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Abstract: Accurate mapping of vegetation is a premise for conserving, managing, and sustainably
using vegetation resources, especially in conditions of intensive human activities and accelerating
global changes. However, it is still challenging to produce high-resolution multiclass vegetation map
in high accuracy, due to the incapacity of traditional mapping techniques in distinguishing mosaic
vegetation classes with subtle differences and the paucity of fieldwork data. This study created a
workflow by adopting a promising classifier, extreme gradient boosting (XGBoost), to produce accurate
vegetation maps of two strikingly different cases (the Dzungarian Basin in China and New Zealand)
based on extensive features and abundant vegetation data. For the Dzungarian Basin, a vegetation
map with seven vegetation types, 17 subtypes, and 43 associations was produced with an overall
accuracy of 0.907, 0.801, and 0.748, respectively. For New Zealand, a map of 10 habitats and a map of 41
vegetation classes were produced with 0.946, and 0.703 overall accuracy, respectively. The workflow
incorporating simplified field survey procedures outperformed conventional field survey and remote
sensing based methods in terms of accuracy and efficiency. In addition, it opens a possibility of
building large-scale, high-resolution, and timely vegetation monitoring platforms for most terrestrial
ecosystems worldwide with the aid of Google Earth Engine and citizen science programs.

Keywords: vegetation mapping; XGBoost; simplified field survey; Dzungarian Basin; New Zealand

1. Introduction

Earth’s diverse ecosystems provide generous resources for human populations. Accurate
mapping of the diverse ecosystems or communities could facilitate environmental planning, resource
management, and social wellbeing [1–4]. Since the rapid growth of the human population and climate
warming is accelerating the pace of vegetation dynamics [5,6], timely information on the distribution
of vegetation over regional to global scales has growing significance for a wide range of end users.

Mapping vegetation at the initial stage mainly depends on experts’ empirical knowledge in
defining boundaries between vegetation classes [7]. Even though fairly accurate at a small regional
scale, this method is not only time-consuming but also has limited extendibility. Use of remote sensing
(RS) technology has greatly increased the efficiency and accuracy of the mapping [8]. Availability of
large stacks of various RS data, such as the Moderate Resolution Imaging Spectroradiometer (MODIS),
Landsat, Polarization Synthetic Aperture Radar (PolSAR), Light Detection And Ranging (LiDAR),
and aerial photography, enable mappers to produce vegetation maps from regional to global scales
with considerable accuracy [9–11]. However, it still remains challenging to increase the mapping

Remote Sens. 2019, 11, 1505; doi:10.3390/rs11121505 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs11121505
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/12/1505?type=check_update&version=2


Remote Sens. 2019, 11, 1505 2 of 22

accuracy in mosaic and heterogeneous environments due to (a) incapability of traditional methods in
differentiating subtle differences of vegetation classes based on spectral features [12], and (b) paucity
of vegetation field survey data due to costly and time-consuming fieldwork [6].

Unlike conventional land cover mapping, with fewer classes that are comparatively easy to
distinguish through spectral differences and objective-based methods, mapping vegetation needs
to consider biotic and abiotic factors that affect the distribution of vegetation. In this sense, adding
various environmental data—climatic, edaphic, geographic features, etc.—to the variable or feature
set could be helpful in increasing classification performances [13]. With the aid of the Google Earth
Engine (GEE) platform, a cloud-based platform for planetary-scale geospatial analysis, accessing a
massive amount of RS data and preprocessing have become unprecedentedly convenient, which make
a room for use of extensive RS features as well as biotic and abiotic factors [14].

Machine learning (ML), known for its outstanding capacity in identifying complex or nonlinear
processes, has become widely used in ecological applications such as vegetation mapping in recent
years [13,15–20]. The decision tree (DT)-based ML algorithms (such as extremely randomized trees,
gradient boosting machine, random forest) with flexibility in data types, resilience to noise, and excellent
performance in prediction, are believed to be effective in tackling qualitative and classification tasks.
Among them, extreme gradient boosting (XGBoost), a scalable tree boosting method, is known
for outstanding performances and state-of-the-art results in many research areas, as well as in ML
competitions [21]. By virtue of improvements of the algorithm level, XGBoost is more efficient and
robust to noise, class imbalance and uneven distribution, which is always the case in fieldwork data due
to the complexity and even inaccessibility of the natural world. Additionally, XGBoost is also available
for parallel and heterogeneous computing on both central processing units (CPUs) and graphics
processing units (GPUs), which can drastically accelerate training and predicting speed [21,22]. In the
field of RS, XGBoost also exhibits promising performances on classification tasks, and outperforms
various benchmark classifiers such as support vector machine (SVM), and k-nearest neighbor (kNN)
in many circumstances [23–26]. Specifically, in the cases like land cover mapping with numerous
classes or crop classification tasks in precision agriculture, which have similarities with the vegetation
mapping task, XGBoost was reported for ideal results [27,28]. Although incorporating extensive
features will raise computing demands to a great extent, the parallel and heterogeneous computing in
XGBoost could accelerate the training process. In this sense, XGBoost is the one of the suitable ML
algorithms for vegetation mapping.

Generally, two approaches can be used to predict the spatial distribution of vegetation. The first
one, known as the niche-based modelling approach (predicting first and assembling later), by mapping
each species individually and assembling later according to specific vegetation classification rules and
interactions of different species (like interspecific competition), requires ground truth observations to
cover all the actual niches of the studied species, which is not the case in most of the studies at small to
medium scales. Otherwise, the mapping results would be biased or misleading and often suffer from
over-prediction in spite of its efficiency in computing [29,30]. The alternative approach is known as the
cluster-based method (assembling first and predicting later), in which species are first categorized into
different groups (vegetation classes) based on their similarities of absence and presence in observed
sites. Compared with the first approach, this strategy may be powerful in detecting shared patterns
of environmental response for infrequently recorded species. In addition, it could be more reliable
and convenient in evaluations. By using multiclass classifiers and mapping the vegetation classes
directly, it can avoid merging the results from various different species distribution models that are not
comparable in results. Thus, in terms of the scale of our study cases, the cluster-based approach is
believed to be more feasible than the other [29–31].

With the above considerations, we presented a workflow to produce high-resolution multiclass
vegetation maps by adopting XGBoost based ML techniques based on extensive features and vegetation
data, and we tested it on two strikingly different cases: (1) the Dzungarian Basin (DzB), China, and (2)
New Zealand (NZ). To tackle the second problem mentioned above (i.e., the paucity of vegetation field
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survey data), we advocated simplified field survey procedures. That is, a dominant species-oriented
field survey, which can reduce the heavy fieldwork intensity so that a study can cover a larger area at a
lower cost in a shorter amount of time without sacrificing the quality.

We mainly want to address this question: Could the XGBoost-based ML workflow produce a
high-resolution multiclass vegetation map with relatively high accuracy, based on a combination of
extensive features (RS features, environmental data) and field survey data?

2. Materials and Methods

The workflow of this study included three linked sections, denoted as data preparation, modeling
and mapping, and evaluation as presented in Figure 1.
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To test the extendibility of our method to different ecosystems, we selected DzB and NZ as
our study cases, due to the striking differences in main vegetation types (desert vs. grassland and
forest), climate (dry vs. wet), location (northern vs. southern hemisphere) and topography (plain vs.
mountain). Moreover, DzB and NZ are representative places that include most of the major terrestrial
habitat types including forests, grasslands, shorelines, wetlands, and deserts so that the extendibility
of our method could be better substantiated.

2.1. Data Preparation

2.1.1. Vegetation Data

DzB: Simplified Field Survey Data

The simplified field survey we proposed is based on the reasoning that characteristics of dominant
and subdominant species of each synusia (upper canopy, lower canopy, shrub layer, and herbaceous
layer) determine the vegetation types [32,33]. During implementation, one should make sure that
the following information is recorded with precision: (1) geographical coordinates, (2) dominant and
subdominant plant species in each synusia, and (3) their relative coverages (RLCs). In addition, ground
photographs should be taken with special care. At each site, more than two photographs should be
taken, with at least one wide-angle or close-range photo (should be taken perpendicular to the ground),
respectively. After the fieldwork, the wide-angle photos were helpful for confirming the accuracy of
the information of dominant or subdominant species. The close-range photos should be calibrated
according to view angle, enhanced, and then segmented to correct the initial RLC records. Sampling
routes should be designed based on the main habitat distribution in the mapping region, according to
previous research or RS images. For mapping accuracy, we recommend the sample size of each type to
be more than 10.

Based on the simplified field survey procedures, we conducted extensive field sampling in DzB,
which is located in northwestern China and covers about a 200,000 km2 area, about 1.5 times larger than
England, from mid-May 2015 to late August 2016 (summers only). With the small amount of rainfall and
long hot summer, the vegetation mainly consists of xerophytes such as Haloxylon spp., Calligonum spp.,
Agriophyllum squarrosum and Erodium oxyrrhynchum. We took between two and four photos within
every 1–2 km distance point using a Canon digital camera. Overall 3006 points (506 farmland and
2500 natural vegetation points) with the key information (two plant species for both woody and herb
layers) were photographed. Plant species that were difficult to recognize were collected and sent back
to the laboratory for further identification. To ensure the accuracy of information of plant species, all
the ground photographs were reassessed and corresponding corrections were made. We preferred to
assemble the species matrix into community-level entries before model generation due to possible
niche overlaps among observed species and the spatial scale of the study areas [30]. According to the
RLC of the plants, only the points of natural vegetation were divided into woody (2026 points with
>5% RLC of woody or semi-woody plants) and herbaceous plant groups (474 points with <5% RLC of
woody or semi-woody plants) before vegetation classification. After that, we classified the plots into
32 (27 shrub and 5 tree layer classes) woody and 17 herbaceous plant groups (Figures S1 and S2) by
adopting Ward’s minimum variance hierarchical clustering method based on a Mantel correlation test,
by which the optimal number of classes for dividing the cluster tree were determined [34]. Based on the
Chinese vegetation classification system and the classification results [35], we developed a hierarchical
vegetation classification system (HVCS) of DzB, composed of seven vegetation types, 20 subtypes,
and 50 associations (including farmland) (Table S1).

NZ: Simulated Survey Data

The second case, NZ, is an island country located southeast of Australia in the southern hemisphere.
It has a temperate climate with plentiful rainfall, which makes NZ one of world’s biodiversity



Remote Sens. 2019, 11, 1505 5 of 22

hotspots [36]. Natural vegetation in NZ is mainly composed of grasslands, tussocks, and complex
temperate forest consisting of Pinaceae Lindl., Fagales, giant tree Pteridiaceae, and creepers [37,38].

Because a large part of NZ consists of agricultural types such as croplands and pastures, which
are comparatively easy for classification but have less significance in vegetation mapping than natural
vegetation types (forests, scrubs, etc.), evaluations on totally randomly chosen points would be less
convincing. To tackle this problem, we collected 11,234 vegetation survey plots between 1978 and 2017
from the Global Biodiversity Information Facility (GBIF) [39] and added 1035 randomly chosen points
of agricultural areas and glaciers, defined based on the field photographs from EOMF field photo
library (http://www.eomf.ou.edu/photos/), by singling out one point every 1 km. Then, the vegetation
types were extracted from the latest-available vegetation cover map of NZ (VCMNZ, 2015 updated) [40].
Finally, classes with less than eight occurrences were filtered out, and a total of 41 vegetation classes
remained (Table S2). To test the performance of the XGBoost model in a different number of classes,
we also predicted a map of habitats (10 classes available from GBIF), including the original field survey
types, agricultural areas, and glaciers.

2.1.2. Features

RS Data

RS data used in this study includes features computed on MODIS and Landsat 8 Operational
Land Imager (OLI) images, which were preprocessed on GEE. The details are addressed below.

(1) MODIS data. MODIS products included snow cover (MCD43D40) [41], percent non-vegetated,
percent tree cover (vegetation continuous fields, MOD44B) [42], normalized difference vegetation index
or enhanced vegetation index (NDVI or EVI, MOD13Q1) [43], leaf area index (LAI, MOD15A2H) [44],
and land surface temperature of day and night (LST Day & Night, MOD11A2) [45] (Table S2). Before
computing, we employed median or mean filters over the last 10 years for each season to obtain
high-quality images. In accordance with soil and vegetation conditions in study areas, the modified
soil adjusted vegetation index (MSAVI) [46], temperature vegetation dryness index (TVDI) [47], soil
bio crust index (BCI) [48], soil moisture index (SMI) [49], soil relative salinity index (SRSI) [50], and
vegetation cover index (FVC) [51] were computed based on cloud-free MODIS surface reflectance
products (MOD09A1). The seasonal values and the seasonal changes of all the MODIS features
(MCD43D40 and MOD44B, not included) were calculated.

(2) Landsat data. Landsat 8 OLI image collections of tier 1 calibrated top-of-atmosphere (TOA)
reflectance in the last 10 years during summer were selected and then filtered for a cloud-free image
via GEE [52]. Based on the cloud-free image, spectral variables, textures, color spaces, and moving
window statistical variables were computed.

(i) Spectral variables, including combinations of surface reflectance bands, can be more closely
related with certain vegetation characteristics than original data [53,54]. The spectral variables
used in this research consist of original bands and derived indices, including RVI (band5/band4),
DVI (band5-band4), SAVI ((band5–band4)/(band5 + band4 + L)*(1 + L), L = 0.5) [55], NDSI
((band4–band5)/(band4 + band5)) [56] and other band combinations (e.g., (band4–band3)/band5,
band5/band3, band7/band4 and (band3 × band4)/band2)).

(ii) Textures are widely used to denote the differences in objects with similar reflectance, since they
can provide the essential information about spatial orders of color patterns or reflectance intensity of
the object [57,58]. In this study, 13 out of the 14 textures (maximal correlation coefficient not included)
based on gray level co-occurrence matrix (GLCM) were computed with compute unified device
architecture (CUDA) programming [59]. We calculated a set of textures for both the panchromatic band
(band 8) and the above spectral variables by setting the window size to 13 × 13 for band 8 and to 11 × 11
for the spectral variables, and by setting shift distance to center to 1. As suggested, the value for every
texture in each pixel was calculated as the average in four directions [57]. Then, principle component
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analysis (PCA) and linear discriminant analysis (LDA) were optionally adopted for dimensionality
reduction (DR).

(iii) Color spaces, specific organizations of colors based on the object color profiling, are useful
when some typical colors cannot be effectively expressed in red–green–blue (RGB) channels [60].
Hence, we applied conversions from RGB to HSV, YCbCr color spaces with band combinations {band4,
band3, band2}, {band5, band4, band3}, {band6, band5, band2}, {band7, band5, band3}, {band7, band5,
band4}, {band6, band5, band4}, and {band5, band7, band1} (setting band collections to RGB channels)
using MATLAB (version R2018a). DR by PCA or LDA were also optionally conducted.

(iv) Moving window statistical variables, including coefficient of variance (CV), standard deviation
(Std.), skewness, and kurtosis, can be beneficial for discriminating objects that have special spectral
frequency distributions [61,62]. Hence, we calculated moving window CV, Std., skewness, and kurtosis
values with a 9 × 9 moving window for each band and spectral variable, with CUDA programming
on GPUs.

Because 30 m resolution (15 m resolution for band 8) Landsat 8 images contained roads and
buildings irrelevant to vegetation mapping, filtering them out was a necessary step to ensure mapping
accuracy. First, all of the calculated features were down-sampled to 120 m resolution via the nearest
neighbor method. Then, median filter with size 1320 m (11 pixel width × 120 m/pixel width), Gaussian
filter with sigma 3.5 along with mean filter with size 1080 m (9 pixel width × 120 m/pixel width) were
employed in sequence. Finally, the resulting images were down-sampled to 1 km resolution by the
nearest neighbor method.

Ancillary Data

(1) Climatic data. Bioclimatic variables associated with plant growth [63,64] were collected
from WorldClim on GEE [65]. In addition, warmth index (WI), coldness index (CI), potential
evapotranspiration (PET), actual evapotranspiration (AET), and water deficit (WD) were calculated
according to original meteorological data [66–69].

(2) Edaphic data. Edaphic data for DzB and NZ, including soil organic carbon (SOC), pH, soil
type, cation exchange capacity (CEC), bulk density (BLKD), chemical limitation to plant growth, mean
annual soil temperature, soil drainage, induration soil hardness, and water yield were obtained from
ISRIC world soil information [70] (download website: https://soilgrids.org) or the Landcare Research
LRIS portal v1.0 (download website: http://lris.scinfo.org.nz/).

(3) Geographic data. Distances (d(x)) to the saline (DzB) and fresh waterbody (DzB and NZ) and
sea shoreline (NZ) were computed through the following eikonal equation (Equation (1)) solved by the
fast marching method [71], where high-resolution water masks were collected from the JRC Global
Surface Water Mapping Layers, v1.0 on GEE [72].∣∣∣∇d(x)

∣∣∣ = 1, s.t. d(x)
∣∣∣
Ω = 0, Ω = water mask. (1)

Furthermore, slope, aspect, altitude, and hill-shade were calculated using ArcGIS software (version
10.3, ESRI®), based on the Shuttle Radar Topography Mission (SRTM) 30 m digital elevation model
(DEM) obtained from the United States Geological Survey (USGS) Earth Resources Observation and
Science (EROS) data center [73].

Finally, all the features were resampled to 1 km × 1 km spatial resolution to match the vegetation
data. The feature processing procedures are specified in Figure 2.

https://soilgrids.org
http://lris.scinfo.org.nz/
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2.2. Modeling and Mapping

Developed from gradient boosting machine (GBM), an ensemble learning model adding new
decision trees to complement those already built for better outcomes, XGBoost inherits the merits of
GBM and provides state-of-the-art results with higher computing speed under many circumstances.
Compared with GBM, XGBoost ameliorates the iterative optimization procedure [21,74]. In addition,
several programming skills, such as pre-sorting feature values combined with histogram splitting and
parallel and heterogeneous programming also promote classification performance and computing
efficiency. The XGBoost model is not only suitable for data mining proposes, but it is also appropriate
for image classification tasks such as land cover mapping in RS [21–23,75,76].

Bootstrap aggregating (bagging) ensemble learning, an effective ML framework known as
subsampling samples (rows) or features (columns) with replacement as training sets and aggregating
the trained base models, could avoid the negative effect of interdependency among variables, control
overfitting, and increase robustness to noise. The framework was also proven to be efficient in
enhancing model performances for various classifiers [77–81], which was also supported by our
comparison of evaluations of mapping results via bagging vs. single model (Table S3). Besides, it may
reduce the noise and increase the connectivity between patches of mapping results so that prediction
would be more representative of natural vegetation patches (Box S1) [27]. Given these advantages, we
used XGBoost as the base model of the bagging ensemble framework, then built the XGBoost bagging
model as the classifier for vegetation mapping.

To evaluate the vegetation map, we randomly chose 497 or 2045 plots out of the total 3006 or 12269
plots (approximately 1/6) for DzB or NZ, respectively, as the test set, and the remaining, training set,
for cross-validation and further evaluations. Distribution maps of train and test points are available in
Figure 3. In addition, to prevent loss of information, the points in the test set from those classes with
fewer than eight presences in association (DzB) were put back to the training set for class balance (in
Section 2.2.2) and then removed before model training.
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2.2.1. Feature Selection

Finding a more discriminating and informative subset from the extensive feature pool is essential
for increasing computing efficiency. Generally, the feature selection methods could be categorized as the
filter-based method and the wrapper-based method [82]. However, without considering the combined
effects of features, the filter-based method could not work quite well if the dataset contains multiple
classes (Table S4). Therefore, we adopted a widely used wrapper-based feature selection method—the
sequential forward floating selection (SFFS)—as the basic framework for feature selection [83–86].
SFFS is a bottom up search procedure that adds a remaining feature to the original empty set on every
loop, which gives the highest evaluations under the objective function, followed by a backtracking
step that excludes the worst features under certain conditions. However, even though it is improved
from its predecessors, SFFS still suffers from the nesting effect, because forward inclusion is always
unconditional [83,84]. A new improvement on SFFS, the improved forward floating selection (IFFS)
method was reported for better solutions, because it incorporates a replacing step into the basic
framework after the backtracking step [87]. However, our test on IFFS based on the extensive feature
pool showed that when collinearity among features were very high, IFFS still suffered from the
nesting effect.

Therefore, in this study, we made a minor improvement on IFFS; namely, revised IFFS, by adding
a plus-L-minus-R search into the streamline for noting that non-useful features may be included
into the selected set when highly correlated features exist. The plus-L-minus-R search excluded R
features after incorporating L features from the feature pool. Its parameters R and L were set to 1 and 5
respectively, because the computing time would increase a lot if L is small, and non-useful features
would be included if L is large. Besides, the replacing step from basic IFFS was optional for substituting
either the most or the least important feature. The feature evaluations for plus-L-minus-R search were
gathered from XGBoost inner feature importance scores, though feature evaluations of basic IFFS are
kappa metrics computed by a stratified 10-fold cross-validation on the training set.

Additionally, several steps were conducted to improve the efficiency of the feature selection
process. First, before computing, identical features with Pearson’s correlations > 0.98 were removed.
Second, after the loop completed, the set with the best evaluation (denoted as bestSET) and its location
in the IFFS set sequence were recorded. The sets ahead of the bestSET with local maximum evaluations
in the IFFS set sequence were then collected (denoted as maxSETs). Lastly, bestSET and the sets in
maxSETs with evaluations >0.95*(evaluation of bestSET) were aggregated as the final feature set.
The detailed feature selection procedures are specified in Figure 4.
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As a result, 49 or 45 of 456 features for vegetation subtypes or associations (DzB), and 41 or
40 of 356 features for habitats and vegetation classes (NZ) were selected, respectively. The texture
variables played an important role in vegetation mapping, especially for cases with numerous classes.
For example, the feature set of associations (DzB) comprised 34 textures, accounting for 76% in total.
Also, the distances to water were incorporated in all the cases, indicating their importance in vegetation
mapping. In addition, LST and its seasonal changes, which could reflect the energy balance of the land
surface, were also included in almost all the cases.

To validate the contribution of the feature selection process to the mapping results, we compared
the evaluations of results based on the selected set (by the revised IFFS, and the original IFFS) vs. the
original feature pool (Table S4). The performances of mapping using the selected variables were not
inferior to mapping using the original feature pool, indicating that the revised IFFS successfully selected
a subset (~10% of total), useful in discriminating vegetation classes, from the extensive feature pool.

2.2.2. Vegetation Mapping

For vegetation data with HVCS, generally two ways for vegetation mapping are used: first,
mapping the lower level classes directly and merging the result with higher level classes and second,
mapping higher level classes as base map layer and then splitting the result with lower level classes.
Deciding which one to choose always depends on expert knowledge and overall evaluations of maps.
In DzB we found that mapping associations directly is less convincing, because some associations from
the desert vegetation type with few observations had low accuracies. Thus, for DzB, we first computed
a vegetation subtype map as the base map layer, and then split each subtype into association(s)
according to HVCS; however, directly mapping was the only choice for NZ.

Before model training, we adopted synthetic minority over-sampling technique (SMOTE) to
balance the training set after noting that an extremely imbalanced dataset could cause prediction errors
for classes with few presences. The parameters of SMOTE were set to default, because it had optimal
evaluations in this study. Then, a multiclass XGBoost bagging model was built on bootstrapped
datasets (subsampling both columns and rows) from the training set, with the parameters of the
XGBoost (the base model) set to default. The predicted results of each base model were then aggregated
by weighted voting using kappa as the metric (Equations (2) and (3)). The probability maps of each
vegetation class derived from the bagging framework were reserved for the uncertainty calculation (in
Section 2.3). As for the parameters of the bagging framework, the optimal rates of 0.7 for both column
and row sampling were found by grid search via stratified 10-fold cross-validation on the training
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set; the runtime (total base model number) was set to 610 because no further improvements on the
evaluations or modelling stability were observed as the runtime increased (Figure S3).

The subtype map of DzB was used as the base map layer for association mapping in which
each subtype was divided to corresponding association(s) according to HVCS with small multiclass
XGBoost bagging models. SMOTE was also implemented for each subtype before model training.
The vegetation type map was obtained from the vegetation subtype map by merging the corresponding
classes based on HVCS (Figure 1). Because the observation data of DzB and NZ did not include
any urban areas or bodies of water, these land use types were directly extracted from the resampled
land use map of China, 2010, for DzB [88] and the land cover database classes version 4.1, for NZ
(download website: https://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-cover-database-version-41-
mainland-new-zealand/). These land use types were not included in the evaluations.

Finally, the results were filtered with a majority filter of 3 × 3 window size to increase the
connectivity of each class so that the distribution of vegetation patches would be more lifelike.

The XGBoost bagging model was implemented with XGBoost (version 0.81), scikit-learn (version
0.19.1), and Geospatial Data Abstraction Library (GDAL, version 2.3.2) in the Python 3 programming
language [21,89,90]. Source codes, including feature computing, feature selection, and vegetation
mapping, are available at https://github.com/ZH-pku/xgb_vegetation_mapping. All our mapping
processes were executed on two NVIDIA TITAN X (Pascal) GPUs.

2.3. Evaluations

To evaluate the vegetation mapping results, metrics including overall accuracy (OA, Equation
(2)), Cohen’s kappa (kappa, Equations (3) and (4)), and the original confusion matrix were computed
based on the predicted and real class of the reserved test points. In addition, to further analyze the
mapping uncertainty, we computed the uncertainty of the base map layer via the confusion index (CI,
Equation (5)) (Burrough, et al. 1997).

OA =
e
N

. (2)

pe =
1

N2

∑
k

nr
knp

k . (3)

kappa =
OA− pe

1− pe
. (4)

CI = 1− (µmax − µmax−1), (5)

where e, and N in Equations (2) and (3) are number of correct predictions, and number of total
observations; pe, k, nr

k, and np
k in Equations (3) and (4) are the hypothetical probability of chance

agreement, the class predicted, number of observations of class k, and number of predictions of class k,
respectively; µmax and µmax−1 in Equation (5) are the largest and the second largest probability values
of each pixel of all possible classes generated from the bagging framework.

3. Results

Following the above workflow, we produced the map of vegetation types (seven classes), subtypes
(17 classes), and associations (43 classes) of DzB and the maps of 10 habitats and 41 vegetation classes
of NZ, as shown in Figures 5 and 6.

For DzB, the metrics of the final mapping result were calculated on the test points within the
DzB boundary (441 out of the chosen 497 points). The OA (kappa) of vegetation types, subtypes, and
associations were 0.907 (0.821), 0.801 (0.739), and 0.748 (0.685), respectively. For NZ, the established
models produced the habitat and vegetation class maps with evaluations of 0.946 (0.830) and 0.703
(0.666), respectively. We found that accuracy decreased with increments of class number, and among
all levels of classification (vegetation types, subtypes, and associations).

https://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-cover-database-version-41-mainland-new-zealand/
https://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-cover-database-version-41-mainland-new-zealand/
https://github.com/ZH-pku/xgb_vegetation_mapping
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An uncertainty analysis showed that 83.54% of the mapping area in DzB (according to the
subtype map) was in complete agreement (CI ≤ 0.66), and increased to 94.96% if partial agreement
(0.66 < CI ≤ 0.90) was included. For NZ, 89.71% and 71.20% of the mapping area showed complete
agreement, which increased to 96.88% and 89.70% when partial agreement was included (Figure A1).
We found no significant relationships between distance to sampling points and uncertainty, indicating
that uncertainty variations may largely stem from the predictive power of features and the number of
observations in each class.

We also recorded the time cost of computation of model training, testing, and prediction,
as presented in Table S5. The results showed that XGBoost almost cost less time than any other ML
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4. Discussion

In this study, we produced high-resolution (~1 km2) multiclass (>40 classes) vegetation maps in
two regions (DzB and NZ) with relatively high accuracy based on a combination of extensive features
and field survey data, using XGBoost as the ML classifier. As the confusion matrices of the two cases
illustrated (Figure A2), the vegetation classes of DzB and NZ were effectively separated by our method.
Because DzB and NZ consist of most of the terrestrial habitat types worldwide, it could be reasonable
to say that the method used in this study has potential to be used in vegetation mapping in various
terrestrial ecosystems.

To further assess our mapping results, we evaluated the climate change initiative (CCI) land cover
map produced by the European Space Agency (ESA) [10], MODIS vegetation continuous fields (VCF)
produced by the National Aeronautics and Space Administration (NASA) [11], and remap (RS online
land cover mapping pipeline) [91], based on the test set. The general mapping procedures for these
projects mainly depend on the surface spectral reflectance in RS imagery and limited environmental
data (remap) [9,92]. We found that our approach was more accurate than the projects above (DzB
vegetation types: OACCI = 0.760, kappaCCI = 0.334; OAVCF = 0.609, kappaVCF = 0.334 and OAremap

= 0.156, kapparemap = 0.191; OAthis study = 0.907, kappathis study = 0.821; and for NZ habitats: OACCI

= 0.381, OAVCF = 0.771, kappaVCF = 0.473, OAremap = 0.905, kapparemap = 0.817, OAthis study = 0.946,
kappathis study = 0.830). The evaluations of the compared projects were even lower when the number
of classes increased (Tables S6–S8), indicating that our method outperformed them although they are
effective in large scale mapping with a limited number of classes (< 20 classes) [9,92].

As the growth of plants is affected by both biotic and abiotic factors, a combination of environmental
data and RS features could contribute to vegetation mapping, especially where the spectral differences
of some classes are subtle or the effect of the microenvironment is significant. Here, we compared the
mapping results with and without environmental data. For mapping without environmental data,
the climatic, edaphic, and geographic data, as well as several MODIS products or indices (LST, Snow
Index, TVDI, BCI, SMI, and SRSI) were removed from the feature pool. The feature selection was
re-conducted, followed by training multiclass XGBoost bagging models directly on vegetation subtypes
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(DzB), associations (DzB), habitats (NZ), and vegetation classes (NZ), with evaluations calculated on
the test set. The calculations were repeated 16 times, by setting the base model number to 72 in bagging
framework. The results stressed the importance of considering both RS features and environmental
data in vegetation mapping (Table 1). The differences in evaluation were subtle (~0.05 OA) when the
number of classes was small, but the gaps were large (~0.10 OA) as the number of classes increased.
Meanwhile, the differences in sensitivity (a metric, true positive/condition positive) showed that natural
vegetation types, e.g., deserts (−0.08 on average, associations of DzB), grasslands or meadows (−0.134
on average, associations of DzB), and forests and scrubs (−0.170 on average, vegetation classes of NZ),
presented an obvious decrease in classification accuracy, while the sensitivities of artificial types like
agricultural land or glaciers were almost the same or even increased. Also, without the information on
the bodies of water, the sensitivities of wetlands suffered great losses of −0.333 in DzB and −0.666 in
NZ. Thus, for cases with numerous vegetation classes, the mapping results could be more accurate if
incorporating environmental data.

Table 1. Vegetation mapping evaluations with and without environmental data. With Env. represents
mapping with environmental data; Without Env. represents mapping without environmental data. SD
is standard deviation.

Case Num. of Classes (in Test Set) OA ± SD Kappa ± SD

With Env.

vege subtype (DzB) 20 0.798 ± 0.006 0.744 ± 0.007
association (DzB) 50 0.764 ± 0.009 0.704 ± 0.011

habitat (NZ) 10 0.944 ± 0.001 0.824 ± 0.002
vege class (NZ) 41 0.701 ± 0.004 0.665 ± 0.004

Without Env.

vege subtype (DzB) 20 0.758 ± 0.009 0.694 ± 0.011
association (DzB) 50 0.599 ± 0.012 0.534 ± 0.014

habitat (NZ) 10 0.888 ± 0.002 0.679 ± 0.004
vege class (NZ) 41 0.600 ± 0.006 0.550 ± 0.006

To compare the performance of XGBoost with other prevailing benchmark ML classifiers,
we selected extremely randomized trees (extra-trees, ET), GBM, random forest (RF), quadratic
discriminative analysis (QDA), SVM, and kNN as comparing models in this study. All the classifiers
were programmed with scikit-learn (version 0.19.1), by setting all parameters to default [89]. The feature
selection was conducted individually for each model on the extensive feature pool, with the
plus-L-minus-R search removed if the inner feature importance score was unavailable (kNN, SVM,
QDA). Then, we built multiclass predicting models using a bagging framework, the same as XGBoost,
with the training set, and tested with the test set directly on vegetation types (DzB), vegetation subtypes
(DzB), associations (DzB), habitats (NZ), and vegetation classes (NZ). The calculations were repeated
16 times, by setting the base model number to 72 in the bagging framework, considering the computing
limitations. We found that the DT-based methods, i.e., XGBoost, ET, RF, and GBM could provide
promising results (~10 classes, ~0.9 OA; ~40 classes, ~0.7 OA), but kNN, SVM, and QDA could
only perform fairly well when the number of classes was small (Figure 7). These results evinced
the extendibility of DT-based algorithms in vegetation mapping. To further compare the DT-based
methods, we re-conducted the mapping processes using the bagging framework, and setting the base
model number to 610. Then, we computed the uncertainty according to Equation (5). The comparison
of mean uncertainty values indicated that XGBoost performed the best in all the cases (Table 2).
In addition, the percentages of area of complete agreement or little agreement were the highest or
lowest when using XGBoost as the base model (Figure S4), highlighting the accuracy and robustness
of the mapping results of XGBoost among the DT-based methods. Furthermore, a comparison of
the computing time showed that the predicting time of XGBoost (using GPUs) was less than other
compared methods in most cases. Although during model training and testing XGBoost was not the
most time-saving ML algorithm, as prediction is crucial and the most time-consuming part in the
mapping processes when the target resolution is high, it is reasonable to say that XGBoost is efficient
in vegetation mapping. Compared with its predecessor GBM, XGBoost improved a lot in model
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performances, especially under conditions with numerous classes. Further evidence could be found in
the realm of ecology. For example, Sandino, Pegg, Gonzalez and Smith [24] found that with reliable
field data, XGBoost can distinguish forests infected with pathogens as high as OA = 97.32%. Dong, Xu,
Wang and Pu [23] also successfully mapped submerged plants using XGBoost. Therefore, considering
the advantages in programming and computing, XGBoost is a suitable method for vegetation mapping.
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The selected models include extreme gradient boosting (XGB), extra trees (ET), random forest (RF),
gradient boosting machine (GBM), quadratic discriminative analysis (QDA), support vector machine
(SVM), and k-nearest neighbors (kNN).

Table 2. Mean uncertainty values of vegetation mapping using extreme gradient boosting (XGB), extra
trees (ET), random forest (RF), and gradient boosting machine (GBM).

Case Num. of Classes (in Test Set) XGB ET RF GBM

vege type (DzB) 7 0.117 0.146 0.208 0.142
vege subtype (DzB) 20 0.285 0.378 0.450 0.300
association (DzB) 50 0.411 0.491 0.467 0.568

habitat (NZ) 10 0.182 0.239 0.248 0.235
vege class (NZ) 41 0.401 0.490 0.490 0.448

As the plant community is characterized by its dominant species, the simplified field survey
procedures we advocated could be an alternative solution to the second problem: the paucity
of vegetation field survey data due to the costly, labor-intensive and time-consuming fieldwork.
With targeted information on the main species aided by carefully taken ground photographs, the
simplified field survey could successfully collect the information needed for vegetation mapping with
reduced labor intensity, which was proven in our experiment where RLCs from the simplified method
were almost the same as those from a standard investigation (R2 = 0.97, p < 0.01) (Figure S5).

By far, the studies on vegetation mapping showed no highly accurate results with numerous classes
like ours [93]. By comparison, our method performed better, partly because of the extensive features we
computed. Interdependency between features may be of potential concern for some mapping scientists.
However, first, with an effective feature selection method, highly redundant or irrelevant features
could be removed; second, due to improvements on the algorithm level (including the bootstrapping
design of the bagging framework to control overfitting), our method could eliminate the possible
negative effect of collinearity [21,77,80]. Some features may be pointless to ecological explanation,
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but the interpretability of variables should be prioritized in explanation-oriented research [94], and for
a mapping perspective, more attention should be paid to the predictive power and the generality of
the proposed methods instead; in other words, evaluation standards should be question-oriented.

Although outstanding in performance, our workflow still has room for further improvements.
First, the simplified field survey might not be feasible in tropical and subtropical regions where the
communities are more diverse and complex with fewer dominant species, defining many of which is
quite hard if not impossible. Therefore, the accuracy of species information and RLCs derived from
ground photos could not be guaranteed. In light of this, we suggest to use the simplified field survey
procedures in temperate and polar zones. Also, the RLCs derived from ground photos might contain
bias without careful treatment of plant overlaps. Second, the feature pool could be more extensive.
By incorporating data from various satellites or ground monitoring sites, more details about the
spectral characteristics of vegetation or environmental conditions could be unveiled, that is beneficial
to enhancing performance. A change of phenology patterns or temporal features could contribute to
discriminating vegetation classes [26,95]. To detect accurately, RS reflectance data with a shorter cadence
(~8 day or less) should be employed, on which frequency analysis methods (e.g., Fourier transform)
could reveal the patterns. Third, determining the scale of a vegetation map is still problematic. Since
the time of using RS techniques in vegetation mapping, the mismatch of scales between field survey
data and RS data is still an unsolved problem. Generally, the scale of a large part of RS or environmental
data (>500 m) is far beyond the scale of field survey (1–100 m), because one can only accurately identify
plant species within ~10 m boundary. The basic logic of field surveying in vegetation mapping is
to choose one point within a certain region as representative. However, the process could not be
bias-free in the sight from an adult height. In ML fashion vegetation mapping, the scale should be
accordant with RS data. With the development of RS technology, ever-increasing satellite data with
higher resolution (<20 m), indeed close to the scale of field survey, have been generated, like reflectance
data from Sentinels, GaoFens, and WorldViews. Thus, a robust fusion method of low-resolution and
high-resolution data should be considered in feature computing. More object-based methods and
convolutional neural networks (CNN)-based feature extraction methods, as approaches to combining
different data, should be addressed [96,97]. Also, using an unmanned aerial vehicle (UAV) may be an
ideal solution to this problem [76]. With the sight from a higher elevation, photos from UAVs could
provide information with the scale between traditional field surveys and RS, which may be helpful to
ensure the field survey data being more accurate and representative. In this sense, the necessity of data
fusion methods in feature computing should be more emphasized. Lastly, although the workflow was
tested on two different cases, the extendibility may still need further assessment through more cases.
However, due to the lack of sound vegetation inventory data, testing the method with more cases is
quite hard at present. Besides, as our cases included most of the terrestrial habitat types, it is safe to
say that our method shed some light on future vegetation monitoring.

As supported by various studies in monitoring land use, habitat, or vegetation cover changes, etc.,
the ground photography-aided methods have broader application prospects [98–100]. In recent years,
citizen science (or crowd sourcing) is becoming an alternative data source for plant phenology, as well
as for wild life observation and disease monitoring [101]. Numerous projects or monitoring platforms
have been launched or built where volunteers all over the world contribute their ground photos useful
to researchers, such as PhenoCam [102], Penguin Watch [102], eBird [103], Season Spotter [104], and
Field Photo Library by SciStarter [9]. With the workflow in this study, it is possible to launch and
build timely vegetation monitoring programs in which volunteers upload ground photographs with
geographical references and identify the main species with the guidance of experts. In addition, with
an efficient ML algorithm, the platform could automatically map the vegetation in high resolution
with relatively high accuracy based on extensive features. Indeed, increasing demands on computing
power, especially when dealing with raster imagery of a large spatial extent, may be a potential concern.
Fortunately, with emerging advancements in computational technology (e.g., super computers and
heterogeneous computing devices) and revolutionary cloud computing platforms like GEE, ML model
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training and predicting could be accelerated [14,105]. Thus, with the advanced technologies, relatively
high accuracy, and potential extendibility, building high-resolution vegetation monitoring systems
using the workflow we proposed in various spatial scales (even worldwide) matching various needs
could be a possible and important path we may consider in the next step.

5. Conclusions

In this study, we produced high-resolution multiclass vegetation maps using extensive features
and vegetation data from simplified field surveys or simulation through XGBoost models in the cases
containing most of the habitats of terrestrial ecosystems. The overall accuracies of DzB (0.907, for
vegetation types; 0.801, for vegetation subtypes; 0.748, for associations) and NZ (0.946, for habitats;
0.703, for vegetation classes) were higher than many of the proposed vegetation mapping projects.

The findings indicated that our approach has potential in producing high accuracy vegetation
mapping in various terrestrial ecosystems. In addition, it opened a possibility of building a timely
vegetation monitoring platform with the aid of citizen science programs, Google Earth Engine, and
advanced computing technologies.
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Figure A2. Confusion matrices of (a) vegetation types (DzB), (b) vegetation subtypes (DzB),
(c) associations (DzB), (d) habitats (NZ), and (e) vegetation classes (NZ) based on the test sets.
The meanings of vegetation class abbreviations were explained in Table S1 (DzB) and S2 (NZ) in
Supplementary Materials.
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