

)
√∑(

T − T
)2(

R−R
)2

(5)

where T is the correlation between bands. σxy is the correction coefficient between xth and yth bands.
σxx and σyy are the autocorrelation coefficients of xth and yth spectral bands.

3.4. Target Classification

As one of the inherent attributes of targets, the true-color can be treated as a new classification
feature. The classification potential of true-color was evaluated with seven different colored targets
experiment. In total, 2800 measurement points manually labels via MATLAB, and the different color
represented different targets. The manually labeled result as shown in Figure 3. We represented
black card paper, aloe leaves, white ceramic pot, red surface of a Rubik’s Cube, brown box, and
green and orange parts of a ceramic doll, with cyan, green, red, blue, orange, yellow, and mauve,
respectively. The C-support Vector Classification based on libsvm and polynomial kernel function
were employed [41]. In SVM training, the kernels, kernel parameters, and feature selection play key
roles for SVM classification accuracy [56]. Bearing in mind that the optimal parameter determination is
significant for a classification model with high stability and accuracy, we used a 10-fold cross-validation
grid-search method to find the optimal parameter values of SVM. The parameter values of C and
gamma were 1.4 and 1.1, respectively. Further, we also employed a Gaussian NB classifier to further
verify true-color classification potential, which was a simple probabilistic classifier, and learned rapidly
in various supervised classification problems [57]. The parameter of priors was 0. A three-fold
cross validation was used to ensure the accuracy of target classification due to the limitation on the
dataset [58]. We divided the data into three parts, using two-thirds of the data to train models, and the
remaining data for testing. The overall classification accuracy can be calculated by predicted error sum
of squares. Compared with other classification algorithms, SVM and NB were chosen in this study
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because it can get better classification results on small number of training sets [59,60]. The spectral
reflectance of selected optimal bands and RGB values composited by spectral intensities of same
spectral bands were used as the input parameters of SVM and NB classifier.
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Figure 3. Manually labeled hyperspectral LiDAR point cloud in the seven objects: black card paper,
aloe leaves, white ceramic pot, red surface of a Rubik’s Cube, brown box, and green and orange parts
of a ceramic doll, which are shown in cyan, green, red, blue, orange, yellow, and mauve, respectively.

4. Results and Discussion

4.1. True-Color Composition

The composition results of the selected bands in Table 1 as shown in Figure 4. The 32 (Figure 4a),
16 (Figure 4b), 8 (Figure 4c), and 5 (Figure 4d) spectral bands, and three spectral bands of different
serials (Figure 4e,f) were used to composite the true-color. With the number and central wavelength
of spectral bands changed, there were larger differences in the composition color of six schemes.
The composition colors were evaluated via qualitative and quantitative analyses.

Through visual perception, the composition colors of the first four schemes (Figure 4a–d) were
closer to a passive image (Figure 4A) acquired by a camera. Despite certain color distortions, the
natural colors of the nine-color card papers can obtain with satisfactory visual effects in the first four
schemes. In particular, compared to other schemes, the composited true-color of the fourth scheme
(Figure 4d) was more vivid and the color similarity was higher. However, the two schemes of the fifth
and sixth (Figure 4e,f) exhibited color distortions in different degrees and composited colors deviated
to blue at the entire region. Especially in the fifth schemes, color distortions were more prominent and
the composited color was nearly completely inconsistent with the natural color of nine-card papers.
There were some color distortions in the sixth scheme, but the composited color still could show natural
color. It was very significant to use appropriate number and central wavelength of spectral bands for
compositing true-color based on above results.
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natural colors of the nine-color card papers can obtain with satisfactory visual effects in the first four 
schemes. In particular, compared to other schemes, the composited true-color of the fourth scheme 
(Figure 4d) was more vivid and the color similarity was higher. However, the two schemes of the 
fifth and sixth (Figure 4e, 4f) exhibited color distortions in different degrees and composited colors 
deviated to blue at the entire region. Especially in the fifth schemes, color distortions were more 
prominent and the composited color was nearly completely inconsistent with the natural color of 
nine-card papers. There were some color distortions in the sixth scheme, but the composited color 
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The color similarity between the natural color of the passive image and the true-color composited
by spectral intensities was assessed using linear discriminant analysis as Figure 5. Linear discriminant
analysis of color similarity evaluated actual similarity degree of the three primary color components
of R, G, and B between the composited true-color and natural color. Consistent with the results of
the qualitative analysis, the first four schemes (Figure 5a–d) showed better results than the other two
schemes (Figure 5e,f). Almost every R2 was more than 0.85, and RMSE was less than 1.866 in the first
four schemes. The larger R2 and the smaller RMSE indicated the better composition result and the
higher color similarity. In particular, the fourth scheme of five spectral bands had the best composition
effect among the six schemes, whether in R2 or RMSE. The R2 of the three channels of R, G and B were
0.976, 0.9507, and 0.95, respectively, and all RMSEs were less than 1.264 in the fourth scheme. It needs
to be noted that the R2 of the B channel gradually increased from 0.8422 to 0.95 with the decrease of the
number of composited bands in the first four schemes when the R2 of R and G channels was nearly
unchanged. The reason for this phenomenon was that the partial spectral intensities lacked in the
process of compositing true-color, which ultimately led to inaccurate color components of RGB, further
causing color distortions. In addition, since the central wavelengths of selected spectral bands were
inaccurate, the poor results appeared in the two schemes of the fifth and sixth. The R2 of the G channel
was less than 0.8, and some RMSEs were more than 1.9 in the fifth and sixth schemes. When all R2

of the three channels of RGB were higher and the RMSEs were lower in linear discriminant analysis,
the composited results could be obtained with satisfactory visual effects and higher color similarity.
This phenomenon can be reflected in the fourth and sixth schemes.
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consider not only the number of composited bands, but also the central wavelength of spectral bands 
to achieve better true-color composition. Thus, selecting the optimal spectral bands from existing 
spectral bands for compositing true-color was significant.  

4.2. Wavelength Selection 

The three optimal spectral bands were selected by PCA and SCM for better compositing true-
color, based on 32-dimensional spectral data of HSL. After PCA, the sum of the contributions of the 
first three principal components was more than 94%. By comparing the contributions of each band to 
the three principal components, the three spectral bands possessing largest amount of information 
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Figure 5. The color similarity between the natural color of the passive image and the true-color
composited by spectral intensities was assessed using linear discriminant analysis. (a–f) were linear
discriminant analysis results with different schemes in Table 1. X-axis: three channels RGB reflectance
of true-color point cloud. Y-axis: three channels RGB reflectance of the passive pixel. With the number
of composition bands decreased, the composition results were better. Among them, the fourth scheme
(d) had the best composition effect, and R2 were more than 0.9461 and RMSEs were less than 1.264.

To summarize, in the case of lacking partial spectral intensities in visible light bands, we must
consider not only the number of composited bands, but also the central wavelength of spectral bands
to achieve better true-color composition. Thus, selecting the optimal spectral bands from existing
spectral bands for compositing true-color was significant.

4.2. Wavelength Selection

The three optimal spectral bands were selected by PCA and SCM for better compositing true-color,
based on 32-dimensional spectral data of HSL. After PCA, the sum of the contributions of the first
three principal components was more than 94%. By comparing the contributions of each band to the
three principal components, the three spectral bands possessing largest amount of information were
determined. The bands with the largest contribution to the three principal components as shown in
Table 2.

Table 2. PCA for selecting the optimal spectral bands.

PCA Components PCA1 PCA2 PCA3

Spectral band with largest contribution 626 nm (0.2653) 466 nm (0.2896) 546 nm (0.3507)

The correlation between bands could be calculated by SCM. Allowing for the 32-dimensional
spectrum, 4960 spectral band combinations were determined via the permutation and combination of
C3

32. Ten-band combinations with the smallest correlation listed in Table 3, and the results are sorted in
descending order.

Table 3. The smallest correlations of spectral band combinations.

Band Combination Result Rank Band Combination Result Rank

466 536 626 0.6151 1 476 536 636 0.6435 6
466 546 626 0.6177 2 476 546 626 0.6437 7
466 546 636 0.6325 3 476 546 636 0.6441 8
466 516 636 0.6353 4 466 516 626 0.6463 9
476 536 626 0.6405 5 466 536 636 0.6479 10
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The spectral bands of 466, 536, and 626 nm had the smallest correlation among all the permutations
and combinations. This optimal result was different from the result with 466, 546 and 626 nm determined
by PCA. However, the difference between the two optimal combinations in the aspect of correlation was
extremely small (0.0026). Given the correlation between 536 and 546 nm spectral being 99.36%, they
can nearly replace each other. Therefore, jointly considering the two wavelength selection results, three
spectral bands, namely, 466, 546, and 626 nm, were used as the optimal band combination for compositing
true-color based on HSL system.

The composition effect and the result of linear discriminant analysis using the three spectral bands
of 466, 546 and 626 nm as Figure 6. From the visual perception, the composited true-color can vividly
show the natural color of the nine-color card papers, but the composited color was light yellow for
the white card papers. The results of the linear discriminant analysis (Figure 6c) indicated that the
R2 of three channels was more than 0.9191, while the RMSEs were less than 1.453. However, the
composition effect was not perfect. Compared to the fourth scheme, the R2 of G and B channels was
less than 0.9461, and the RMSE of each channel was high when three optimal spectral bands were used
to composite true-color. The RMSE of three channels were 1.453, 0.931 and 1.367, which were higher
than RMSEs of the fourth scheme. In addition to the reason already explained in Section 4.1, there is
a second reason. The fourth scheme owned the larger abundant spectral information, resulting in a
more accurate retrieval of RGB. This inaccuracy of three primary color components could be improved
by using wavelength selections to determine the optimal spectral bands.
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4.3. RGB-Based Target Classification

The study area was classified into seven targets: black card paper, aloe leaves, white ceramic pot,
red surface of a Rubik’s Cube, brown box, and green and orange parts of a ceramic doll. A total of
2800 scanned points was used, and three spectral reflectance (466, 546, and 626 nm) and RGB values
composited by spectral intensities of the same three spectral were used as the input parameters of SVM
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and NB classifier. The confusion matrix and the overall accuracy for two classifiers were provided in
Tables 4 and 5. The classification result using the SVM classifier as shown in Figure 7.

Table 4. The confusion matrix for SVM.

Predicted Class Producer
AccuracyB Card A L C Pot R Sur B Box GC Doll RC Doll

three
spectral

reflectance

B Card 1650 0 0 0 0 0 0 1
A L 225 0 0 0 0 0 0 0

C Pot 53 0 100 0 45 0 0 0.5051
R Sur 29 0 20 0 45 0 0 0
B Box 66 0 0 0 260 0 0 0.7975

GC Doll 48 0 1 0 1 0 0 0
RC Doll 89 0 0 0 19 0 149 0.5798

User accuracy 0.7639 0 0.8264 0 0.7027 0 1 0.7711

Overall accuracy (%) 77.11%

RGB

B Card 1645 5 0 0 0 0 0 0.9970
A L 50 170 0 0 5 0 0 0.7556

C Pot 1 36 151 0 10 0 0 0.7626
R Sur 0 1 0 82 1 0 10 0.8723
B Box 18 38 0 0 270 0 0 0.8282

GC Doll 4 17 1 0 0 28 0 0.5600
RC Doll 9 17 3 2 3 1 222 0.8638

User accuracy 0.9525 0.5986 0.9742 0.9762 0.9343 0.9655 0.9569 0.9171

Overall accuracy (%) 91.71%

Table 5. The confusion matrix for NB.

Predicted Class Producer
AccuracyB Card A L C Pot R Sur B Box GC Doll RC Doll

three
spectral

reflectance

B Card 1632 15 0 0 1 0 2 0.9891
A L 11 152 0 0 1 0 61 0.6756

C Pot 1 13 114 0 48 0 22 0.5758
R Sur 4 14 30 0 38 0 8 0
B Box 10 39 18 0 249 0 10 0.7638

GC Doll 2 7 1 0 2 19 19 0.38
RC Doll 10 97 0 0 18 0 132 0.5136

User accuracy 0.9772 0.451 0.6994 0 0.6975 1 0.5197 0.8207

Overall accuracy (%) 82.07%

RGB

B Card 1622 16 0 0 1 11 0 0.983
A L 15 195 0 0 15 0 0 0.8667

C Pot 1 18 125 0 50 0 4 0.6313
R Sur 0 0 0 78 3 0 13 0.8298
B Box 10 39 12 0 257 0 8 0.7883

GC Doll 2 9 1 0 2 36 0 0.72
RC Doll 4 19 0 10 7 1 216 0.8405

User accuracy 0.9807 0.6588 0.9058 0.8864 0.7672 0.7500 0.8963 0.9032

Overall accuracy (%) 90.32%

There were two classification results based on the three spectral reflectance of 466, 546, and 626 nm
and RGB values composited by spectral intensities of the same three spectral bands using the SVM in
Figure 7. These are clearly notable in Figure 7a, where nearly all points marked as green and yellow
and a quarter of points marked as blue were misclassified as the black card papers. A quarter of points
marked as red and half of points marked as pink were misclassified as the black card papers. The main
reason was that the spectral features of these misclassified objects were similar in the color space where
was constructed by the three spectral bands. Through the conversion of spectral intensities to true-color,
the overall classification accuracy was increased by 14.6%. The user’s and producer’s accuracies of the
seven targets were greatly improved, especially the producer’s accuracies of the aloe leaves, the red
surface of a Rubik’s Cube, and the green parts of a ceramic doll, which increased from 0% to 75.56%,
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87.23%, and 56%, respectively. The main reason for the limitation of improvement in the classification
accuracy of the green ceramic doll was there were only 50 data, and there were many edge points.
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The NB classifier produced diverse classification accuracies for the seven different colored objects
in Table 5. The overall accuracies for two cases were 82.07% and 90.32%, based on a NB classifier.
The classification accuracy was increased by 8.25% through the conversion between spectral intensities
and true-color. As previously mentioned, the misclassified points with aloe leaves, white ceramic pot,
red surface of a Rubik’s Cube, and green and orange parts of a ceramic doll were the main sources of
classification errors using the three spectral bands. Especially, the producer’s accuracies of the red
surface of a Rubik’s Cube, and the green and orange parts of a ceramic doll were increased from 0, 0.38,
and 0.5136 to 0.8298, 0.72 and 0.8405, respectively.

The overall classification accuracy will be improved by converting spectral intensities into
true-color information based on the above results. The classification result can be increased to 99.89%
combining spatial information of targets. Moreover, many edge points were observed (Figure 7b), and
they could affect the classification accuracy due to the changes in spectral intensities. A primary reason
for these misclassified points was that the footprint of the laser beam might simultaneously illuminate
two or more targets. The received reflected energy was composed of echo energy of different targets.
The misclassified edge points can be eliminated by using the two-step classification method proposed
by Chen et al. [24].

4.4. Inadequacies of the Proposed Method

One inadequacy of this true-color 3D imaging method is that determining three optimal spectral
bands to composite true-color will cause spectral resource waste of HSL system. This spectral resource
waste will increase color distortions to some extent. The retrieval accuracy of true-color will be increased
if the spectral information in the blue-violet light regions can be obtained by spectral simulation.

Atmospheric effects can affect the backscatter intensities of the emitted laser [45]. Especially for
airborne LiDAR, atmospheric effects are inevitable and difficult to account for [46]. This wavelength
selection method does not consider the influence of atmospheric effects, which may influence spectral
intensities of the selected spectral bands, further affecting true-color 3D imaging. Furthermore, more
bands could be selected to realize target imaging without considering system cost.

The optimal spectral band combination is not fixed. It will vary with the spectral coverage of
the HSL and the acquired spectrum must include the red, green and blue light regions. True-color
composition using any three spectral bands has not been achieved.



Remote Sens. 2019, 11, 1541 14 of 17

5. Conclusions

The spatial and spectral information of targets obtains in one shot by HSL measurements, which
is helpful for target imaging. In this study, the 32-dimensional HSL covering 431–751 nm spectral
range was used and two color experiments were conducted. The experiment of nine-color card
papers demonstrated the feasibility of a novel true-color three-dimensional (3D) imaging method
based on HSL. In the case of low signal to noise in the blue-violet light regions, this study presented
a combination of three spectral bands (466, 546, and 626 nm) for HSL system to invert true-color.
The inversion results demonstrated that composited true-color can vividly show the natural color of
nine-color card papers, and the color similarity between the natural color of the passive image and the
true-color composited by spectral intensities was higher than 0.9191. The RGB feature can be used for
target classification and the overall classification accuracy of seven different colored objects can reach
up to 91.71% and 90.32% based on SVM and NB classifiers, respectively. Thus, target discrimination
will be improved by converting spectral intensities into true-color. This study can serve as a guide in
the design of new cost-effective and efficient true-color LiDAR systems, and could lay a foundation for
the prevalence of the true-color LiDAR system for operational purposes.
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