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Abstract: Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed
by vegetation are two of the essential biophysical variables used in most global models of
climate, hydrology, biogeochemistry, and ecology. Most LAI/FPAR products are retrieved from
non-geostationary satellite observations. Long revisit times and cloud/cloud shadow contamination
lead to temporal and spatial gaps in such LAI/FPAR products. For more effective use in monitoring
of vegetation phenology, climate change impacts, disaster trend etc., in a timely manner, it is
critical to generate LAI/FPAR with less cloud/cloud shadow contamination and at higher temporal
resolution—something that is feasible with geostationary satellite data. In this paper, we estimate the
geostationary Himawari-8 Advanced Himawari Imager (AHI) LAI/FPAR fields by training artificial
neural networks (ANNs) with Himawari-8 normalized difference vegetation index (NDVI) and
moderate resolution imaging spectroradiometer (MODIS) LAI/FPAR products for each biome type.
Daily cycles of the estimated AHI LAI/FPAR products indicate that these are stable at 10-min frequency
during the day. Comprehensive evaluations were carried out for the different biome types at different
spatial and temporal scales by utilizing the MODIS LAI/FPAR products and the available field
measurements. These suggest that the generated Himawari-8 AHI LAI/FPAR fields were spatially and
temporally consistent with the benchmark MODIS LAI/FPAR products. We also evaluated the AHI
LAI/FPAR products for their potential to accurately monitor the vegetation phenology—the results
show that AHI LAI/FPAR products closely match the phenological development captured by the
MODIS products.

Keywords: Leaf area index (LAI); fraction of photosynthetically active radiation (FPAR); artificial
neural networks (ANNs); Himawari-8 Advanced Himawari Imager (AHI); normalized difference
vegetation index (NDVI); moderate resolution imaging spectroradiometer (MODIS)

1. Introduction

Leaf area index (LAI), defined as one-sided green leaf area per unit ground area in broadleaf
canopies and as the projected needle leaf area in coniferous canopies [1,2], characterizes the vegetation
structure and functioning [3]. Fraction of photosynthetically active radiation (FPAR) measures the
fraction of radiation absorbed by the green vegetation in the 400~700 nm spectrum under specified
illumination conditions [4,5], and hence, characterizes the energy absorption capacity of a canopy.
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Therefore, LAI and FPAR are the two key variables in most climatic, hydrological, biogeochemical,
and ecological models [6-9].

Over the past decades, a number of LAI/FPAR products have been successfully developed from
satellite data, such as coarse-resolution products for the moderate resolution imaging spectroradiometer
(MODIS) [10-12], Visible Infrared Imaging Radiometer Suite (VIIRS) [13-15], and SPOT-Vegetation [16-18],
fine-resolution retrievals from Sentinel-2 [19,20], Landsat [21,22], and downscaling products combining
coarse-resolution and fine-resolution data [23-25]. All of these products were generated from
non-geostationary satellite observations. Asaresult of relatively long revisit times and potential/residual
cloud and cloud shadow contamination, these products are not spatially and temporally continuous.
Fortunately, current geostationary satellites provide an opportunity to generate consistent LAI/FPAR
at much higher temporal frequency and with many more cloud-free observations.

Himawari-8, a new generation Japanese geostationary Earth orbit meteorological satellite,
was successfully launched by the Japan Meteorological Agency (JMA) on 7 October, 2014. Advanced
Himawari Imager (AHI) on-board Himawari-8 has 16 observation bands at 0.5 or 1 km for visible and
near-infrared bands and 2 km for infrared bands, providing images covering the East Asia-Western
Pacific region [26]. The Himawari-8 AHI is an advanced sensor in terms of the number of bands,
spatial resolution, and temporal frequency compared to previous geostationary sensors (e.g., IMAGER
onboard Himawari-7). Most of all, the shortened revisit times are around 10 min for full disk (images
of the whole Earth as seen from the satellites) and 2.5 min for Japan and target areas [27]. With these
advantages, Himawari-8 AHI can provide a new level of capacity for numerical weather prediction,
disaster and environmental monitoring [28].

For effective use in monitoring of vegetation phenology, climate change impacts, and disaster
trends etc., in a timely manner, it is valuable to generate geostationary satellite-based LAI/FPAR
products. Physical methods based on radiative transfer theory were widely used to generate LAI/FPAR
products due to the high accuracy [2,12,14]. However, the methods need several biophysical variables
and are computationally intensive for operational use. Machine learning algorithms are increasingly
being used lately to mimic the underlying physical processes because they are simple, fast, and require
low computer resources once the learning phase is achieved [17,29,30]. The efficacy of the machine
learning approaches depends on the robustness and availability of the training data. Taking the
advantage of MODIS LAI/FPAR products with high confidence and AHI normalized difference
vegetation index (NDVI) product with significant increase in cloud-free observation, machine learning
is a good way to quickly and accurately generate AHI LAI/FPAR products based on the relationship
between LAI/FPAR and NDVI.

In this paper, artificial neural networks (ANNSs) were utilized to estimate AHI LAI/FPAR products
from biome-specific LAI/FPAR-NDVI relationships. This method is simple and computationally
efficient, as there is no need of complex models and biophysical variables. In addition, ANNs have
been successfully used to generate AVHRR LAI/FPAR products with MODIS LAI/FPAR and AVHRR
NDVI as the training inputs [17]. We used 16-day composited MODIS LAI/FPAR climatology over
2011 to 2017 as a benchmark to derive the relationships between LAI/FPAR and NDVI for each of the
biome type representatives of global vegetation. For every 16 days, a biome-specific artificial neural
network was trained over Himawari-8 AHI NDVI, MODIS LAI/FPAR with MODIS land cover data
constraining the biome space, after which daily LAI/FPAR products were estimated with the artificial
neural network. The AHI LAI/FAPR products at 10-min frequency during daytime were also generated
to assess the stability with respect to the illumination angle. The retrieved LAI/FPAR products were
compared to the reference MODIS LAI/FPAR products for spatial and temporal consistency. We also
evaluated the AHI LAI/FPAR products for monitoring vegetation phenology by utilizing MODIS
LAI/FPAR and vegetation index products.

This paper is organized as follows: Section 2 describes the data sets used in this study. Section 3
introduces the methods for estimating AHI LAI/FPAR production and their evaluation. The evaluation
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results of AHI products are presented and analyzed in Section 4. Finally, concluding remarks are
provided in Section 5.

2. Materials

2.1. AHI NDVI Products

Himawari-8 AHI NDVI data from the GEONEX (Geostationary-NASA Earth Exchange)
land-monitoring products are used in this study. For AHI, the GEONEX processing starts with
the 10-min full-disk Himawari Standard Data (HSD) as the input, which are Level 1b top-of-atmosphere
(TOA) radiance data that are radiometrically calibrated and geometrically registered to a regular grid
in the geostationary (or fixed-point) projection [31,32]. The processing pipeline checks and corrects
residue geolocation errors of the input data, computes the satellite viewing angles (static) and the
solar illuminating angles (every time step) for each grid point, and converts the radiances to TOA
bidirectional reflectance factor for the reflective bands (bands 1 to 6) and brightness temperature for
the emissive bands (bands 7 to 16). It then re-projects the data onto a regular grid in the geographic
projection (60°N-60°S, 84°W-204°E for AHI) at spatial resolutions of 0.005° (band 3), 0.01° (bands 1,
2,4), and 0.02° (the rest bands). The AHI grid is part of a global grid system (60°N-60°S, 180°W-180°E)
that is divided in 6° X 6° tiles and numbered from 0 (60°N, upper bound) to 19 (54°S, upper bound)
in the vertical direction and from 0 (180°W, left bound) to 59 (174°E, left bound) in the horizontal
direction. Thus, the spatial domain of AHI spans horizontally from tile 44, crossing tile 59, onto tile 4.

In the next step, the GEONEX processing pipeline runs a customized version of the NASA MAIAC
(multi-angle implementation of atmospheric correction) algorithm [33-35] to screen clouds and cloud
shadows, retrieve aerosol optical thickness, and remove the influence of atmospheric absorption and
scattering from the TOA data to produce surface reflectance (BRF) for the reflective bands (bands 1-6).
The MAIAC algorithm explicitly considers the influences of surface bidirectional reflectance properties
on the TOA reflectance measured by satellite sensors. It thus has the advantages to exploit the high
temporal frequency and the multi-solar-angle observations featured by the geostationary sensors.
The version of MAIAC used in this study is based on the latest MODIS Collection 6 code [35], with new
lookup tables (LUTs) and retrieve algorithms particularly tailored according to AHI spectral bands to
produce high quality surface BRF data.

Lastly, we calculated NDVI using the atmospherically corrected BRFs from the red (band 3) and
the near infrared (NIR; band 4) channels at every 10-min steps. The red band BRFs are averaged
to the 0.01° resolution to match with the NIR band. We then composited the NDVI values at daily,
4-day, and 16-day time windows based on the following quality control criteria: (1) Only the BRF
retrieved with clear atmosphere conditions and low aerosol loadings are selected for composition,
while cloudy/shadowy pixels are discarded; (2) retrievals with lower solar zenith angles (close to local
noon) are given higher priority in the compositing process. Retrievals with solar zenith angles above 65°
are discarded; (3) higher NDVI values are favored in the compositing process if the aforementioned two
criteria are satisfied. In addition, we also examined the product of NDVI and the NIR reflectance [36] as
a measure to filter suspicious high NDVI values (e.g., caused by residual cloud shadows). The results
are considered the best estimate of NDVI over the compositing period.

In this study, the quality controlled 16-day and daily AHINDVI composites during 2016-2017 over
the AHI domain (full disk) were used to generate training data and estimate AHI LAI/FPAR products.

2.2. MODIS Biome Map

A biome map is an important input to train the ANNSs for the estimation of LAI/FPAR. The map is
used as a priori information to constrain the training biome space. MODIS land cover (MCD12Q1,
layer 3) products from the latest version Collection 6 (C6) are used in this study [37]. The Terra and
Aqua combined land cover yearly product MCD12Q1 is at 500 meters spatial resolution and the land
cover type 3 classifies the global vegetation into eight biomes: grasses and cereal crops (biome 1),
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shrubs (biome 2), broadleaf crops (biome 3), savannahs (biome 4), evergreen broadleaf forests (biome 5),
deciduous broadleaf forests (biome 6), evergreen needleleaf forests (biome 7), and deciduous needleleaf
forests (biome 8).

To match the spatial scale of Himawari-8 AHI for the training of ANNSs and estimation of AHI
LAI/FPAR, MODIS biome map was re-projected to the same grid of AHI data and resampled to 0.01°
pixel size by using the most occupied biome type within every four pixels.

2.3. MODIS C6 LAIFPAR Product

During the past decades, the series of MODIS LAI/FPAR products have been widely used in
extensive studies of the land surface and climate modelling [38—42]. The latest Collection 6 (C6) of
MODIS LAI/FPAR products was released in 2015. These have been comprehensively evaluated with
other data sets and validated with ground measurements, giving confidence on their accuracy and
consistency with other existing LAI/FPAR products [43-48]. The C6 LAI/FPAR product provides
LAI/FPAR retrievals at 500 meters pixel size from Terra MODIS (morning overpass), Aqua MODIS
(afternoon overpass), and Terra MODIS + Aqua MODIS combined. There are two types of temporal
compositing periods for these products, 8 days and 4 days. Considering the AHI raw data are
obtained in 10-min interval during the daytime, the Terra and Aqua combined 4-day composited
LAI/PFAR product (MCD15A3H) is used in this study as a benchmark to train ANNSs and evaluate
AHI estimates [49].

The MCD15A3H LAI/FPAR product is a 4-day composite with a pixel size of 500 meters.
The algorithm chooses the “best” pixel available from all the acquisitions of both MODIS sensors
located on NASA’s Terra and Aqua satellites within the 4-day period. The MCD15A3H product
has six science data sets (SDS): (1) Fpar; (2) Lai; (3) FparLai_QC; (4) FparExtra_QC; (5) FparStdDev;
(6) LaiStdDev. The first and second SDS are FPAR and LAI retrievals respectively, and the last two SDS
are the standard deviation of respective FPAR and LAI candidates. The quality control (QC) data are
contained in the third and fourth SDS to indicate the algorithm path (i.e., main algorithm and back-up
algorithm) and contamination (i.e., cloud, cloud shadow, and snow, etc.).

In this study, the MODIS LAI/FPAR products are reprocessed by selecting the good quality
observations retrieved by the main algorithm and without contamination based on the QC layers.
The MODIS LAI/FPAR products in sinusoidal projection system are re-projected to the same grid
of AHI data and resampled to 0.01° pixel size. To create stable ANNSs, climatology of LAI/FPAR is
produced during 2011-2017 over the AHI domain to train ANNSs. The 4-day and 8-day composite
MODIS LAI/FPAR products also perform as reference LAI/FPAR fields to evaluate the estimated
AHI LAI/FPAR.

2.4. MODIS C6 Vegetation Index Product

To evaluate the capability of AHI LAI/FPAR to capture the vegetation phenology, MODIS C6
vegetation index product (MOD13A2) was used in this study as reference [50]. The MOD13A2 Version
6 product provides 16-day composited vegetation index (VI) values on a per pixel basis at 1 km spatial
resolution. There are two primary vegetation index layers: The first is the normalized difference
vegetation index (NDVI); the second is the enhanced vegetation index (EVI), which has improved
sensitivity over high biomass regions. The algorithm for this product chooses the best available pixel
value from all the acquisitions from the 16-day period. The criteria used are low clouds, low view
angle, and the highest NDVI/EVI value.

Provided along with the vegetation index layers, there is a quality assurance (QA) layer indicating
the quality and the absence of contamination. In this study, MODIS NDVI and EVI layers were
reprocessed using the QA flags to mask out pixels with bad quality and contamination, and then
re-projected to the same grid of AHI data and resampled to 0.01° pixel size.
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2.5. Field Sites

To analyze the uncertainty between AHI LAI/FPAR and ground measurements, we synthesized
all available field-measured LAI/FPAR data over the AHI domain (60°S5-60°N, 84° W-204°E) by
investigating DIRECT dataset and literatures. DIRECT is a collection of sites for which ground
measurements are available [3]. Values of measured variable (leaf area index, FAPAR, FCOVER) are
provided as an average value over the 3 km x 3 km area represented by the site. The latest version
DIRECT 2.0 filters forest sites with no understory and expands the time series of up to 2017 with
the inclusion of more than 60 new sites (coming from FP7 ImagineS, ESA and EOLAB campaigns).
DIRECT 2.0 contains 140 sites and 242 samples during the 2000-2017 period. However, there are no
field measurements for the Himawari-8 AHI era (2016—present). Therefore, MODIS LAI in 2012-2013
and in 20162017 was utilized as the intermediary between AHI LAI in 2016-2017 and field measured
LAI in 2012-2013.

There were three different field campaigns over the full disk of AHI, and those include ImagineS [51],
Heihe Watershed Allied Telemetry Experimental (HiWater) [22], and Huailai [52]. The ImagineS project
has conducted a series of single date or multi-temporal field campaigns over 23 sites around the world
during the 2013-2016 period (http://fp7-imagines.eu). The ground measurements have been processed
according to the Committee of Earth Observation Satellites (CEOS) Land Products Validation (LPV)
subgroup guidelines [53]. The observation program HiWater for the Heihe River basin were performed
from 2008 to 2013 [54]. A 3 km X 3 km agricultural area in the Heihe River basin, Gansu province,
China (38°51’N, 100°21’E) is selected as the field site. The Huailai remote sensing experimental station
(40°22’N, 115°46'E) in Beijing, China is also an agricultural site. Corn is the dominant crop in the Hebei
and Huailai sites. The ground measurements are scaled-up using a high resolution imagery (ASTER)
and a sampling strategy (sampling based on priori information), which are later aggregated to the
moderate resolution products. These site-specific LAI/FPAR data are average values over 3 km x 3 km
area which have been used in a number of previous studies to validate LAI/FPAR products [12,29,46,47].

3. Methods

3.1. Estimation of AHI LAI/FPAR Using ANN

A number of studies on various vegetation types have led to the general conclusion that spectral
vegetation indices may be considerably sensitive to LAI/FPAR changes [55-58]. The normalized
difference vegetation index (NDVI) is one of the most extensively used vegetation indices related
to LAI/FPAR [57]. Approaches based on relationships between LAI/FPAR and spectral vegetation
indices are easier to implement operationally and more efficient than physical methods because
ancillary parameters and complex models are not required. The relationship between NDVI and LAI
is nonlinear and exhibits considerable variation among the sites, time, and cover types [57,59]. Thus,
ANNSs, which are able to simulate nonlinear issues [60], were used to generate AHI LAI/FPAR for
different biome types.

ANN are widely used in remote sensing and quantitative analysis because of good predictably
and relevance [30,60]. In this study, we used the feed-forward neural network (FFNN) to estimate
AHI LAI/FPAR data sets. The FFNN models consisted of four neurons in the input layer (the AHI
NDVI, biome type, pixel-center latitude, and pixel-center longitude), 11 neurons in the hidden layer,
and 1 neuron in the output layer (LAI or FPAR). The FFNNs were trained through the back-propagation
process, which is one of the most popular and widely used methods to train neural networks for its
parallel processing, non-linear nature, and self-learning characteristics [61,62]. Figure 1 shows the
process of generating AHI LAI/FPAR products. A FFNN model was generated for each 16-day period
with 16-day composite LAI/FPAR climatology from MODIS and 16-day composite NDVI from AHIL
Daily AHI LAI/FPAR was then estimated from AHI daily NDVI using the corresponding networks.
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Figure 1. Flow chart of generating Advanced Himawari Imager (AHI) leaf area index/fraction of
photosynthetically active radiation (LAI/FPAR) products.

3.2. Comparison between AHI and MODIS Products

In this study, AHI LAI/FPAR and MODIS LAI/FPAR are compared to assess their spatial and
temporal consistency. We evaluated the spatial consistency between the AHI and MODIS products
at global and zonal scales, and the temporal consistency was evaluated at 4-day and seasonal scales,
respectively. To compare AHI and MODIS products reasonably, several issues need to be addressed.
First, the different geometrical characteristics caused by discrepancies in uncertainty of geolocation,
point spread function (PSF), spatial resolution and projection system should be considered because
the comparison needs to be performed over the same area [63]. Thus, the MODIS products were
re-projected to the same grid of AHI data and resampled to 0.01° pixel size. Studies suggested that
it is an effective way to reduce potential geolocation errors and PSF impacts by comparing products
over a much larger area than their native spatial resolution [3]. To address this issue, we compare AHI
LAI/FPAR and MODIS LAI/FPAR over a 3 km x 3 km area at site scale as proposed by the CEOS LPV
subgroup guidelines [53]. Quality control is the second issue that should be considered. For both
AHI and MODIS products, quality control was performed to mask out pixels contaminated by clouds,
cloud shadow, cirrus, and snow. Only retrievals from the main algorithm were used in our study due
to the low accuracy of back-up algorithm retrievals. Figure S2 details the selection of valid pixels
from MODIS products based on “FparLai_QC” and “FparExtra_QC” layers. In addition, the biome
classification map (see Figure S1) was used to identify vegetated pixels and the specific vegetation type
when spatially and temporally comparing the AHI and MODIS products. A series of statistical metrics
(mean, standard deviation (std.), root mean square error (RMSE), and coefficient of determination (R?)
were used to quantify the difference between AHI and MODIS products.

3.3. Site Selection

In our study, field sites were selected to validate AHI LAI/FPAR. The potential of AHI products to
capture phenology was evaluated over deciduous broadleaf forests sites. In order to reduce unexpected
errors from land surface heterogeneity, a criterion termed information entropy [46] was adopted
to select sites with a homogeneous land surface condition. The information entropy (E) is defined
as follows:
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11
E= ‘Z. (P; xlog, P;), 1)
i=1

where i represents the specific biome type from MODIS land cover product, P; is the proportion of
the area covered by the i-th biome type (note that if a biome type is not present at the site (P; = 0),
its contribution to the entropy is simply zero). The value 11 corresponds to the total number of MODIS
land cover types. We selected the sites if the E of a site was below 1.

4. Results

4.1. Daily Cycle

We adopted ANNSs to estimate the daily AHI LAI/FPAR. To evaluate the AHI products in a daily
cycle, the AHI LAI/FPAR and NDVI are presented in a 10-min interval during the daytime, as shown in
Figure 2. We selected three sites for different biomes (shrubs, evergreen broadleaf forests, and deciduous
broadleaf forests) on three separate days in 2017 to analyze the daily cycle. As the sites are in different
time zones, the universal time—Greenwich Mean Time (UTC/GMT)—was used. Figure 2 shows
a stable pattern for both LAI/FPAR and NDVI aggregated on different sites at different dates. The results
demonstrate that reliable daily NDVI can be composited from the raw data at a 10-min frequency,
which will contribute to the estimation of good-quality LAI/FPAR.
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Figure 2. Daily cycle for three biome types on different days of 2017: (a) LAL (b) FPAR; (c) normalized
difference vegetation index (NDVI).

4.2. Comparison with MODIS LAI/FPAR

We generated AHI daily LAI/FPAR over the AHI domain from 2016 to 2017 using ANNSs trained
with MODIS LAI/FPAR and AHI NDVI. MODIS LAI/FPAR was used as the reference data to evaluate
the estimated AHI LAI/PFAR in terms of both spatial and temporal consistency.

4.2.1. Spatial Consistency

The spatial patterns of LAI from AHI and MODIS and the difference between them over the AHI
domain during the summer (13-20 August) of 2017 are presented in Figure 3, while Figure 4 depicts the
patterns of FPAR. There are fewer gaps (no-data pixels) in AHI LAI/FPAR maps than those in MODIS
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LAI/FPAR maps (the missing data rate is 10.83% for AHI LAI/FPAR, but up to 26.77% for MODIS
LAI/FPAR). It suggests that AHI provides more clear observations with much less contamination,
which will contribute to monitoring vegetation phenology, disaster trends, etc. This benefits from the
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Figure 3. Comparison of spatial distributions of LAI from AHI and moderate resolution imaging
spectroradiometer (MODIS) products over the whole AHI domain during the summer (13-20 August)
of year 2017: (a) AHI LAIL (b) MODIS LAIL (c) LAI difference between AHI and MODIS. No-data
pixels in white color are observations contaminated by cloud, cloud shadow, aerosol, etc. The missing
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Figure 4. Comparison of spatial distributions of FPAR from AHI and MODIS products over the whole
AHI domain during the summer (13-20 August) of year 2017: (a) AHI FPAR; (b) MODIS FPAR; (c) FPAR
difference between AHI and MODIS. No-data pixels in white color are observations contaminated by
cloud, cloud shadow, aerosol, etc. The missing data rate of AHI FPAR (10.83%) is much lower than that
of MODIS FPAR (26.77%) benefiting from more frequent observations.

For both AHI and MODIS, LAI and FPAR show similar distribution patterns. The LAI/FPAR
pattern closely corresponds with the distribution of biome types—high LAI/FPAR values over forests
and low values over non-forest vegetated areas. Figure 3a,b and Figure 4a,b show that the LAI/FPAR
values are high (up to 7 for LAl and up to 1 for FPAR) over tropical evergreen forests (i.e., Indonesia rain
forests) but low over bare lands, grasslands, and shrublands (i.e., Northwestern China and Australia).

The valid AHI LAI (Figure 3a) and MODIS LAI (Figure 3b) show very similar spatial distributions.
The differences between LAI values from AHI and MODIS shown in Figure 3c are mostly within
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a small range (+0.5). Therefore, the difference map suggests no systematic bias between AHI LAI and
MODIS LAL Larger LAI differences (underestimation) appear in high LAI domains, while smaller
differences are located at relatively low LAI values. This is due to the low correlation between NDVI
and LAT in the case of deciduous canopies because of the fact that large LAI saturates the NDVI [64].
As it is asserted in a previous study, for a pure forest pixel, NDVI values reach a maximum of 0.8 for
LAl near 3 and greater LAls are not distinguishable with NDVI data [65]. Similar spatial patterns of
FPAR from AHI and MODIS and the difference map between them are shown in Figure 4. The AHI
FPAR values agree well with MODIS FPAR with small differences (mostly within +0.10) between them.
The FPAR difference map (Figure 4c) between AHI and MODIS shows much less underestimation in
high domain than LAI difference (Figure 3c). This can be explained by the fact that FPAR is linearly
proportional to NDVI without saturation, while LAI is nonlinearly connected to NDVI with saturation
in high domain (Figure S3).

To detail the differences between AHI and MODIS LAI/FPAR products, the histograms of
LAI/FPAR differences as well as the respective means and standard deviations are shown in Figure 5.
The histograms of LAI/FPAR differences demonstrate good consistency between AHI and MODIS, as
more than 90% of LAI differences are within the range from —0.1 to 0.35, and more than 85% of FPAR
differences are between —0.06 to 0.14. The statistics show that the AHI and MODIS LAI/FPAR products
agree well as the mean difference across all biomes is 0.0973 for LAI and 0.0481 for FPAR. A large LAI
discrepancy is observed in four forest biomes (biomes 5-8), which is probably because of the saturation
issue in dense vegetation canopies [47].
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Figure 5. Histogram depicting LAI/FPAR comparison between AHI and MODIS over the whole domain
during the summer (13-20 August) of year 2017: (a) LAIL (b) FPAR.

The AHI and MODIS LAI/FPAR products are further compared for specific biome types. Figures 6
and 7 depict the density scatter plots for LAI and FPAR 8-day composites during the summer
(13-20 August) of year 2017. The eight biome types are grouped into three broad categories (biomes 1-4:
non-forest; biomes 5-6: broadleaf forests; biomes 7-8: needleleaf forests). The R?, RMSE, and regression
equations are also provided. For all biomes (Figures 6a and 7a), a good consistency is seen for both LAI
and FPAR estimates, as the density scatters are distributed along the 1:1 line with R? values of 0.840
for LAL and 0.881 for FPAR, and RMSE values of 0.681 for LAI and 0.090 for FPAR. The comparison
between AHI and PROBA-V LAI/FPAR products for all biomes also show a good agreement (Figure 54).
From Figure 6b—d, we can see that the forest biomes (biomes 5-6 and biomes 7-8) show underestimation
(mean AHI LAI is lower than mean MODIS LAI), and non-forest biomes show better agreement
between AHI and MODIS than forest biomes (biomes 5-6 and biomes 7-8) for LAI, since R? value
for non-forest biomes (0.766) is much higher than that for forest biomes (0.270 for biomes 5-6 and
0.238 biomes 7-8) and RMSE value for non-forest biomes (0.563) is lower than that for forest biomes
(0.678 for biomes 5-6 and 0.631 biomes 7-8). This conclusion is also consistent with the spatial patterns
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of LAI/FPAR in Figure 3c. Not surprisingly, this is partially due to the reflectance saturation in dense
vegetation canopies. For FPAR (Figure 7b—d), the statistical information shows a different trend.
Overestimation is observed for both non-forest and forest biomes and there is no saturation in high
domain because FPAR is lineally connected to NDVI (Figure S3).
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Figure 6. Density scatter plots of biome-specific AHI and MODIS LAI during the summer (13-20 August)
of year 2017: (a) all biomes (biomes 1-8); (b) non-forest biomes (biomes 1-4); (c) broadleaf forest biomes
(biomes 5-6); (d) needleleaf forest biomes (biomes 7-8).

For a more comprehensive comparison between AHI and MODIS LAI/FPAR, the latitudinal
distributions at two dates (10-17 February and 13-20 August) in 2017 are presented in Figure 8, and the
detailed mean and standard deviation (std.) of zonal LAI/FPAR differences are shown in Table 1.
The LAI/FPAR from AHI and MODIS show consistent latitudinal distributions and coincide well at
most latitude bands. There is an apparent peak in the tropics (23°N-23°S), due to dense vegetation
coverage in the tropical rain forests of Southeast Asia. In this latitude band (23°N-23°S), the LAI/FPAR
in February match well with those from August, which can be explained by ample illumination at
all seasons in the tropics. The northern hemisphere shows much higher LAI/FPAR in August than in
February, while there is no obvious seasonal difference in the southern hemisphere. This is because the
dominant biome types in the southern hemisphere are savannas, shrubs, and grasses that have smaller
seasonal variations than the forests that dominate the northern hemisphere (Figures 51, S5, and S6).
Adams et al. reported that in dry and warm climates, which cannot support tree cover, the natural
vegetation present is mainly open grasslands and shrublands [66]. This can explain the fact that the
dominant biome types in the southern hemisphere are savannas, shrubs, and grasses. Larger LAI/FPAR
differences between AHI and MODIS are observed in higher LAI/FPAR domain, which indicates
that the differences depend on the LAI/FPAR magnitudes. One possible reason is that the saturation
rate increases with increasing LAI [47]. Table 1 demonstrates the same seasonal and zonal patterns,
for all the four latitudinal bands (>45°N, 23°N-45°N, 23°5-23°N, 23°S-45°S), the LAI/FPAR differences
between AHI and MODIS in August are larger than in February. Among the four zones, the latitudinal
band 23°N-23°S has the largest LAI/FPAR differences in both February and August, with 0.130 + 0.431
in February and 0.194 + 0.525 in August for LAI, and 0.048 + 0.074 in February and 0.061 + 0.079 in
August for FPAR.
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Figure 7. Density scatter plots of biome-specific AHI and MODIS FPAR during the summer
(13-20 August) of year 2017: (a) all biomes (biomes 1-8); (b) non-forest biomes (biomes 1-4); (c) broadleaf
forest biomes (biomes 5-6); (d) needleleaf forest biomes (biomes 7-8).
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Figure 8. Latitudinal distributions of LAI and FPAR. The latitude interval is 0.1°. AHI and MODIS
products are red and blue lines, respectively. Solid and dashed lines depict February and August in
2017: (a) LAL (b) FPAR.
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Table 1. Mean and standard deviation of zonal differences of LAI/FPAR between AHI and MODIS.

LAI FPAR
45N Feb  0.031+£0.197 —0.013 % 0.042
Aug  —0.191+0.856  0.049 + 0.102

o o Feb -0.031+0557 0.012 = 0.091
ZNASN - Aug  0.107+0964  0.054 +0.118
e o Feb 00170726  0.032 +0.073
252N Aug 01020653 0.025 +0.083
e o Feb 0130 +0431  0.048 + 0.074
SIS Aug 01940525 0.061 +0.079

4.2.2. Temporal Consistency

Figure 9 shows the seasonal trajectory of AHI and MODIS LAI/FPAR 4-day composite over the
AHI domain during the period of 2016 to 2017. The 4-day LAI/FPAR time series of AHI and MODIS
and the mean difference (the difference was first calculated in each 0.01° x 0.01° grid, and then the mean
was calculated for all grids) between them are depicted here, and the missing data rate of each 4-day
composite are also provided. Figure 9 indicates that AHI provides many more cloud-free observations
since its missing data rate is much lower than MODIS during the whole year. This is due to the much
higher temporal resolution of AHI, which will benefit environment monitoring, climate change, etc.
The time series from both sensors shows similar seasonality. In both cases, two obvious peaks in
a year can be observed due to staggered seasonality in the two hemispheres. As expected, higher
LAI/FPAR values (up to 1.9 for LAI and 0.53 for FPAR) appear in the boreal summer (e.g., August),
while much lower LAI/FPAR values (about 1.3 for LAl and 0.39 for FPAR) are observed during boreal
winter (e.g., February). This is because a larger proportion of vegetation exists in northern hemisphere.
The LAI/FPAR differences between AHI and MODIS also show similar seasonal behavior with larger
differences (up to 0.2 for LAI and 0.07 for FPAR) observed in high LAI/FPAR domain (e.g., boreal
summer) and smaller differences (about 0.08 for LAI and 0.03 for FPAR) in low LAI/FPAR domain
(e.g., boreal winter). The differences are closely related to the LAI/FPAR magnitudes, possibly due to
saturation in dense forests. Figure 9 demonstrates that the LAI/FPAR from AHI and MODIS agree
well with small mean differences of 0.078 for LAI and 0.038 for FPAR. The biome-specific seasonal
patterns of AHI and MODIS LAI/FPAR are depicted in Figures S5 and S6. For each biome, the seasonal
variations in AHI and MODIS LAI/FPAR products also agree well. The LAI/FPAR of non-forest
biomes (biome 1-4) is much lower than forests (biome 5-6). Shrublands (biome 2) and evergreen
broadleaf forests (biome 5) show weak seasonal LAI/FPAR variations, while deciduous broadleaf
forests (biome 6) reach its peak (around 5 for LAl and 0.8 for FPAR) during boreal summer and drops to
bottom (about 1 for LAI and 0.4 for FPAR) in winter. The results illustrate a high temporal consistency
between AHI and MODIS LAI/FPAR products.

Table 2 details the comparison between AHI and MODIS LAI/FPAR in terms of temporal
consistency at a seasonal scale for each biome type. We calculated the mean and std. of LAI/FPAR
differences between AHI and MODIS for each biome type at a 3-month interval (March-May (MAM),
June—August (JJA), September-November (SON), and December—February (DJF)) during 2016-2017.
Although the LAI/FPAR differences between AHI and MODIS vary by biome and season, mean and
std. of the differences are presented. The statistics show that the largest mean LAI/FPAR differences
appear in JJA among the four seasons for most biomes, and the largest std. is observed in DJF for most
biomes. This is because of the high LAI/FPAR values in JJA and growing seasons in DJE. Among all
biome types, forest biomes (biomes 5-8) show larger LAI differences with much larger std. values than
non-forest biomes (biomes 1-4), and the forest biomes (biomes 5-8) show underestimations of LAI
(negative mean differences) due to saturation of NDVI in high domain (Figure S3).
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Figure 9. Temporal comparison between AHI LAI/FPAR and MODIS LAI/FPAR over the AHI domain.
Global mean LAI/FPAR time series from AHI and MODIS at a 4-day interval during 20162017 are
shown here. The top panel shows the missing data rate, while the bottom two panels show the seasonal
variation of AHI and MODIS LAI/FPAR retrievals and the mean of difference between them: (a) LAL;

(b) FPAR.

Table 2. Biome-specific mean and standard deviation of LAI/FPAR differences between AHI and
MODIS at a seasonal scale during 2016-2017.

LAI FPAR
Biome Type
MAM JJA SON DJF MAM JJA SON DJF
Biome 1 0.02 +0.43 0.06 + 0.36 0.03+0.34 0.05+067 0.02+0.09 0.02+0.08 0.02+0.08 0.08+0.12
Biome 2 0.02 +0.20 0.04 +0.15 0.04+0.14 0.06+0.18 0.01+0.05 0.03+0.06 0.02+0.06 0.03=+0.06
Biome 3 0.05 + 0.56 0.06 + 0.49 0.04+052 013+0.77 0.03+0.09 0.02+0.09 0.03+0.09 0.06+0.10
Biome 4 0.06 + 0.66 0.11 + 0.65 0.01+0.66 0.03+0.72 0.03+0.09 0.03+0.09 0.02+0.10 0.02+0.09
Biome 5 014+119 -022+114 -010+1.28 014+122 0.05+0.09 0.06+0.09 0.04+0.10 0.05+0.10
Biome 6 -0.04+085 017+049 -006+0.82 0.02+112 0.04+011 0.04+010 0.03+0.10 0.03+0.09
Biome 7 0.07+094 -0.05+096 -0.07+0.83 0.07+121 0.04+013 0.04+015 0.03+0.13 0.05+0.12
Biome 8 -0.10+056 027+0.78 -0.04+045 0.03+112 0.03+0.09 0.10+0.16 0.03+0.09 0.03+0.10

The “MAM”, “JJA”, “SON”, and “SON” stand for “March-May
and “December—February”, respectively.

4.3. Validation with Field Measurements

v

, “June-August”, “September—-November”,

The uncertainty of both AHI and MODIS LAI products was evaluated using ground measurements,
as shownin Figure 10. There are no field measurements available over the AHI domain during 2016-2017.
Therefore, we used the MODIS LAI in 2012-2013 and 20162017 as the intermediary between AHI
LAI in 2016-2017 and the latest available field measurements in 2012-2013 LAI to address the time
inconsistency issue. The MODIS LAI products were validated with the field measured LAI during
2012-2013, and then, the AHI LAI products were compared to the MODIS products in the same field
sites during the same period of 2016-2017. For each site, the mean values of AHI and MODIS LAI
over a 3 km x 3 km area were used to compare with field measurements or between the two products.
Table S1 describes the characteristics of the available ground sites and aggregated LAL
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Figure 10. Comparison between field measurements and LAI products: (a) MCD LAI versus field
measured LAI (2012-2013); (b) AHI LAI versus MCD LAI (2016-2017).

Figure 10a shows the degree of agreement between the MODIS LAI and field measured LAI
(R? of 0.65 and RMSE of 0.58). Most of the data are located within +0.7 LAI bias, indicating that the
uncertainty of MODIS LAI at the field sites is less than +0.7 LAI A better agreement between AHI and
MODIS LAI can be observed from Figure 10b (R? of 0.77 and RMSE of 0.45), indicating that the AHI
LAI match well with MODIS LAI These results in Figure 10 indirectly demonstrate that the uncertainty
of AHI LAl is within a small range. A larger inconsistency between AHI and MODIS LAI appears in
high LAI domains, which agrees with the conclusions from Section 4.2.

4.4. Evaluation of Phenology

We selected four sites to evaluate the potential of AHI LAI/FPAR to capture phenology in
comparison to MODIS products (one for grasses and cereal crops, one for broadleaf crops, and two
for deciduous broadleaf forests). Figure 10 shows the evaluation results of phenology. There are
more gaps in MOD EVI and MOD NDVI because MOD data are observations only from Terra MODIS
while MCD data are Terra and Aqua combined. For each site, the AHI LAI/FPAR shows the same
phenological development as MODIS products because the AHI LAI/FPAR lines agree well with
MODIS LAI/FPAR, NDVI, and EVI lines. The two deciduous broadleaf forest sites show very similar
pattern with an obvious peak during 100-300 of 2017 (Figure 11c,d), which is the growing season.
As expected, the deciduous broadleaf forest (about 200 days) have much longer growing season than
grasses and cereal crops (about 100 days) and broadleaf crops (about 125 days). The results indicate
the ability of AHI LAI/FPAR to monitor vegetation phenological change.
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Figure 11. Phenology of four sites in 2017. The upper two panels show phenological development
from LAI and FPAR products and the following two panels show that from enhanced vegetation
index (EVI) and NDVI products: (a) Biome 1: grasses and cereal crops (115.3258°E, 45.1314°N);
(b) biome 3: broadleaf crops (122.2832°E, 42.3646°N); (c) biome 6: deciduous broadleaf forests
(134.0063°E, 44.1454°N); (d) biome 6: deciduous broadleaf forest (112.4660°E, 36.8757°N).

5. Conclusions

Most of the existing LAI/FPAR products are generated from non-geostationary satellite
observations. The products generated from such data are not spatially and temporally continuous due to
relative long revisit times and cloud- and cloud-shadow contamination. Fortunately, the AHI onboard
geostationary satellite Himawari-8 provides observations of the Earth surface at a 10-min or even
higher temporal frequency. The up-to-minute remote sensing data can be composited to minimize such
contamination, and this can generate products that can contribute to the numerical weather prediction,
disaster and environmental monitoring. The purpose of this study was to generate Himawari-8 AHI
LAI/FPAR products for effective use in most global models of climate, biochemistry, and ecology, and to
evaluate the AHI LAI/FPAR products with reference to the MODIS LAI/FPAR products.

We utilized ANNSs in a simple and efficient approach to estimate the AHI LAI/FPAR. Several
comparisons between the AHI and MODIS products indicate good agreement and overall consistency
between them. Specifically, the estimated LAI/FPAR from AHI agrees well with those from MODIS in
terms of both spatial and temporal scales. Further, validation with ground truth data shows acceptable
uncertainty in the derived AHI products. Additionally, we also evaluated the AHI LAI/FPAR products
for their potential to accurately monitor vegetation phenology, and our results show that AHI LAI/FPAR
products capture the phenological development in a manner similar to the MODIS products.

The validation of AHI LAI product uncertainty in this study is limited by the availability of ground
measurements. More spatially and temporally well-distributed field measurements are required to
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perform comprehensive and robust validation. The comparison between AHI and MODIS products
shows large differences in high LAI/FPAR domain and the results in our study show overestimation
of FPAR. Future work should therefore focus on optimizing the main MODIS algorithm, i.e., the one
based on radiative transfer theory, for retrieval of AHI LAI/FPAR fields, with the ANNs constituting
the back-up algorithm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/13/1517/s1,
Figure S1: Biome map used in this study. Figure S2: The quality control based on “FparLai_QC” and “FparExtra_QC”
layers for MODIS LAI/FPAR products. Figure S3: The relationship between NDVI and LAI/FPAR. Figure S4:
Comparison of seasonal variations in LAI between AHI and MODIS over AHI domain for each biome type
during 2017. Figure S5: Comparison of seasonal variations in FPAR between AHI and MODIS over AHI
domain for each biome type during 2017. Table S1: Characteristics of the available ground sites and aggregated
LAI_effective/LAI_true values over a 3 km X 3 km area.
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