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Abstract: Multi-spectral (ms) airborne light detection and ranging (lidar) data are increasingly used for
mapping purposes. Geometric data are enriched by intensity digital numbers (DNs) and, by utilizing
this additional information either directly, or in the form of active spectral vegetation indices (SVIs),
enhancements in land cover classification and change monitoring are possible. In the case of SVIs,
the indices should be calculated from reflectance values derived from intensity DNs after rigorous
calibration. In practice, such calibration is often not possible, and SVIs calculated from intensity
DNs are used. However, the consistency of such active ms lidar products is poorly understood.
In this study, the authors reported on an ms lidar mission at three different altitudes above ground to
investigate SVI consistency. The stability of two families of indices—spectral ratios and normalized
differences—was compared. The need for atmospheric correction in case of considerable range
difference was established. It was demonstrated that by selecting single returns (provided sufficient
point density), it was possible to derive stable SVI products. Finally, a criterion was proposed for
comparing different lidar acquisitions over vegetated areas.

Keywords: multispectral lidar; radiometry; intensity; forest canopy; active spectral vegetation indices;
NDVI; lidar point density; Teledyne Optech Titan

1. Introduction

Light detection and ranging (lidar) established itself as a unique high-resolution remote sensing
technology due to its 3D sampling of land cover and terrain, and its ability to penetrate and characterize
vegetation structures from treetop to ground [1]. Lidar is primarily used to construct detailed digital
elevation models (DEMs), but the intensity channel (an index of received signal power) is increasingly
used in a similar fashion to black and white aerial photographs or single channels in multispectral
imagery. Using passive imagery, numerous spectral vegetation indices (SVIs) have been developed
based on reflectance values derived from image-based DNs for environmental monitoring and change
detection [2–4]. Modern multi-spectral lidar technology allows for active narrow-band vertical spectral
sampling of vegetation profiles and provides an alternative method of deriving SVI maps, active SVIs,
which present a new tool for high resolution thematic mapping, enhanced classification and change
detection, and forest resource monitoring [5].

In general, the main limitation of spectral vegetation indices derived from passive remote sensing
imagery is the dependence on the sun as a source of illumination [6], which leads to sensitivity of
passive SVIs to sun position [7] and cloudiness [8]. In addition, passive SVIs as quantitative indicators
of vegetation phenology characteristics are affected by canopy structural properties, background scene,
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and leaf surface, shape, and orientation [9]. The benefit of lidar, as an active sensor that measures
the backscatter signal, is its ability to collect data without an external source of illumination and
its potential to eliminate multiple scattering and geometric viewing effects [10,11]. Additionally,
for a small-footprint system, background radiance can be easily separated from the canopy response.
The main factors affecting lidar backscatter, besides the spectral reflectance properties of the target,
are the area of effective backscattering surface and the local incidence angle of the target [10]. However,
if the optical path at different wavelength channels is similar, like in the sensors described by Hakala
et al. [12] and Morsdorf et al. [11], or close to each other, like in the Titan ms lidar, it can be assumed
that the influence of these factors is reduced or potentially canceled in active SVIs. Consequently,
to maximize the utility and comparability of active SVIs, it is necessary to study their consistency
through different sensors and/or different survey configurations.

1.1. The Titan Spectral Vegetation Indices

In general, if there are a number of spectral bands of some particular sensor, one can construct,
following Rees [13], two types of indices—the simple ratio index (sρ) and the normalized difference
index (nδ) by the following mathematical expressions:

sρl
m =

ρl

ρm , (1)

nδl
m =

ρl
− ρm

ρl + ρm
. (2)

Here, ρl and ρm denote spectral reflectance of the target (or scene) at the lth and mth channel/band.
There is an obvious non-linear relation between these two indices [14]:

nδl
m =

sρl
m − 1

sρl
m + 1

. (3)

The first SVIs were introduced as a result of an effort to reduce multispectral measurements of
Landsat I to a single value [14,15] and inevitably referred to the available Landsat spectral bands.
Following the same logic, our interest in SVIs can be limited to the wavelengths of 532 nm, 1064 nm,
and 1550 nm, which are used for the Teledyne Optech Titan sensor channels C3, C2, and C1—a brief
description of the system can be found in [16]. Thus, six sρ indices and correspondingly, six nδ indices
can be constructed. However, due to symmetry:

sρl
m =

1
sρm

l
, and (4)

nδl
m = −nδm

l , (5)

only three spectral ratio indices and three normalized difference indices will be considered further
which will be referred to as sρ(Cl,Cm) and nδ(Cl,Cm) with l, m indices corresponding to the Titan’s
channel numbers or, for indicating the actual wavelengths, as sρλl

λm
and nδλl

λm
.

In passive imagery, the abbreviation NDVI (normalized difference vegetation index) is typically
reserved for the combination of red and near-infrared (NIR) bands [4]. This index helps to distinguish
vegetated areas on an image due to the way light reflects from vegetation. Spectral signatures of
green vegetation are well known [17]. Spectral reflectance is low in the visible range, with a peak in
the green region. This is due to absorption of light by chlorophyll and other pigments in leaf tissue.
The following sharp increase in the spectral reflectance curve is referred to as the red edge. After the red
edge, there is a region of relatively high reflectance known as the NIR plateau. The leaf cell structure
dominates the response in this region. After the NIR plateau, there are two regions of lower reflectance
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at approximately 1450 nm and 1950 nm due to absorption by water in the leaf tissue, with a region of
increased reflectance in-between.

From the vegetation spectral reflectance curve [13], it is possible to distinguish vegetated and
non-vegetated areas by adopting a broader definition of NDVI, as the normalized difference in
reflectance between NIR and any of the visible bands. For example, the Advanced Very High
Resolution Radiometer (NOAA AVHRR) sensor has only one band for the visible spectrum. Using this
approach, Titan’s nδ1064 nm

532 nm index is comparable to a commonly defined and utilized NDVI. Moreover,
in narrow-band hyperspectral passive imagery, another index referred as photochemical reflectance
index (PRI) was developed for assessing the canopy photosynthetic light use efficiency of vegetation [18].
This index is based on a change in canopy reflectance at 531 nm with interconversion of the xanthophyll
cycle pigments, a process which is closely linked to light absorption. Currently, the most commonly
used definition of PRI is the normalized difference between the 531 nm and the 570 nm wavebands,
with the latter being used as a reference. However, in the original work [19] Gamon et al. introduced
PRI using our notation, nδ531nm

re f and, assuming that reflectance of the canopy at 1064 nm does not
change with overexposure to light, Titan’s nδ(C2, C3) properties may be comparable to PRI.

For passive imagery, it has been shown that the normalized difference infrared index (NDII),
which utilized near-infrared (0.7–1.3 µm) and middle-infrared (MIR, 1.3–2.5 µm) wavelengths, is highly
correlated with canopy water content [20] and was applied for the detection of plant water stress [21].
In a recent study, Hancock et al. [22], investigated angular reflectance of leaves with a dual-wavelength
terrestrial lidar system and its implications for leaf-bark separation and leaf moisture estimation,
and showed that change in the normalized difference index (NDI, at 1063 nm and 1545 nm) associated
with leaf water content was larger than the change related to the angle of incidence. In our notation,
this index is close to Titan’s nδ1064 nm

1550 nm. In addition, Chasmer et al. [23] proposed an active normalized
burn ratio (ANBR) derived from the ms lidar 1064 nm and 1550 nm channels as an index of burn
severity in vegetated areas, which they compared to the passive normalized burn ratio derived from
Landsat data.

Finally, the normalized difference of the green band and MIR was used by Xu [24] for distinguishing
water bodies from the soil, vegetation, and man-made features. In a recent study, Morsy et al. [25]
suggested using Titan’s NDVINIR-G (nδ1550 nm

532 nm ) for vegetation extraction. It is yet to be found what
this index represents in the canopy.

1.2. Lidar Radiometry

Radiometry characterizes or measures how much electromagnetic energy is associated with some
location or direction in space [26]. In case of lidar this is the target’s intensity response to the emitted
laser pulse. The relationship between transmitted and received laser pulse power in the far field is
given by the radar equation in the form of [27]:

Pr = Pt
D2

4 R2
σ

4θ2
t R2

µatmµsys , (6)

where: Pr is received signal power, Pt —transmitted power, D—aperture diameter, R—system range to
target, µatm—atmospheric transmission factor, µsys—system transmission factor, θt—transmitter beam
width, and σ—effective target cross section.

The effective target cross section is defined as [27]:

σ =
4 π
Ω

ρT ∂A , (7)

where Ω is scattering steradian solid angle of target, ∂A—target area, and ρT target reflectivity. It should
be noted that in current literature (for instance [28]), target reflectivity ρT from [27] is often defined
as the biconical reflectance ρ(Ωi, Ωs), a function dependent on scattered cone Ωs, and the incident
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flux cone Ωi (see Section 1.4 for an extended explanation). However, assuming a standard scattering
diffuse target (Lambertian target) with reflectance ρt, Equation (7) can be re-written:

σ = 4 ρt ∂A . (8)

The area Afp, illuminated by a circular beam at a range R at nadir, is:

A f p =
π R2 θ2

t
4

. (9)

Note that beam divergence θt is provided for only part of the spatial energy beam profile (e.g.,
Gaussian at 1/e or 1/e2), therefore, Afp only approximates the total illuminated area. If a target intercepts
the entire beam, it is referred to as an extended target. If the target area is smaller than the transmitted
footprint, it is referred to as a point target. Thus, for an extended Lambertian target substituting ∂A
with Afp [27]:

σext = π ρt R2 θ2
t , (10)

leads to the radar equation in the form [27]:

Pr = Pt
π D2

16 R2ρt µatmµsys . (11)

For a point Lambertian target, the radar equation can be re-written in the form:

Pr = Pt
π D2

16 R2
4 ∂A
π θ2

t R2
ρt µatmµsys . (12)

In discrete return (DR) systems, it is often assumed that the recorded intensity DN is linearly
dependent on the peak of the received power [29,30].

1.3. Lidar Intensity Metrics

The intensity of small-footprint systems has been shown to be useful in land cover classification [31],
tree species classification [32], fractional cover estimation [33], and carbon estimates in forest
biomass [34]. Although many studies have shown the utility of all returns [33,35], some studies use
the intensity of the first returns [32,36]. Korpela et al. [37] explained that the choice of working with
first returns was made because of insufficient point density of single returns in the study dataset.
Usually, intensity metrics are calculated by averaging values in raster grids of a certain size, after range
normalization, or, if possible, after rigorous calibration [38]. The procedure of rasterization with an
assigned average value can be written for grids of only extended Lambertian targets, with an index i
running through points inside a given cell:

< Pext
r > = < Pi

t
π D2

16 R2
i

ρi
t µ

i
atmµ

i
sys > . (13)

Here the notation <xi> is used to denote rasterization of an attribute x associated with a point from
the lidar point cloud by averaging (< >) through i numbers of attribute values from corresponding i
points inside a grid cell. It is assumed that intensity DN (I) is a linear function of the received peak
power (I = kPr) and range normalization to the range R was applied to intensity DNs. Then, assuming
that atmospheric losses, transmission power, and the system transmission factor are constant, the above
equation can be re-written in the form of (denoting intensity normalized to inverse square range as

Ĩi = Ii
R2

i
R2 ):

< Ĩext
i > = k Pt

π D2

16 R2 < ρi
t > µatmµsys . (14)
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It should be noted that the above simplification due to the assumption of constant atmospheric
losses, transmission power, and the system transmission factor should be a subject of verification to
estimate introduced bias. For instance, in the case of atmospheric losses, Equation (14) disregards
difference due to different ranges at slant angles and adjacent flight lines. In the case of the transmission
power stability and the system transmission factor, it is well known, that manufacturers put special
effort to achieve such characteristics of the sensor, but these factors should be controlled if possible.
The same procedure can be performed for point Lambertian targets, and using the same assumptions,
the corresponding equation can be written as:

< Ĩ pt
i > = kPt

π D2

16 R2<
4 ∂Aiρi

t

π θ2
t R2

i

> µatmµsys . (15)

Or, if we use area Afp from Equation (9) as a normalization value:

< Ĩ pt
i > = kPt

π D2

16 R2 <
∂Ai

Ai
f p

ρi
t > µatmµsys . (16)

Interpretation of a single return intensity from an extended target is quite straightforward,
as it represents an average reflectance over the grid. However, in the case of single returns from
vegetation, this is generally not true. For a lidar beam, vegetation represents a porous 3D target
leading to a lengthening (in time) of the response return and, in effect, causes volumetric backscattering.
The process can be described in mathematical terms as a convolution of the emitted pulse with
a differential effective cross-section of each cluster of inseparable targets [39]. Thus, the peak of
the intensity does not quantitatively correspond to the energy scattered by the particular volume
of the target with the same coefficient as in the case of a flat extended target. However, assuming
a Gaussian distribution along the beam propagation, such returns in full waveform (FWF) systems can
be calibrated by utilizing the pulse width information from the returned signal waveform [40]. In case
of DR systems, this information is not available and one can only assume similarity of volumetric
return widths. Moreover, in case of FWF scanners, a response signal of the system to an emitted pulse
is recorded, and it was shown [40] that this waveform is also a convolution (in time) of the received
signal with the detector response function. The latter should be used for more accurate analysis of
the lidar intensity DNs. Interpretation of the multiple return intensity in rasterized products is more
complex. As can be seen from Equation (16), it is a mix of geometric and radiometric information.

1.4. Angular Effects of Lidar Backscatter

In Equation (7), explicit consideration of the angle between the surface of the target and the lidar
beam was omitted, and lumped into reflectanceρ by assuming the target was an ideal diffuse Lambertian
reflector. This is a common approach in the interpretation of lidar backscatter, and a backscatter
coefficient [28,39] is used to combine the Lambertian assumption with normalization of the lidar
backscatter to the illuminated area. However, in general, the reflectance of a particular object is more
complex and described by a corresponding bidirectional reflectance distribution function (BRDF) [41].
The ideal Lambertian diffuse target assumption simplifies analytical solutions in passive imagery but,
in lidar radiometry, it leads to a well-known cosine correction [40]. Alternatively, an ideal isotropic
diffuse target assumption allows the omission of a cosine correction and simplifies analytical formulas
for active imagery. While both models represent simplifications of an actual BRDF, work by Kukko
et al. [42] suggested that ideal isotropic diffuse reflectance might be a better assumption for certain
materials. For vegetation, the work of Govaerts et al. [43] demonstrated that neither of the simple
diffuse models was correct. Alternatively, a concept of apparent reflectance was developed by Li
et al [44] for calibrating dual-wavelength terrestrial lidar resulting in improved quantification of
vegetation structure and allowing for better comparison of lidar datasets from different instruments
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and campaigns. At the same time, the research on angular effects of lidar backscatter in vegetation is
sparse and among the recent literature, the work of Hancock et al. [22] can be highlighted in which the
authors investigated leaf moisture estimation and leaf-bark separation.

1.5. Relevant Studies and Impetus for the Experiment

As mentioned above, SVIs are widely used and of immediate practical interest in many applications.
However, a challenge in the case of ms lidar is that true surface reflectance is not equivalent to pulse
return signal intensity DN. Reflectance is a spectral characteristic of the target, while the intensity
captured by commercial lidar sensors is an index of peak signal backscatter amplitude, which is further
influenced by sensor and data acquisition characteristics [30]. Without calibration targets [40,45] or
a proven model which accounts for the system and external factors (e.g., atmospheric conditions),
it is not possible to accurately calculate reflectance from intensity DN. Using calibration targets
often is not practical, and, currently, most of the characteristics of a particular system are considered
a manufacturer’s intellectual property and are not readily provided for precise modeling. It is possible,
however, to conduct an independent calibration of a given system for a particular application [46,47].
Consequently, the adoption of SVIs calculated from ms lidar intensity DNs can be foreseen, leading to
questions of how consistent such products might be given the potential range of conditions under
which the DNs could be collected. Moreover, from Equation (16), it can be seen that in the case of split
(multiple) returns, average intensity is not a wholly spectral characteristic, and this raises the question
of how SVIs calculated with this metric might differ from SVIs derived from single return intensities
over the same vegetated area.

In [5], Titan intensity responses were compared with values obtained from three single-wavelength
(corresponding to Titan’s) sensors and noted that the intensity distributions obtained from the Titan
were closer to each other due to the Titan system design considerations. As radiometric targets were
not used for the study above, it is not possible to compare SVIs derived from single-wavelength
sensors to those of Titan. However, if the same ms lidar system is flown over the same area at different
altitudes during the same time window, it is possible to compare the consistency of ratio-based SVIs
derived from the different channels of lidar emission wavelengths for different altitudes. Therefore,
an experimental survey was conducted with the Titan sensor at three different altitudes above ground:
500 m, 1000 m, and 1500 m (note that 1500 m is higher than 1070 m from [5]).

1.6. Hypothesis and Objectives

1.6.1. Single Channel Intensity Ratios

It is expected that, for extended targets, intensity normalized to inverse square range single-channel
ratios follow the radiometric equation (we denoted height above ground as H1 < H2 < H3):

< Ĩext
i >|H1

< Ĩext
i >|H2(3)

=
< ρi

t > |H1

< ρi
t > |H2(3)

µH1
atm

µ
H2(3)
atm

. (17)

For example, increases in ratio (Equation (17)) are expected to be seen due to atmospheric
transmission losses. However, for vegetated areas it is unclear how single-channel ratios of averaged
intensity from all returns, and from single returns, compare to the extended target return ratios.
The underlying assumption is that the emitted signal power output is stable; i.e., the observed
single channel intensity (normalized to inverse square range) ratios should differ more for flight
lines from different altitudes than those collected from the same altitude. Work by Okhrimenko and
Hopkinson [47] reported only 2% difference in derived reflectance means over calibrated targets from
different flight lines at approximately the same flight altitude, with a maximum observed deviation
of 6% for C1 (1550 nm) channel, and 4% for C2 (1064 nm) and C3 (532 nm) channels for the same
Teledyne Optech Titan sensor. Atmospheric losses, on the other hand, can be estimated within 10–50%
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by the Bourges-Lambert law with an extinction coefficient (dependent on spectral and atmospheric
conditions) of approximately 0.1–0.2 km−1 [27] for an increased range of 500 m–1000 m.

1.6.2. Comparison of Point Density Distributions across Three Altitudes

It is understood that with increasing survey altitude, the density of points over vegetated areas
will decrease, both due to sampling geometry and pulse energy extinction, eventually reaching
zero. In Hopkinson et al. [5] it was reported that the average intensity value (a unit-less index) at
a flight altitude of 1070 m AGL (above ground level) was low (12.4) for C3 (532 nm). Thus, for the
purpose of extracting SVIs from ms lidar data, it is crucial to adopt survey parameters (e.g., AGL)
that enable sufficient point density for analysis. Moreover, because of the complex interpretation of
rasterized multiple return intensity products, there is value in rasterized single return products, as their
radiometric meaning and interpretation is simpler.

1.6.3. Consistency of Spectral Vegetation Indices through Different Altitudes

Here, the consistency and behavior of active laser SVIs sampled from different altitudes is
evaluated. The expectation is that spectral indices are consistent over extended targets. However,
over vegetated areas consistency is likely to be influenced by sample point density, differential canopy
attenuation with each channel and raster methodology; all of which require exploration to build
a deeper understanding of active laser SVIs. Firstly, single returns can be filtered out and the volumetric
nature (or returned pulse width) can be expected to be similar over different channels at different
altitudes. Secondly, all returns can be used and averaged intensity can be calculated assuming that the
same structure would provide similar properties of lidar backscatter across all channels.

If intensities are normalized using the inverse square of the target range for calculating the spectral
ratio, it can be written as:

sρlm(< Ĩl
i >,< Ĩm

i >) =
kl Pl

t
π D2

l
16 R2 < ρl

i > µl
atm µ

l
sys

km Pm
t
π D2

m
16 R2 < ρm

i > µm
atm µ

m
sys

. (18)

Neglecting any differences in atmospheric correction for different slant ranges, it can defined as
a shorthand for a constant clm:

clm =
kl Pl

t D2
l µ

l
atm µ

l
sys

km Pm
t D2

m µ
m
atm µ

m
sys
≈ constant , (19)

leading to:

sρlm
(
< Ĩl

i >,< Ĩm
i >

)
≈ sρlm

(
< ρl

i >,
< ρm

i >

clm

)
= clm sρlm

(
< ρl

i >,< ρm
i >

)
. (20)

Repeating the same manipulation with the normalized difference index, we obtain:

nδlm
(
< Ĩl

i >,< Ĩm
i >

)
≈

clm < ρl
i > − < ρm

i >

clm < ρl
i > + < ρm

i >
= nδlm

(
< ρl

i >,
< ρm

i >

clm

)
. (21)

The latter may lead to confusion for a target of different spectral characteristics, while sρ (because
the constant clm can be moved from inside the function) might be easier to compare to each other from
different sensors and datasets. Thus, by calculating spectral ratios and normalized differences at three
different altitudes, the consistency of both indices can be investigated.
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1.6.4. Comparing the Consistency of s% vs. nδ

It is well established, that normalized differences and spectral ratios help to overcome calibration
and atmospheric correction problems in passive imagery [48]. However, with the Titan sensor, because
of non-coincident beam geometries, it is not clear, which family of indices is more consistent throughout
altitudes. If SVIs derived from intensity DNs normalized to the inverse square range at three different
altitudes (H1 < H2 < H3) are calculated, they can be compared to each other across an area of interest
(AOI) by calculating ratios of SVI(H1)/SVI(H2) and SVI(H1)/SVI(H3). Some simplification in notation
is introduced:

< ρl
i >≡ ρ̂

l , (22)

< Ĩl
i > = k̃l µl

atm ρ̂
l , (23)

sρlm(< Ĩl
i >,< Ĩm

i >) ≡ s̃ρlm , and (24)

nδlm(< Ĩl
i >,< Ĩm

i >) ≡ ñδ
lm

. (25)

Then, it can be shown that:

s̃ρlm
H1

s̃ρlm
H2(3)

=
µl

atm|H1

µm
atm|H1

µm
atm|H2(3)

µl
atm|H2(3)

≈ constant , (26)

and

ñδ
lm
H1

ñδ
lm
H2(3)

=

1− k̃m

k̃l

µm
atm|H1

µl
atm|H1

ρ̂m

ρ̂l

1− k̃m

k̃l

µm
atm|H2(3)

µl
atm|H2(3)

ρ̂m

ρ̂l

1 + k̃m

k̃l

µm
atm|H2(3)

µl
atm|H2(3)

ρ̂m

ρ̂l

1 + k̃m

k̃l

µm
atm|H1

µl
atm|H1

ρ̂m

ρ̂l

. (27)

Thus, it can be seen that the s̃ρ ratios at different altitudes should be equal to a constant (at nadir)
over the whole AOI and the ñδ ratios are a complex function of averaged target reflectance, system
spectral irradiance, atmospheric transmittance factor, and system factor. Consequently, by comparing
these two families of indices with each other, it is possible to examine which one is preferable for
classification purposes

2. Data and Methods

2.1. Study Area and Data Collection

Discrete return lidar data were collected at three wavelengths (532 nm, 1064 nm, and 1550 nm)
using the multi-spectral Teledyne Optech Titan system on 28 July, 2016 at flying altitudes of 500 m,
1000 m, and 1500 m AGL over a rural area in south-east Ontario (near the town of Warkworth),
characterized by field crops, forest stands, open pasture, roads, and houses (Figure 1). This site was
chosen due to the authors having access to the farm land property to assess land covers, and the
location being sufficiently far from any other air traffic to enable loitering over the AOI at multiple
altitudes. The data were collected at 75 kHz per channel and with a scan angle of +/−20 degrees.
Scan frequencies (40 Hz, 38 Hz, and 32 Hz) varied with flying altitude (500 m, 1000 m, and 1500 m,
respectively) to maintain a reasonably uniform sampling distribution. Altogether, ten swaths were
collected – five at 500 m, two at 1000 m, and three at 1500 m (Table 1 and Figure 2). Sensor characteristics
are presented in the Table 1. The relationship between the received power and the recorded intensities
was said to be linear over the entire scale (pers.comm. Paul LaRoque, Teledyne Optech, 28 October,
2015). In addition, for channel 2 (1064 nm), a fraction of each outgoing pulse and the return pulse were
recorded by a waveform digitizer at 1ns sampling interval.
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Figure 1. (a) The area of interest (AOI) with highlighted classes; (b) lidar point cloud colorized by
passive RGB imagery. The thematic map was classified based on passive imagery and the familiarity of
the field support team with the AOI. Virtual plots for a coniferous stand and a hay stubble field are
11.3 m radii circle areas chosen for additional analysis.
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Figure 2. Swath coverage of the AOI by lidar at altitudes: (a) 500 m; (b) 1000 m; (c) 1500 m.

Table 1. Lidar parameters for each swath. *PRF (Pulse Repetition Frequency) is given for one channel.

Flight Line (L) L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

<Range>, m 491 540 547 546 536 942 1018 1475 1540 1555
PRF*, kHz 75 75 75 75 75 75 75 75 75 75
SF, Hz 40 40 40 40 40 38 38 32 32 32
Swath, deg 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0
<Speed>, m/s 67 65 65 69 66 63 68 64 59 68
Heading, deg 160 340 160 340 250 160 340 160 340 250

Raw data in the form of a range file and a SBET file (smoothed best estimate trajectory) were
processed in LMS (Lidar Mapping Suite, proprietary software from Teledyne Optech) and, after block
adjustment, point cloud data were obtained with verified accuracy of RMS < 0.06 m in horizontal
separation and RMS < 0.02 m in height separation (LMS report).
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2.2. Scan Line Intensity Banding

During preliminary analysis, it was found that intensity values differed based on the mirror scan
direction of the system. As explained in [49], the effect was due to a slight optical misalignment of the
system, and its amplitude differs with flight altitude, maximum scan angle and scan frequency. As our
study deals with system radiometry, half of the available data were therefore omitted in the radiometric
analysis, but for spatial or geometric products all data were used. Thus, the ground pattern for our
radiometric data became similar to a rotating polygon scanning system with halved data density.

2.3. Comparative Analysis

Lidar data were outputted from LMS in LAS format with intensities normalized to a range of
1000 m. For radiometric analysis, two types of intensity raster grids of 4 m × 4 m were created with
LAStools (rapidlasso GmbH [50]) for each channel and each flight altitude from normalized to range
DN intensity values (note, only one scan direction was used to avoid the banding issue) one raster
grid was calculated by averaging intensity of all returns inside the grid cell, and the second raster
grid was calculated by including only single returns and represents averaged-over-grid cell single
returns’ intensity. These products were used for comparative analysis in the forms of different ratios,
as explained below.

2.3.1. Point Density

Point density raster grids of 2 m × 2 m were calculated with LAStools (rapidlasso GmbH) for
each channel and each altitude separately (note, both scan directions were used for this calculation).
For the full AOI analysis, a summary table was filled with point densities, and numbers of returns,
separated by return type. In addition, point densities of single returns over different vegetation classes
(Figure 1a) were compared to point densities of all returns.

2.3.2. Single Channel Ratios

From intensity raster grids, single channel ratio grids were calculated with ArcGIS Spatial Analyst
(ArcMap, ESRI), separately for all returns and for single returns for two combinations—intensity at
500 m divided by intensity at 1000 m, and intensity at 500 m divided by intensity at 1500 m.

Intensity values from lidar points from the virtual hay stubble plot normalized to range, and further
normalized to the cosine of incidence angle, were compared to evaluate laser power stability. For channel
2, digitized outgoing pulse waveforms were sampled (21 per flight line) from pulses emitted over the
virtual hay stubble plot. For each waveform, the noise level (Noise) was determined by averaging the
first five readings sampled well before the leading edge of the pulse. This noise level was subtracted from
the maximum sampled by the digitizer value (MaxDigiDN) for each waveform. (Note: MaxDigiDN
should not be confused with the true peak value of the waveform, because some fitting algorithm
would be necessary to derive the latter.) The resulting distributions of MaxDigiDN-minus-Noise values
were compared for flight lines 3 and 4 (500 m), 6 and 7 (1000 m), 8 and 9 (1500 m).

2.3.3. Spectral Vegetation Indices Maps

Two types of SVI maps were generated with Spatial Analyst (ArcMap, ESRI) for three normalized
difference indices nδ(C2, C3), nδ(C2, C1), and nδ(C1, C3), together with corresponding simple ratios,
for each altitude—from averaged-all intensity raster grids and from averaged single return intensity
raster grids.

2.3.4. Spectral Vegetation Indices Ratios

Analogous to single channel ratios, SVI to SVI ratios at different altitudes were calculated for
single return intensity products. Raster histograms were outputted for ratios SVI (500 m)/SVI (1000 m),
limiting the range of visualized values in such a way that outliers were not included. Histograms
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allow qualitative comparisons of simple ratio versus normalized difference products derived from
Titan sensor intensity DNs normalized to range.

3. Results

3.1. Point Density Maps

Table 2 presents a summary of the whole dataset. Figure 3 features density maps for all channels
and altitudes separately (note cross line 5 at 500 m AGL vivid on maps a), d), and g)). Wide patterns of
higher density on maps b), e), and i) corresponded to swath overlaps and narrow patterns of higher
density on the same maps, together with ones on the maps c), f), and j) are due to aircraft attitude
variation (e.g., rapid pitch change) during the survey. Most noticeable are white (‘no data’) pixels
inside the AOI over the majority of the vegetated areas on map c), which corresponded to C3 channel
at 1500 m survey altitude. In addition, some empty pixels appeared over vegetated areas on the map b)
C3 channel at 1000 m.
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Table 2. Summary table of the Lidar dataset (note that statistics is given for all points in AOI).

500 m 1000 m 1500 m

C1/C2/C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Wavelength 1550 nm 1064 nm 532 nm 1550 nm 1064 nm 532 nm 1550 nm 1064 nm 532 nm
Point density all 8.05 8.35 7.57 2.55 2.57 1.9 3.14 2.85 2.38
Point density last 5.7 5.71 5.68 2 2 1.8 2.8 2.59 2.38

Spacing all, cm 0.35 0.35 0.36 0.63 0.62 0.73 0.56 0.59 0.65
Number of returns 6,468,902 6,709,651 6,083,545 2,050,152 2,059,638 1,502,604 2,525,347 2,291,578 1,337,302

Footprint diameter at nadir, cm 18 18 35 35 35 70 53 53 105
Single 3,269,931 3,151,688 3,344,283 1,236,739 1,231,412 1,347,771 1,984,104 1,887,007 1,336,696

Double 1,741,204 1,822,086 1,903,834 591,220 606,513 153,513 518,169 368,437 606
Triple 933,480 1,087,821 673,996 181,753 183,627 1,316 22,510 35,130 0

Quadruple 524,287 648,056 161,432 40,440 38,086 4 564 1,004 0
First 4,584,010 4,588,576 4,562,217 1,603,452 1,605,753 1,425,026 2,251,163 2,083,401 1,336,999

Second 1,312,320 1,435,277 1,216,281 366,052 373,756 77,137 266,407 195,979 303
Third 441,804 524,168 264,788 70,566 70,627 440 7,636 11,947 0
Fourth 130,768 161,630 40,259 10082 9502 1 141 251 0
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Table 3 presents a comparison of point densities obtained from single returns to those obtained
from all returns for different vegetation classes (Figure 1a). First, it is evident that C3 (532 nm) does not
provide enough returns at 1500 m for single or all return products. Second, point density of single
returns was always lower than for all returns and was between 0.9 and 3.6 points per sq. meter for all
classes aside from the crop class. Last, for the crop class, the lowest single return point density was 0.4
points per sq. meter (C1 at 1000 m) and roughly equaled one third of the point density for all returns.

Table 3. Point density in points per square meter for lidar returns 0.5 m above ground for all returns
and for single returns for different vegetation classes from Figure 1a. The density for the hay stubble
class (i.e., ground) is presented for a reference to point density from extended targets.

500 m 1000 m 1500 m

C1/C2/C3
Wavelength, nm

C1
1550

C2
1054

C3
532

C1
1550

C2
1064

C3
532

C1
1550

C2
1064

C3
532

Hay stubble 5.3 5.35 5.0 2.5 2.4 2.0 3.2 2.9 2.6
Coniferous all 9.9 10.8 9.7 4.0 3.6 2.6 2.6 2.2 0.1

Coniferous single 3.4 2.7 3.6 2.0 1.5 2.1 2.2 1.5 0.1
Deciduous all 14.3 15.1 12.0 3.3 3.3 1.3 3.4 2.7 <0.1

Deciduous single 2.3 1.9 3.2 0.9 0.9 1.1 2.0 1.6 <0.1
Mixed all 12.7 14.0 11.4 3.7 3.8 1.8 3.0 2.6 0.1

Mixed singles 3.1 2.6 3.5 1.4 1.3 1.6 2.1 1.7 0.1
Crop all 5.0 5.2 5.1 1.3 1.6 1.3 2.7 2.3 0.2

Crop singles 1.1 1.0 0.8 0.4 0.6 0.8 1.1 1.5 0.2

3.2. Single Channel Intensity Ratios

The results of the transmitter optical power stability analysis are presented in Figure 4 and Table 4.
Figure 4 shows boxplots for MaxDigiDN-minus-Noise values of samples of outgoing pulses for lines L3
and L4 (at 500 m), L6 and L7 (at 1000 m), and L8 and L9 (at 1500 m) for channel C2 (1064 nm); the mean
(and SD) values were 295.0 (7.8), 293.8 (5.6), 293.0 (5.3), 295.4 (6.0), 288.0 (4.5), and 290.2 (4.5) respectively.
There was a statistically significant difference between lines as determined by one-way ANOVA test
(p < 0.01). However, the paired T-test showed no statistically significant difference between L3 and L4
(p = 0.59), L6 (p = 0.33), L7 (p = 0.83), and significant difference (p < 0.01) in comparing L3 with L8 and
L9; there was no significant difference between L8 and L9 (p = 0.19). The difference in means between
L3 and L8 (maximum difference among lines) equaled to 7.0, which is 2.4%.

Table 4 summarizes the comparison of intensities normalized to range (Ĩ), and additionally
normalized to the cosine of incidence angle α ( Ĩ

cosα ) for the same altitudes for a virtual hay stubble plot
(Figure 1a) for selected flight lines (Figure 2 and Table 1) for all channels. A Kolmogorov-Smirnov (KS)
test was performed to compare Ĩ (and separately Ĩ

cosα ) from two flight lines at the same flight altitudes
(note difference in range for each flight line). Single channel ratios for the same altitude presented for
all altitudes and channels and compared to single channel ratios (average of two lines from 500 m
divided by average of two lines at 1000 m or at 1500 m) for different altitudes.

Maps, resulting from calculating single-channel ratios, are presented in Figures 5 and 6. Lower
values of pixels over vegetated areas were noted for all-returns maps (Figure 5) in comparison to
values of extended surfaces (fields), and different results for single-return maps (Figure 6) higher ratio
values for vegetated areas in comparison to fields. Table 5 provides the mean values and standard
deviations for the images in Figures 5 and 6, together with p-values of significant difference from
the mean value equal to one for each distribution (95% confidence interval). In addition, p-values of
two-sample Mann-Whitney test for comparing all-returns versus single-returns are presented (95%
confidence interval).
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Table 4. The comparison of range and incidence angle normalized intensities for the same altitudes
for a virtual hay stubble plot (Figure 1a) for selected flight lines (Table 1). KS test comparing
range-normalized intensity from two flight lines at the same altitude (note difference in the Range
column). The number of points (N) presented for each flight line and channel. The single channel ratios
presented for all altitudes and channels and compared to single channel ratios for different altitudes.

Range,
m

C1 (1550 nm) C2 (1064 nm) C3 (532 nm)
N

~
I

~
I

cosα
N

~
I

~
I

cosα
N

~
I

~
I

cosα

L3 515 580 772.2 (51.9) 778,0 (54.0) 486 394.0 (30.5) 396.5 (30.7) 556 136.6 (11.0) 137.5 (11.1)

KS test D = 0.133
p < 0.01

D = 0.095
p = 0.012

D = 0.132
p < 0.01

D = 0.094
p = 0.018

D = 0.038
p = 0.997

D = 0.205
p < 0.01

L4 525 536 759.6 (52.7) 790.2 (54.7) 591 383.9 (28.6) 389.4 (29.0) 418 137.1 (10.8) 142.3 (11.2)
L3/L4 1.07 0.98 1.03 1.02 1.00 1.00

L6 916 280 643.7 (41.6) 646.8 (41.8) 294 328.6 (22.7) 330.2 (22.8) 289 114.6 (8.2) 115.0 (8.3)

KS test D = 0.688
p < 0.01

D = 0.544
p < 0.01

D = 0.436
p < 0.01

D = 0261
p < 0.01

D = 0.630
p < 0.01

D = 0.461
p < 0.01

L7 1023 253 571.3 (36.8) 595.5 (38.0) 266 304.6 (19.0) 317.6 (19.8) 290 102.3 (6.7) 106.7 (7.0)
L6/L7 1.13 1.09 1.08 1.04 1.12 1.08

(L3+L4)/(L6+L7) 1.26 1.26 1.23 1.21 1.26 1.26

L8 1460 250 553.4 (30.8) 553.4 (30.8) 218 301.5 (16.7) 301.5 (16.7) 881 100.8 (7.4) 100.8 (7.4)

KS test D = 0.506
p < 0.01

D = 0.425
p < 0.01

D = 0.330
p < 0.01

D = 0.220
p < 0.01

D = 0.233
p < 0.01

D = 0.184
p < 0.01

L9 1514 212 514.1 (29.6) 522.6(30.1) 198 289.4 (16.7) 294.3 (17.0) 190 97.0 (7.1) 98.7 (7.2)
L8/L9 1.08 1.06 1.04 1.02 1.04 1.02

(L3+L4)/(L8+L9) 1.43 1.46 1.32 1.32 1.38 1.40

Table 5. The mean values and standard deviation for single-channel ratios for the whole AOI.
One sample t-test (for the mean equals to one) p-values are given for 0.95 confidence interval.
Two sample Mann-Whitney test p-values are given for 0.95 confidence interval.

All Returns
Paired Test,

p-Value Single Returns

MEAN SD p MEAN SD p

a) C3(500 m)/C3(1000 m) 1.08 0.20 <0.01 <0.01 1.31 0.23 <0.01
d) C3(500 m)/C3(1500 m) 1.14 0.30 <0.01 <0.01 1.30 0.18 <0.01
b) C2(500 m)/C2(1000 m) 1.19 0.15 <0.01 <0.01 1.31 0.23 <0.01
e) C2(500 m)/C2(1500 m) 1.20 0.17 <0.01 <0.01 1.51 0.33 <0.01
c) C1(500 m)/C1(1000 m) 1.22 0.20 <0.01 <0.01 1.34 0.27 <0.01
f) C1(500 m)/C1(1500 m) 1.29 0.20 <0.01 <0.01 1.60 0.33 <0.01
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in bottom figures. The channels are presented from left to right: C3, C2, and C1. White pixels represent 
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Figure 5. Single channels ratios of normalized to range 1000 m average intensity at 4 m × 4 m grid from
all returns for each channel: Ci (500 m)/Ci (1000 m) in top figures, and Ci (500 m)/Ci (1500 m) in bottom
figures. The channels are presented from left to right: C3, C2, and C1. White pixels represent no data.
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Figure 6. Single channels ratios of normalized to range 1000 m average intensity at 4 m × 4 m grid from
single returns for each channel: Ci (500 m)/Ci (1000 m) in top figures, and Ci (500 m)/Ci (1500 m) in bottom
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3.3. Spectral Vegetation Indices Maps

In Figure 7, there are two types of normalized difference maps compared to corresponding
simple ratios for channels C2 and C3 for each altitude. Figure 7a–f were derived from all returns
and Figure 7g–l were derived from single returns. Maps in Figure 7 are colored with a +/− two
standard deviation color ramp based on values derived from maps g and j for nδ-maps and for s%-maps,
respectively. The similarities over extended targets (e.g., fields) were noted throughout all maps,
consistency of values corresponding to vegetated areas on single-returns indices’ maps, and differences
in pixel values of the same indices over the vegetated areas on maps derived from all returns. Table 6
shows the mean and standard deviation values for each image from Figure 7 and results of two-sample
Kolmogorov—Smirnov tests of normalized differences and spectral ratios at 1000 m and 1500 m were
compared to those at 500 m in the form of D-values and p-values. Note, all p-values were lower than
0.01 due to the large sample size (~80,000) and do not represent practical significance [51]. However,
D-statistics of the test—the maximum distance between cumulative distribution functions—showed
larger values for all returns (e.g., 0.19 for C2C3 at 1000 all) in comparison to single returns (0.02 for
C2C3 at 1000 m singles).

In Figure 8, there are nδ-maps of single returns for C1C2 and C1C3 combinations. The color
scheme is similar to the one on Figure 7—it is colored with a +/− two standard deviation color ramp
based on values derived from the map on Figure 8a for C1C2 maps, and from the map on Figure 8d for
C1C3 maps. Note, there are nil nodata grid cells in the nδ(C1C2) map at 1500 m which was due to
good point density at 1500 m for these channels (Figure 3f,i).

Table 6. The mean values and standard deviation (in brackets) for nδ and s% for the whole AOI
at three altitudes, derived from all returns and from single returns. P-values and D-statistics from
Kolmogorov-Smirnov test are given for comparisons of 500 m products to 1000 m products, and 1500 m
products. All p-values are low because of the large sample size (~80,000) and D-statistics provide values
of practical significance for interpretation.

Index AGL, m
(C2,C3) (C2,C1) (C1,C3)

(1064 nm, 532 nm) (1064 nm, 1550 nm) (1550 nm, 532 nm)

<all> <single> <all> <single> <all> <single>

nδ

500 0.57 (0.10) 0.60 (0.12) −0.14 (0.13) −0.12 (0.16) 0.66 (0.06) 0.68 (0.07)

1000
0.54 (0.09)
D = 0.19,
p < 0.01

0.60 (0.12)
D = 0.02,
p < 0.01

−0.13 (0.14)
D = 0.05,
p < 0.01

−0.11 (0.16)
D = 0.03,
p < 0.01

0.62 (0.08)
D = 0.24,
p < 0.01

0.67 (0.07)
D = 0.03,
p < 0.01

1500
0.50 (0.09)
D = 0.33,
p < 0.01

0.54 (0.08)
D = 0.31,
p < 0.01

−0.11 (0.13)
D = 0.10,
p < 0.01

−0.09 (0.14)
D = 0.11,
p < 0.01

0.60 (0.10)
D = 0.31,
p < 0.01

0.62 (0.08)
D = 0.26,
p < 0.01

s%

500 3.91 (1.11) 4.54 (2.03) 0.78 (0.23) 0.82 (0.27) 5.12 (1.05) 5.53 (1.60)

1000
3.47 (0.85)
D = 0.19,
p < 0.01

4.49 (1.85)
D = 0.02,
p < 0.01

0.80 (0.23)
D = 0.05,
p < 0.01

0.84 (0.28)
D = 0.03,
p < 0.01

4.51 (1.09)
D = 0.24,
p < 0.01

5.42 (1.55)
D = 0.03,
p < 0.01

1500
3.16 (0.75)
D = 0.33,
p < 0.01

3.44 (0.73)
D = 0.31,
p < 0.01

0.83 (0.21)
D = 0.10,
p < 0.01

0.87 (0.24)
D = 0.11,
p < 0.01

4.24 (1.17)
D = 0.31,
p < 0.01

4.49 (1.04)
D = 0.26,
p < 0.01
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Figure 7. nδ (C2, C3) and sρ (C2, C3) for all returns (a-f) and single returns (g-l), averaged over 4 m x 
4 m grid. White pixels represent no data. 

Figure 7. nδ (C2, C3) and s% (C2, C3) for all returns (a–f) and single returns (g–l), averaged over
4 m × 4 m grid. White pixels represent no data.
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3.4. SVI Altitude Ratio Maps and Histograms 

Figures 9-11 show maps of SVIi (500 m) / SVIi (1000 m) with the corresponding histograms for 
images, and maps of SVIi (500 m) / SVIi (1500 m) derived from single returns. The color ramp for all 
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for each image from Figures_9-11. 
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  500 m / 1000 m 500 m / 1500 m 
  Mean(SD) min max Mean(SD) min max 

(C2,C3) 
sρ 1.02(0.20) 0.15 10.10 1.13(0.40) 0.29 11.13 
nδ 1.00(0.62) -11.95 130.06 1.05(0.33) -35.06 28.14 

(C2,C1) 
sρ 1.00(0.18) 0.08 6.09 0.96(0.16) 0.07 5.78 
nδ 0.80(3.83) -103.06 118.32 0.95(4.14) -126.80 123.60 

(C1,C3) 
sρ 1.03(0.21) 0.08 12.68 1.21(0.41) 0.16 12.30 
nδ 1.01(0.09) -5.92 8.43 1.09(0.22) -15.81 12.07 

 
 

Figure 8. nδ (C2, C1) and nδ (C1, C3) for single returns, averaged over 4 m × 4 m grid. White pixels
represent no data.

3.4. SVI Altitude Ratio Maps and Histograms

Figures 9–11 show maps of SVIi (500 m)/SVIi (1000 m) with the corresponding histograms for
images, and maps of SVIi (500 m)/SVIi (1500 m) derived from single returns. The color ramp for all
images is based on +/− two standard deviations of sρ (500 m)/sρ (1000 m) images. The ratio range for
all histograms is from 0.0 to 2.0. Table 7 shows the mean, standard deviation, min, and max values for
each image from Figures 9–11.

Table 7. The mean, standard deviation, min, and max values of each image from Figures 9–11. Note,
that all images for this comparison were derived from single returns.

500 m/1000 m 500 m/1500 m
Mean(SD) min max Mean(SD) min max

(C2,C3) sρ 1.02(0.20) 0.15 10.10 1.13(0.40) 0.29 11.13
nδ 1.00(0.62) −11.95 130.06 1.05(0.33) −35.06 28.14

(C2,C1) sρ 1.00(0.18) 0.08 6.09 0.96(0.16) 0.07 5.78
nδ 0.80(3.83) −103.06 118.32 0.95(4.14) −126.80 123.60

(C1,C3) sρ 1.03(0.21) 0.08 12.68 1.21(0.41) 0.16 12.30
nδ 1.01(0.09) −5.92 8.43 1.09(0.22) −15.81 12.07
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Figure 9. Ratios derived from single return indices at 4 m x 4 m grid: a) ratio of sρ (C2, C3) at 500 m 
to sρ (C2, C3) at 1000 m; b) ratio of nδ ( C2, C3) at 500 m to nδ (C2, C3) at 1000 m; c) Ratios of sρ (C2, 
C3) at 500 m to sρ (C2, C3) at 1500 m; d) ratio of nδ ( C2, C3) at 500 m to nδ (C2, C3) at 1500 m. e) 
histograms for Figures 9 a) and b). White pixels represent no data. 

Figure 9. Ratios derived from single return indices at 4 m × 4 m grid: (a) ratio of sρ (C2, C3) at 500 m
to sρ (C2, C3) at 1000 m; (b) ratio of nδ (C2, C3) at 500 m to nδ (C2, C3) at 1000 m; (c) Ratios of sρ
(C2, C3) at 500 m to sρ (C2, C3) at 1500 m; (d) ratio of nδ (C2, C3) at 500 m to nδ (C2, C3) at 1500 m.
(e) histograms for Figure 9a,b. White pixels represent no data.
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Figure 10. Ratios derived from single return indices at 4 m x 4 m grid: a) ratio of sρ (C2, C1) at 500 m 
to sρ (C2, C1) at 1000 m; b) ratio of nδ (C2, C1) at 500 m to nδ (C2, C1) at 1000 m; c) Ratios of sρ (C2, 
C1) at 500 m to sρ (C2, C1) at 1500 m; d) ratio of nδ (C2, C1) at 500 m to nδ (C2, C1) at 1500 m. e) 
histograms for Figures 10 a) and b). White pixels represent no data. 

Figure 10. Ratios derived from single return indices at 4 m × 4 m grid: (a) ratio of sρ (C2, C1) at 500 m
to sρ (C2, C1) at 1000 m; (b) ratio of nδ (C2, C1) at 500 m to nδ (C2, C1) at 1000 m; (c) Ratios of sρ
(C2, C1) at 500 m to sρ (C2, C1) at 1500 m; (d) ratio of nδ (C2, C1) at 500 m to nδ (C2, C1) at 1500 m.
(e) histograms for Figure 10a,b. White pixels represent no data.
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C3) at 500 m to sρ (C1, C3) at 1500 m; d) ratio of nδ ( C1, C3) at 500 m to nδ (C1, C3) at 1500 m. e) 
histograms for Figures 11 a) and b). White pixels represent no data. 

4. Discussion 

From Table 5, it is evident, and as expected from Equation (17), that the inverse square range 
normalization alone does not normalize intensity DNs from different altitudes to equivalent values. 
While this can be a combination of two factors, transmitter power stability and atmospheric losses, 
from Table 4 and Figure 4 it is clear, that the major driver of the two was atmospheric loss, and 
additional atmospheric correction was needed. Transmitter power stability detected by the digitizer 

Figure 11. Ratios derived from single return indices at 4 m × 4 m grid: (a) ratios of sρ (C1, C3) at 500 m
to sρ (C1, C3) at 1000 m; (b) ratio of nδ (C1, C3) at 500 m to nδ (C1, C3) at 1000 m; (c) Ratios of sρ
(C1, C3) at 500 m to sρ (C1, C3) at 1500 m; (d) ratio of nδ (C1, C3) at 500 m to nδ (C1, C3) at 1500 m.
(e) histograms for Figure 11a,b. White pixels represent no data.

4. Discussion

From Table 5, it is evident, and as expected from Equation (17), that the inverse square range
normalization alone does not normalize intensity DNs from different altitudes to equivalent values.
While this can be a combination of two factors, transmitter power stability and atmospheric losses,
from Table 4 and Figure 4 it is clear, that the major driver of the two was atmospheric loss, and additional
atmospheric correction was needed. Transmitter power stability detected by the digitizer was within
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2% for C2 (1064 nm), maximum variations to up to +/− 5% (Figure 6). Comparison of the flight lines at
the same planned altitude confirmed the expected variations from [47] of ~ 4% for C2 and C3, and ~ 6%
for C1 at altitudes 500 m and 1500 m. Larger variations (up to 9%) obtained at 1000 m altitude (L6 vs.
L7) are likely due to the ~ 100 m difference in range for these two lines and the associated additional
atmospheric losses. However, digitizing a portion of the outgoing pulse for each channel would
provide better control over optical power stability, and additional radiometric calibration targets would
allow separating effects due to atmospheric losses from power stability more clearly.

Furthermore, in Table 5, averages from all-return ratios are smaller in comparison to averages
from single-return ratios. Moreover, from Figures 5 and 6, it is obvious that ratios over vegetated
areas increased in all-return ratio maps and decreased in single-return ratio maps in comparison
to extended-target areas (e.g., hay stubble field). This effect can be explained by referring to the
data in Table 2: with higher altitudes, the proportion of multiple returns decreased (i.e., more single
returns). Multiple returns are, mainly, characteristic of tall vegetated areas. Thus, with ratios of
average-of-all-returns, it was likely dividing intensity averaged over more returns from one pulse by
intensity averaged over fewer returns from one pulse. If in Equation (17), the extended targets were
substituted with point targets and it was assumed that only one emission-pulse was hitting the grid
cell at nadir at two altitudes, then the average intensity at higher altitude would be higher due to fewer
returns per one emitted pulse (Table 2). The average-of-all multiple return intensities is not purely
a spectral characteristic and such a metric cannot be compared through different areas inside the same
raster as a spectral value (e.g., vegetation canopy versus extended targets). In contrast, intensities
derived from single returns, provided sufficient point density (Table 3), tend to possess a more reliable
and consistent spectral characteristic of the target. With increasing altitude, the lidar backscatter signal
weakened over vegetated areas to a greater degree than for extended target areas. This observation
can be explained by the temporal elongation of the lidar backscatter response within tall vegetation,
and an associated increase in the proportion of backscatter below the system detection threshold (i.e.,
a reduction in return signal below the noise floor).

From Figure 3, the green (532 nm) channel produced little energy backscatter from vegetation at
1500 m (in contrast to 1064 nm and 1550 nm), due to no return signal above the noise level. Moreover,
the proportion of split-returns decreased (Table 2) with survey altitude for the Titan sensor. Given the
tendency for lidar acquisition contracts to specify minimum return point densities, this observation
justifies proposing an altitude threshold criterion at which the point density from vegetation is equal to
that from a solid surface (or emission pulse density). Below this threshold altitude, vegetation would
have higher point density than extended targets (solid surface), and above this altitude, vegetation
would display lower point densities than extended targets. This concept is illustrated in Table 8 with
approximate values from the Warkworth dataset.

Table 8. Point density m−2 of vegetated area in comparison to an open area (second value) at one flight
line averaged over 11.3 m radii circle area (virtual plots in Figure 1a).

532 nm 1064 nm 1550 nm

500 m ~ 4.2/2.4 ~ 4.5/2.5 ~4.2/2.4
1000 m ~ 1.0 /1.3 ~2.0/1.3 ~ 2.1/1.3
1500 m ~ 0.04/0.8 ~0.8/0.8 ~ 0.9/0.9

From Figures 7 and 8, it is evident that spectral ratio maps displayed visibly consistent patterns
and ratio values over extended target areas. However, maps derived from single returns are more
consistent (smaller values of D statistics from the Kolmogorov-Smirnov test in Table 6) in comparison
to maps derived from averages-of-all returns—the difference is evident in vegetated areas (Figure 1a
shows delineated areas of vegetation). It can be seen that both sρ and nδ indices exhibited the same
spatial patterns. This indicates that for vegetated areas, SVIs derived from single returns over vegetated
areas might be of more practical use, provided enough point density (Table 3), than those derived from
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averaged all return intensity metrics. A similar result was reported in [52] after the implementation of
a random forest technique for selecting the most useful ms lidar spectral metrics in individual tree
species classification.

9—11 show that the choice of the most consistent SVI between sρ and nδ indices were wavelength
dependent. Contrary to our expectation from Equations (26) and (27), nδ(C2,C3) and nδ(C1,C3) were
superior over sρ(C2,C3) and sρ(C1,C3). However, in the case of the C1 and C2 combination, the spectral
ratio sρ(C2,C1) was more consistent in comparison to nδ(C2,C1). This result is in line with the work
of [53] in which the authors concluded that nδ(C2,C1) (NDVINIR-MIR in the author’s notation) was the
noisiest index among Titan’s normalized differences. The reason for this result might be in the type of
the land cover—the average simple ratio of C2 and C1 channels for the AOI was ~0.8, while simple
ratios of C2 and C3, and C1 and C3 combinations were ~4.5 and ~5.5 (Table 6). The channel dependent
differences in atmospheric attenuation with altitude may lead to a change in intensity response from
the scene, while the normalized difference may be oversensitive in areas where reflectance of C1 and C2
channels are close to each other. Thus, while it is possible to use combinations of nδ(C2,C3), nδ(C1,C3)
and sρ(C2,C1) indices for interpretation and basic classification purposes, such as vegetation and
land-cover within an urban environment, it is recommended to combine all three laser channels for
more sophisticated classification needs (e.g., Hopkinson et al. [5]).

5. Conclusions

It has been shown that atmospheric correction is needed to compare intensity DN values at
different ranges and development of the atmospheric correction model is a next logical step. A simple
optical power stability analysis was performed showing consistency of ~ 4–6% for Teledyne Optech
Titan sensor in this study. However, more rigorous control is recommended to further improve
radiometric products. From the point density analysis, it became clear that the survey at 1500 m AGL
with the Titan sensor did not provide enough lidar backscatter for the C3 channel over forest canopy
areas. A survey altitude threshold criterion was proposed that may bring better comparability of
datasets collected by different sensors and/or by the same sensor over different times and locations.
It was shown, that SVI products derived from single-returns (provided sufficient point density) were
more consistent across three altitudes over vegetated areas in comparison to SVIs derived from all
returns. After comparing the stability of SVIs through different altitudes, it is recommended to use the
combination of nδ(C2,C3), nδ(C1,C3) and sρ(C2,C1) indices for further analysis and classification of
ms lidar point clouds. The next logical step in studying radiometry of ms lidar sensors is radiometric
correction [45] which can be achieved by using ground reflectance targets (e.g., [46,47]).

Author Contributions: Conceptualization, C.H. and M.O.; methodology, C.H. and M.O.; software, C.H.; formal
analysis, M.O.; resources, C.H.; data curation, C.H. and M.O.; writing—original draft preparation, M.O.;
writing—review and editing, C.H. and M.O.; visualization, M.O.; supervision, C.H.; project administration, C.H.;
funding acquisition, C.H. and M.O.

Funding: Okhrimenko acknowledges funding from Alberta Innovates Technology Futures. Hopkinson
acknowledges funding from Canada Foundation for Innovation, NSERC, and Alberta Economic Development
& Trade.

Acknowledgments: Teledyne Optech is gratefully acknowledged for providing the ms lidar sensor for the
airborne missions along with Mike Sitar and Paul LaRocque for their constant help and support. Craig Coburn,
Derek Peddle, Locke Spencer, Laura Chasmer, David McCaffrey, and Craig Mahoney acknowledged for useful
discussions and friendly critique.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Vosselman, G.; Maas, H. Airborne and Terrestrial Laser Scanning; CRC Press: Boca Raton, FL, USA, 2010.
2. Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25,

2365–2407. [CrossRef]

http://dx.doi.org/10.1080/0143116031000139863


Remote Sens. 2019, 11, 1531 24 of 26

3. Lyon, J.G.; Yuan, D.; Lunetta, R.S.; Elvidge, C.D. A change detection experiment using vegetation indices.
Photogramm. Eng. Remote Sens. 1998, 64, 143–150.

4. Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013.
5. Hopkinson, C.; Chasmer, L.; Gynan, C.; Mahoney, C.; Sitar, M. Multisensor and Multispectral LiDAR

Characterization and Classification of a Forest Environment. Can. J. Remote. Sens. 2016, 42, 501–520.
[CrossRef]

6. Baret, F.; Guyot, G. Potentials and Limits of Vegetation Indexes for Lai and Apar Assessment. Remote Sens.
Environ. 1991, 35, 161–173. [CrossRef]

7. Huete, A.R. Soil and Sun angle interactions on partial canopy spectra. Int. J. Remote. Sens. 1987, 8, 1307–1317.
[CrossRef]

8. Jackson, R.D.; Slater, P.N.; Pinter, P.J. Discrimination of Growth and Water-Stress in Wheat by Various
Vegetation Indexes through Clear and Turbid Atmospheres. Remote Sens. Environ. 1983, 13, 187–208.
[CrossRef]

9. Zhang, Y.; Chen, J.M.; Miller, J.R.; Noland, T.L. Leaf chlorophyll content retrieval from airborne hyperspectral
remote sensing imagery. Remote Sens. Environ. 2008, 112, 3234–3247. [CrossRef]

10. Gaulton, R.; Danson, F.; Ramírez, F.; Gunawan, O.; Danson, F. The potential of dual-wavelength laser
scanning for estimating vegetation moisture content. Remote. Sens. Environ. 2013, 132, 32–39. [CrossRef]

11. Morsdorf, F.; Nichol, C.; Malthus, T.; Woodhouse, I.H. Assessing forest structural and physiological
information content of multi-spectral LiDAR waveforms by radiative transfer modelling. Remote. Sens.
Environ. 2009, 113, 2152–2163. [CrossRef]

12. Hakala, T.; Nevalainen, O.; Kaasalainen, S.; Mäkipää, R. Technical Note: Multispectral lidar time series of
pine canopy chlorophyll content. Biogeosciences 2015, 12, 1629–1634. [CrossRef]

13. Rees, W.G. Physical Principles of Remote Sensing, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004.
14. Perry, C.R.; Lautenschlager, L.F. Functional Equivalence of Spectral Vegetation Indexes. Remote Sens. Environ.

1984, 14, 169–182. [CrossRef]
15. Rouse, J., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with

ERTS; NASA Special Publication: Washington, DC, USA, 1974; p. 351.
16. Fernandez-Diaz, J.C.; Carter, W.E.; Glennie, C.; Shrestha, R.L.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.;

Sartori, M. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar.
Remote. Sens. 2016, 8, 936. [CrossRef]

17. Gates, D.M.; Keegan, H.J.; Schleter, J.C.; Weidner, V.R. Spectral Properties of Plants. Appl. Opt. 1965, 4, 11–20.
[CrossRef]

18. Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of
photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia
1997, 112, 492–501. [CrossRef] [PubMed]

19. Gamon, J.; Peñuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in
photosynthetic efficiency. Remote. Sens. Environ. 1992, 41, 35–44. [CrossRef]

20. Hardisky, M.A.; Klemas, V.; Smart, R.M. The Influence of Soil-Salinity, Growth Form, and Leaf Moisture on
the Spectral Radiance of Spartina-Alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83.

21. Hunt, E.R.; Rock, B.N. Detection of Changes in Leaf Water-Content Using near-Infrared and Middle-Infrared
Reflectances. Remote Sens. Environ. 1989, 30, 43–54.

22. Hancock, S.; Gaulton, R.; Danson, F.M. Angular Reflectance of Leaves with a Dual-Wavelength Terrestrial
Lidar and Its Implications for Leaf-Bark Separation and Leaf Moisture Estimation. IEEE Trans. Geosci. Remote.
Sens. 2017, 55, 1–7. [CrossRef]

23. Chasmer, L.E.; Hopkinson, C.D.; Petrone, R.M.; Sitar, M. Using Multitemporal and Multispectral Airborne
Lidar to Assess Depth of Peat Loss and Correspondence with a New Active Normalized Burn Ratio for
Wildfires. Geophys. Res. Lett. 2017, 44. [CrossRef]

24. Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in
remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

25. Morsy, S.; Shaker, A.; El-Rabbany, A.; Larocque, P.E. Airborne multispectral lidar data for land-cover
classification and land/water mapping using different spectral indexes. ISPRS Ann. Photogramm. Remote.
Sens. Spat. Inf. Sci. 2016, 3, 217–224. [CrossRef]

26. Schott, J.R. Remote Sensing: The Image Chain Approach, 2nd ed.; Oxford University Press: Oxford, UK, 2007.

http://dx.doi.org/10.1080/07038992.2016.1196584
http://dx.doi.org/10.1016/0034-4257(91)90009-U
http://dx.doi.org/10.1080/01431168708954776
http://dx.doi.org/10.1016/0034-4257(83)90039-1
http://dx.doi.org/10.1016/j.rse.2008.04.005
http://dx.doi.org/10.1016/j.rse.2013.01.001
http://dx.doi.org/10.1016/j.rse.2009.05.019
http://dx.doi.org/10.5194/bg-12-1629-2015
http://dx.doi.org/10.1016/0034-4257(84)90013-0
http://dx.doi.org/10.3390/rs8110936
http://dx.doi.org/10.1364/AO.4.000011
http://dx.doi.org/10.1007/s004420050337
http://www.ncbi.nlm.nih.gov/pubmed/28307626
http://dx.doi.org/10.1016/0034-4257(92)90059-S
http://dx.doi.org/10.1109/TGRS.2017.2652140
http://dx.doi.org/10.1002/2017GL075488
http://dx.doi.org/10.1080/01431160600589179
http://dx.doi.org/10.5194/isprsannals-III-3-217-2016


Remote Sens. 2019, 11, 1531 25 of 26

27. Jelalian, A. Laser Radar Systems; Artech House: Norwood, MA, USA, 1992.
28. Wagner, W. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements:

Basic physical concepts. ISPRS J. Photogramm. Remote. Sens. 2010, 65, 505–513. [CrossRef]
29. Baltsavias, E. Airborne laser scanning: Basic relations and formulas. ISPRS J. Photogramm. Remote. Sens.

1999, 54, 199–214. [CrossRef]
30. Hopkinson, C. The influence of flying altitude, beam divergence, and pulse repetition frequency on laser

pulse return intensity and canopy frequency distribution. Can. J. Remote. Sens. 2007, 33, 312–324. [CrossRef]
31. Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review.

Remote. Sens. Environ. 2015, 158, 295–310. [CrossRef]
32. Korpela, I.; Tuomola, T.; Tokola, T.; Dahlin, B. Appraisal of seedling stand vegetation with airborne imagery

and discrete-return LiDAR—An exploratory analysis. Silva Fenn. 2008, 42, 753–772. [CrossRef]
33. Hopkinson, C.; Chasmer, L. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote.

Sens. Environ. 2009, 113, 275–288. [CrossRef]
34. García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating biomass carbon stocks for a Mediterranean

forest in central Spain using LiDAR height and intensity data. Remote. Sens. Envtron. 2010, 114, 816–830.
[CrossRef]

35. Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanner. Remote. Sens.
Environ. 2004, 90, 415–423. [CrossRef]

36. Donoghue, D.N.; Watt, P.J.; Cox, N.J.; Wilson, J. Remote sensing of species mixtures in conifer plantations
using LiDAR height and intensity data. Remote. Sens. Environ. 2007, 110, 509–522. [CrossRef]

37. Korpela, I.; Ørka, H.; Maltamo, M.; Tokola, T.; Hyyppä, J. Tree species classification using airborne
LiDAR—Effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor
type. Silva Fenn. 2010, 44, 319–339. [CrossRef]

38. Yan, W.Y.; Shaker, A.; Habib, A.; Kersting, A.P. Improving classification accuracy of airborne LiDAR intensity
data by geometric calibration and radiometric correction. ISPRS J. Photogramm. Remote. Sens. 2012, 67, 35–44.
[CrossRef]

39. Roncat, A.; Morsdorf, F.; Briese, C.; Wagner, W.; Pfeifer, N. Laser Pulse Interaction with Forest Canopy:
Geometric and Radiometric Issues. For. Appl. Airborne Laser Scanning: Concepts Case Stud. 2014, 27, 19–41.

40. Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and calibration of
a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote. Sens.
2006, 60, 100–112. [CrossRef]

41. Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and
Nomenclature for Reflectance; US Department of Commerce, National Bureau of Standards: Washington, DC,
USA, 1977.

42. Kukko, A.; Kaasalainen, S.; Litkey, P. Effect of incidence angle on laser scanner intensity and surface data.
Appl. Opt. 2008, 47, 986. [CrossRef]

43. Govaerts, Y.M.; Jacquemoud, S.; Verstraete, M.M.; Ustin, S.L. Three-dimensional radiation transfer modeling
in a dicotyledon leaf. Appl. Opt. 1996, 35, 6585. [CrossRef] [PubMed]

44. Li, Z.; Jupp, D.L.B.; Strahler, A.H.; Schaaf, C.B.; Howe, G.; Hewawasam, K.; Douglas, E.S.; Chakrabarti, S.;
Cook, T.A.; Paynter, I.; et al. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.
Sensors 2016, 16, 313. [CrossRef]

45. Kaasalainen, S.; Hyyppa, H.; Kukko, A.; Litkey, P.; Ahokas, E.; Hyyppa, J.; Lehner, H.; Jaakkola, A.;
Suomalainen, J.; Akujarvi, A.; et al. Radiometric Calibration of LIDAR Intensity with Commercially Available
Reference Targets. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 588–598. [CrossRef]

46. Okhrimenko, M.; Coburn, C.; Hopkinson, C. Investigating Multi-Spectral Lidar Radiometry: An Overview
of the Experimental Framework. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience
and Remote Sensing Symposium, Valencia, Spain, 23–27 July 2018; pp. 8745–8748.

47. Okhrimenko, M.; Hopkinson, C. Multi-spectral lidar: Radiometric calibration, canopy reflectance,
and vegetation vertical SVI profiles. Remote Sens. 2019, submitted.

48. Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation indices from
different sensor systems. Remote. Sens. Environ 2003, 88, 412–422. [CrossRef]

49. Yan, W.Y.; Shaker, A. Airborne LiDAR intensity banding: Cause and solution. ISPRS J. Photogramm. Remote.
Sens. 2018, 142, 301–310. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2010.06.007
http://dx.doi.org/10.1016/S0924-2716(99)00015-5
http://dx.doi.org/10.5589/m07-029
http://dx.doi.org/10.1016/j.rse.2014.11.001
http://dx.doi.org/10.14214/sf.466
http://dx.doi.org/10.1016/j.rse.2008.09.012
http://dx.doi.org/10.1016/j.rse.2009.11.021
http://dx.doi.org/10.1016/S0034-4257(03)00140-8
http://dx.doi.org/10.1016/j.rse.2007.02.032
http://dx.doi.org/10.14214/sf.156
http://dx.doi.org/10.1016/j.isprsjprs.2011.10.005
http://dx.doi.org/10.1016/j.isprsjprs.2005.12.001
http://dx.doi.org/10.1364/AO.47.000986
http://dx.doi.org/10.1364/AO.35.006585
http://www.ncbi.nlm.nih.gov/pubmed/21127682
http://dx.doi.org/10.3390/s16030313
http://dx.doi.org/10.1109/TGRS.2008.2003351
http://dx.doi.org/10.1016/j.rse.2003.08.010
http://dx.doi.org/10.1016/j.isprsjprs.2018.06.013


Remote Sens. 2019, 11, 1531 26 of 26

50. Isenburg, M. LAStools—Efficient LiDAR Processing Software. (Version 161029, Academic). 2016. Available
online: http://rapidlasso.com/LAStools (accessed on 15 August 2016).

51. Lin, M.F.; Lucas, H.C.; Shmueli, G. Too Big to Fail: Large Samples and the p-Value Problem. Inf. Syst. Res.
2013, 24, 906–917. [CrossRef]

52. Budei, B.C.; St-Onge, B.; Hopkinson, C.; Audet, F.-A. Identifying the genus or species of individual trees
using a three-wavelength airborne lidar system. Remote. Sens. Environ. 2018, 204, 632–647. [CrossRef]

53. Morsy, S.; Shaker, A.; El-Rabbany, A.; Passaro, V.M.N. Multispectral LiDAR Data for Land Cover Classification
of Urban Areas. Sensors 2017, 17, 958. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://rapidlasso.com/LAStools
http://dx.doi.org/10.1287/isre.2013.0480
http://dx.doi.org/10.1016/j.rse.2017.09.037
http://dx.doi.org/10.3390/s17050958
http://www.ncbi.nlm.nih.gov/pubmed/28445432
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Titan Spectral Vegetation Indices 
	Lidar Radiometry 
	Lidar Intensity Metrics 
	Angular Effects of Lidar Backscatter 
	Relevant Studies and Impetus for the Experiment 
	Hypothesis and Objectives 
	Single Channel Intensity Ratios 
	Comparison of Point Density Distributions across Three Altitudes 
	Consistency of Spectral Vegetation Indices through Different Altitudes 
	Comparing the Consistency of s vs. n 


	Data and Methods 
	Study Area and Data Collection 
	Scan Line Intensity Banding 
	Comparative Analysis 
	Point Density 
	Single Channel Ratios 
	Spectral Vegetation Indices Maps 
	Spectral Vegetation Indices Ratios 


	Results 
	Point Density Maps 
	Single Channel Intensity Ratios 
	Spectral Vegetation Indices Maps 
	SVI Altitude Ratio Maps and Histograms 

	Discussion 
	Conclusions 
	References

