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Abstract: Fourteen-month precipitation measurements from a second-generation PARSIVEL 
disdrometer deployed in Beijing, northern China, were analyzed to investigate the microphysical 
structure of raindrop size distribution and its implications on polarimetric radar applications. 
Rainfall types are classified and analyzed in the domain of median volume diameter 𝐷  and the 
normalized intercept parameter 𝑁 . The separation line between convective and stratiform rain is 
almost equivalent to rain rate at 8.6 mm h–1 and radar reflectivity at 36.8 dBZ. Convective rain in 
Beijing shows distinct seasonal variations in log10 𝑁 –𝐷  domain. X-band dual-polarization 
variables are simulated using the T-matrix method to derive radar-based quantitative precipitation 
estimation (QPE) estimators, and rainfall products at hourly scale are evaluated for four radar QPE 
estimators using collocated but independent rain gauge observations. This study also combines the 
advantages of individual estimators based on the thresholds on polarimetric variables. Results 
show that the blended QPE estimator has better performance than others. The rainfall 
microphysical analysis presented in this study is expected to facilitate the development of a 
high-resolution X-band radar network for urban QPE applications. 

Keywords: Northern China; raindrop size distribution (DSD); microphysical processes; 
quantitative precipitation estimation (QPE) 

 

1. Introduction 

Characteristics of raindrop size distribution (DSD) are of great importance in various 
disciplinary research. They are the physical basis in the formation of clouds and precipitation [1]. 
Understanding the DSD is critical for the microphysical parameterizations in numerical weather 
prediction models [2-4], and quantitative precipitation estimation (QPE) using remote sensing 
technologies, such as radar and satellite [5, 6]. The DSDs can also be utilized to estimate the kinetic 
energy of rain [7], which is a key factor in assessing the degree of soil erosion [8]. To this end, 
numerous studies have been conducted around the world to characterize the DSD in different 
climate regions and rainfall types, using a variety of in situ and remote sensing instruments [9-16]. 
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The DSD can be affected by many factors [17], including microphysical processes, such as 
condensation, evaporation, collision–coalescence and breakup [18], updrafts and downdrafts [19], 
horizontal winds [20], orographic effects [21], and aerosol effects [22]. 

The climatological characteristics of precipitation in Beijing, China, have been examined using 
rainfall data collected at automatic weather stations [23, 24] and radar reflectivity mosaics [25, 26]. 
However, the microphysical structure of surface precipitation in Beijing is rarely reported, due to the 
lack of long-term ground-based DSD measurements. Using a first-generation laser-optical particle 
size and velocity (PARSIVEL) disdrometer manufactured by OTT Hydromet, Germany [27], Tang et 
al. [28] compared the characteristics of measured and fitted DSDs, as well as the retrieved 
dual-polarization radar variables for stratiform and convective precipitation in Beijing. However, 
the DSD samples used by Tang et al. [28] were only collected from July to October 2008, which did 
not include precipitation occurred in June that makes a significant contribution to the total annual 
rainfall in Beijing [24, 29]. In addition, those DSD data were collected mainly under the conditions of 
improved air quality and lower aerosol concentration associated with strict emission-reduction 
during the Beijing Olympic and Paralympic Games [30], which may not be sufficient to represent 
normal air quality conditions in Beijing [31], since the concentrations and components of aerosols 
could potentially affect the DSD properties [22, 32]. A second-generation PARSIVEL disdrometer 
(hereafter referred to as PARSIVEL2) was used to study the snowfall properties over the mountains 
in northwestern Beijing [33]. Unfortunately, no long-term rainfall observations were reported using 
this instrument. 

From 2017, a PARSIVEL2 disdrometer was deployed at a national weather station in Beijing 
(116.47ºE, 39.8ºN; 31.3 m asl) to perform continuous microphysical measurements of rainfall on the 
ground, which provides an opportunity to investigate the characteristics of local DSD 
comprehensively. In addition, the DSD data can provide a means for improving the accuracy of 
remote sensing retrievals, such as polarimetric radar quantitative precipitation estimation (QPE) [34, 
35] and enhance the operational weather forecast model in Beijing (i.e., the Rapid-refresh Multi-scale 
Analysis and Prediction System – RMAPS [36]). This study aims to conduct a detailed investigation 
of DSD characteristics in Beijing using this disdrometer data. This paper is organized as follows. 
Section 2 describes the data and analysis methods, including the data quality control procedure and 
DSD parameters to be included in this study. Based on the quality-controlled disdrometer dataset, 
Section 3 describes the microphysical properties of DSDs in log10 𝑁 –𝐷  domain, as well as the 
comparison with other climate regions. Classification of different rain types is also detailed in 
Section3. Section 4 derives the radar-based QPE estimators and quantifies the associated errors of 
various estimators using collocated gauge measurements. Major conclusions are summarized in 
Section 5.  

2. Dataset, Quality Control, and DSD Parameters 

2.1. Observations 

The PARSIVEL2 disdrometer is located at Beijing station in the North China Plain surrounded 
by the Yan mountains to the west and north, and the gulf-like Bohai Sea to the southeast (Figure 1). 
The mean annual precipitation was 575 mm during the most recent decade (2009–2018). In this 
study, 14 months continuous DSD measurements in 2017–2018, ranging from 1st April to 31st October 
in each year, were used, which made up 96.7% of the total rainfall (1085.8 mm out of 1122.7 mm) 
during this period. In order to focus on rainfall analysis, winter precipitation (mainly snowfall from 
Nov. to Mar. the next year), as well as the solid precipitation (such as hail), was removed according 
to the ground weather reports. 
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Figure 1. Topographic (m) information around the PARSIVEL2 disdrometer site at Beijing station (BJ, 
the red circle). The districts of Beijing are highlighted in black curves. 

2.2. Quality control (QC) 

Particle diameter and fall speed, each divided into 32 nonuniform classes, were measured by 
the PARSIVEL2 disdrometer with a 1-min sampling interval. The mean values of particle diameter 
(0.062–24.5 mm) and fall speed (0.05–20.8 m s–1) are described by the manual [37]. The first two size 
bins are not included in the analysis, because of the low signal-to-noise ratios. As a result, the 
smallest detectable mean diameter is 0.312 mm. The effective sampling area of PARSIVEL2 droplet 
size measurements is affected by the so-called border effects, and the method of Jaffrain and Berne 
[38] is utilized to account for these effects. In particular, defining 𝐷  (mm) as the central 
volume-equivalent diameter for the ith size bin, the effective sampling area can be calculated as 180 
mm × (30 mm − 0.5𝐷 ). 

The empirical terminal velocity–diameter (𝑉–𝐷) relationship of Gunn and Kinzer [39] with 
air-density correction factor (𝜌 𝜌⁄ ) .  [40, 41] was used to assess raindrop observations and is 
repeated as follows: 𝑉 (𝐷 ) = 9.65 − 10.3exp(−0.6𝐷 ) 𝜌𝜌 . , (1) 

where 𝑉 (𝐷 ) is the mean particle terminal velocity for the ith size bin; 𝜌  and 𝜌  (1.20 kg m–3) are 
the air density at the observation altitude and at sea level, respectively. Following the method 
described in Atlas et al. [40] and Foote and Toit [41], the mean value (1.008) of the correction factor 
was selected for simplicity. 

Some droplet observations may deviate from the 𝑉–𝐷  relationship shown in Eq. (1). A 
commonly used method to eliminate those abnormal particles is to set a threshold regarding Eq. (1). 
A value of ± 60% was selected as the threshold [20] in this study, which means droplets with 
velocities of 𝑉 (𝐷 ) were discarded when they met the condition |𝑉 (𝐷 ) − 𝑉 (𝐷 )| > 0.6𝑉 (𝐷 ). 
In addition, the 1-min DSD spectrum with a total number of raindrops 𝐶  ＜ 10 or a rain rate lower 
than 0.01 mm h–1 was considered to have no rain. Rain drops larger than 8 mm in diameter were also 
removed. Then, continuous spectra with rain-free periods of no longer than 1 h were defined as a 
rain event, and rain events lasting less than 5 min were eliminated to reduce the statistical errors. 
The dataset after quality control is further described in Section 3.1. 
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2.3. Integral rainfall parameters 

Based on the DSD data, the number concentration of raindrops per unit volume per unit 
diameter interval for the ith size bin, 𝑁(𝐷 ) (m–3 mm–1), can be calculated using Equation (2): 

𝑁(𝐷 ) = 𝑛𝐴 ∙ 𝛥𝑡 ∙ 𝑉 ∙ 𝛥𝐷 , (2) 

where 𝑛  is the number of raindrops at the ith size bin and the jth velocity class; 𝐴  (m2) and 𝛥𝐷  
(mm) are the effective sampling area and width of the diameter interval at size 𝐷 ; 𝑉  (m s–1) is the 
fall speed for the jth velocity class; and 𝛥𝑡 is the sampling time interval, which was set to 60 s in this 
study. 

To further understand the characteristics of rainfall, the integral parameters of total number 
concentration 𝑁  (m–3), rainwater content 𝑊  (g m–3), rain rate  𝑅  (mm h–1), median volume 
diameter 𝐷  (mm), mass-weighted mean diameter 𝐷  (mm), normalized intercept parameter 𝑁  
(m–3 mm–1), and mass spectrum standard deviation 𝜎  (mm), were also calculated as follows: 

𝑁 = 𝑛𝐴 ∙ Δ𝑡 ∙ 𝑉 , (3) 

𝑊 = 𝜋6 × 10 ∙ 𝜌 ∙ 𝐷 𝑛𝐴 ∙ Δ𝑡 ∙ 𝑉 , (4) 

𝑅 =  6π × 10 ∙ 𝐷 𝑛𝐴 ∙ Δ𝑡, (5) 

12 𝑊 = 𝜋6 𝜌 ∙ 𝐷 𝑁(𝐷)𝑑𝐷, (6) 

𝑁 = 3.67𝜋𝜌 10 𝑊𝐷 , (7) 

𝐷 = ∑ 𝑁(𝐷 ) ∙ 𝐷 ∙ Δ𝐷∑ 𝑁(𝐷 ) ∙ 𝐷 ∙ Δ𝐷 ,    (8) 

𝜎 = ∑ (𝐷 − 𝐷 ) 𝑁(𝐷 ) ∙ 𝐷 ∙ Δ𝐷∑ 𝑁(𝐷 ) ∙ 𝐷 ∙ Δ𝐷 , (9) 

where 𝜌  is the water density (1.0 g cm–3). 
Considering the emerging development of X-band dual-polarization weather radar for urban 

hydrometeorological applications [42, 43], a set of dual-polarization radar variables, including radar 
reflectivity in the horizontal (vertical) polarization 𝑍  (𝑍 ) (mm6 m–3), differential reflectivity 𝑍  
(dB) and specific differential phase 𝐾  (° km–1), are derived from DSDs using the T-matrix 
scattering technique [44]: 

𝑍 , = 4𝜆𝜋 |𝐾 | 𝑓 , (𝐷 ) 𝑁(𝐷 )Δ𝐷 , (10) 

𝑍 = 10 log 𝑍𝑍 , (11) 
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𝐾 = 180𝜆𝜋 𝑅𝑒 𝑓 (0, 𝐷 ) − 𝑓 (0, 𝐷 ) 𝑁(𝐷 )Δ𝐷 , (12) 

where 𝑓 , (𝐷 )  is the backscattering amplitude of a droplet with horizontal and vertical 
polarization; 𝑓 (0, 𝐷 ) and 𝑓 (0, 𝐷 )  are the standard forward scattering amplitudes, which is 
related to the depolarization factor and relative permittivity of water dielectric [45]; 𝐾  is the 
dielectric factor of water (0.9639); and 𝜆 (mm) is the radar wavelength (3 cm). Note that 𝑍  (𝑍 ) in 
the unit of mm6 m–3 is replaced by 𝑍  (𝑍 ) in the unit of dBZ wherever required in this paper, and 𝑍 , = 10 × log 𝑍 , . 

3. Results 

3.1. Dataset after QC 

In total, 25,499 (934) 1-minute raindrop spectra passed (failed) the QC. The validated spectra 
account for a total rainfall of 1013.78 mm. According to the histogram in Figure 2, DSD samples 
failed to pass the QC mainly appear when rain rates (𝑅 ) measured by collocated rain gauges at 
1-min-interval were lower than 15 mm h–1. Falling beyond the threshold of the empirical 𝑉–𝐷 
relationship is the major factor leading to droplet removal from the dataset, and accounts for 3.2% of 
total rainfall. It was also noted that most of the removed DSD samples were characterized by 
abnormally rain rates (𝑅) compared with 𝑅 , most of which occurred when 𝑅 < 10 mm h–1 or 𝑅 > 100 mm h–1 (red points in the scatter plot of Figure 2). The Pearson correlation coefficient 
(PCC) between the pairs of (𝑅, 𝑅 ) was higher after QC (0.96 vs. 0.91). The linear fitting curve 
based on the dataset with 𝑅  > 0 mm h–1 after QC (blue line; denoted “QC+𝑅 >0”) is close to the 
diagonal line. 
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Figure 2. Histogram (top) of the number of 1-min raindrop spectra coinciding with rain gauge 
measurements (𝑅 ); and scatterplot (bottom) of rain rate calculated by PARSIVEL2 disdrometer 
measurements vs 𝑅  observations from rain gauge at BJ during the experiment period. The solid 
black line in the scatterplot is the 1:1 line. Data before (NonQC) and after (QC) quality control are 
indicated by red and blue dots, respectively. 

As shown in Figure 3, the distribution of raindrops is almost entirely within the threshold of ± 
60% based on Eq. (1). The filtered particles are mainly below 3 mm in diameter. They generally have 
low fall speeds but with relatively large size, likely due to the influences of strong winds or splashes 
from instrument surface during heavy rainfall [20]. The accumulated disdrometer data after QC are 
almost symmetric along the empirical 𝑉–𝐷 relationship of Atlas et al. [40] and the highest number 
concentrations of raindrops are nearly superimposed. 

 
Figure 3. Scattergram of raindrop size distribution (DSD) at different diameter size and fall velocity 
classes after QC for the entire experiment period. The solid curve indicates the empirical 𝑉–𝐷 
relationship described by Atlas et al. [40] which considers the air density effect; dashed curves 
indicate the ±60% ranges of the empirical 𝑉–𝐷 relationship. 

A summary of rainfall observations after QC during the experiment period is listed in Table 1. 
The precipitation mainly occurred from June to August, which contributed up to 81.5% of the total 
rainfall amount. The mean and maximum rain rates, 〈𝑅〉 and 𝑅 , were much higher during these 
three months than other months. The number of DSD samples, 𝑁 , collected between 
June−August and in October, was much higher, contributing 78.3% of total samples. Although 𝑁  
in October was higher than June, 〈𝑅〉, 𝑅 , and the rainfall amount were much lower in October, 
especially 𝑅  (12.17 mm h–1 vs 84.92 mm h–1). The most (least) contribution of rainfall amount, as 
well as 𝑅 , came from July (September), while the least 〈𝑅〉 and 𝑁  came from April and 
September, respectively. Compared with 2017, the precipitation intensity in 2018 was heavier with 
higher 〈𝑅〉 and 𝑅  but lower 𝑁  and total rainfall amount. All these imply that the selected 
rainfall events consist of a wide variety of rainfall types. 

Table 1. Summary of rainfall during the experiment period. 

Type Apr. May Jun. Jul. Aug. Sept. Oct. 2017 2018 𝑁  2599 1910 4374 5373 5396 1036 4811 14319 11180 〈𝑅〉 (mm h–1) 0.85 1.33 2.14 4.00 3.47 1.64 1.00 2.23 2.58 𝑅  (mm h–1) 26.46 45.72 84.92 145.43 123.61 10.02 12.17 118.92 145.43 
Amount (mm) 36.63 42.48 155.88 358.28 312.44 28.26 79.80 532.78 481.00 

Note: 𝑁  is the number of 1-min DSD samples. 〈𝑅〉 and 𝑅  are the mean and max rain rate, 
respectively. 
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3.2. Statistical properties of 𝑁 –𝐷  𝑁  and 𝐷  are two main parameters defining the DSD [46,47], which also play an important 
role in retrieving precipitation microphysics on a global scale as part of the GPM mission [48, 49]. In 
fact, major microphysical processes that dominate the DSD properties can partially be recognized in 
the log10 𝑁 –𝐷  domain [46]. The distribution of log10 𝑁 vs 𝐷  is also an indicator to separate 
convective and stratiform rain types (C−S). In this study, the separation scheme described in Bringi 
et al. [50] (hereafter referred to as BR09) is adopted, as shown in Eq. (13). Briefly, 𝑁 –𝐷  pairs above 
(below) Eq. (13) are recognized as convective (stratiform) rain, 

log10 𝑁 = −1.6𝐷 + 6.3. (13) 

By using C_BR09 and S_BR09 to, respectively, denote the convective and stratiform rain, 
classified by Eq. (13), Table 2 summaries a series of DSD parameters for different rainfall types. 
There are 1488 (24011) minutes of DSDs classified as convective (stratiform) rain, which account for 
5.8% (94.2%) of the entire dataset of occurance and correspond to 54.8% (45.2%) of total rainfall 
amount. Generally, the means of all DSD parameters for C_BR09 are higher than those for S_BR09. 

Table 2. Properties of DSDs for different rain-type classification schemes. 

Type C_BR09 C_BR03 C_TE01 S_BR09 S_BR03 S_TE01 
Spectra (min / 

%) 
1488 / 5.8 1858 / 7.3 2134 / 8.4 24011 / 94.2 22094 / 86.6 23365 / 91.6 

Amount (mm 
/ %) 

555.22 / 
54.8 

605.23 / 59.7 596.33 / 58.8 458.55 / 45.2 347.43 / 34.3 417.45 / 41.2 〈𝑅〉 (mm h–1) 22.39 19.54 16.77 1.15 0.94 1.07 
1% / 99% 
(mm h–1) 

1.03 / 
104.55 

5.10 / 102.63 0.16 / 100.96 0.02 / 7.23 0.01 / 6.13 0.01 / 6.79 〈𝑊〉 (g m–3) 1.08 0.97 0.83 0.08 0.07 0.08 〈𝑁 〉 (m–3) 1179.96 1132.05 1017.30 318.09 299.14 309.12 〈𝑍 〉 (dBZ) 43.24 41.40 38.58 19.62 18.82 19.39 〈𝑍 〉 (dB) 1.75 1.48 1.34 0.38 0.36 0.38 〈𝐾 〉 (° km–1) 1.71 1.43 1.23 0.04 0.03 0.04 〈log 𝑁 〉 3.61 3.77 3.72 3.57 3.56 3.56 〈𝐷 〉 (mm) 2.03 1.82 1.72 1.01 0.99 1.01 〈𝐷 〉 (mm) 2.05 1.86 1.76 1.03 1.01 1.03 〈𝜎 〉 (mm) 0.78 0.70 0.66 0.32 0.31 0.32 
Note: Rain types and classification schemes are listed in the first row. ‘C’/‘S’ indicates 
convective/stratiform rain, whereas ‘BR09’, ‘BR03’ and ‘TE01’ represent the classification schemes 
developed by Bringi et al. [50], Bringi et al. [51], and Testud et al. [52], respectively. For example, 
C_BR09 and S_BR09 correspond to convective and stratiform rain classified by BR09 scheme. The 
number of spectra (occurrence), as well as their proportion of the entire dataset are given before and 
after the ‘/’ in row 2. Row 3 is same as row 2, but for the rainfall amount. The 1th and 99th quantiles of 
rain rate for each dataset are listed before and after the ‘/’ in row 5. Angle bracket stands for the 
sample mean. 
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Figure 4. Scatterplot of log10 𝑁  vs. 𝐷  for stratiform (S_All, lime) and convective (C_All, orange) 
rain in the bottom left panel, as well as the corresponding relative frequency histograms in the top 
and bottom right panels. The unit of 𝑁  is m–3 mm–1. Rain types were classified by BR09 scheme. The 
C_All (S_All) dataset equals to the dataset of C_BR09 (S_BR09) denoted in Table 2. Blue curves in 
each histogram indicate the relative frequency of the entire dataset for log10 𝑁  and 𝐷 . The mean 
(MEAN), standard deviation (STD) and skewness (SKEW) for the entire dataset, stratiform rain and 
convective rain are shown in colors in each histogram panel, whereas the MEAN values of log10 𝑁  
vs. 𝐷  together with the respective ± 1 × STD values are plotted as error bars. The dashed and 
dot-dashed grey lines represent the C−S separation lines of BR09 and TH15, respectively. 

Figure 4 shows the scatterplot of log10 𝑁  versus 𝐷  for convective (C_All, orange) and 
stratiform (S_All, lime) rain types, as well as the corresponding relative occurance frequency. The 
mean (MEAN), standard deviation (STD) and skewness (SKEW) are also indicated in Figure 4. Here, 
C_All (S_All) dataset equals to the dataset of C_BR09 (S_BR09) denoted in Table 2. Eq. (13) are 
superimporsed in the scatterplot panel (dashed line). Meanwhile, another C−S separation line 
suggested by Thompson et al. [53] (hereafter referred to as TH15) for oceanic, tropical rain regions is 
also superimposed (dot-dashed line) for reference. Eq. (14) shows the formula of TH15, 

log10 𝑁 = 3.85. (14) 

Stratiform samples (S_All) are concentrated near the MEAN values of 𝐷  = 1.01 mm and 
log10 𝑁  = 3.57, whereas convective samples (C_All) are sparsely distributed above the BR09 line. It 
results in larger STD of 𝐷  and log10 𝑁  for convective than stratiform rain. The 𝐷  histograms for 
both rain types are positively skewed, whereas the log10 𝑁  histograms for convective rain exhibit a 
negative skewness of −0.93. Compared with stratiform rain, the 𝐷  and log10 𝑁  histograms for 
convective rain tend to shift toward larger values, which are in agreement with previous studies for 
other climate regimes [10, 11, 51]. Similar variation tendencies of 𝐷  and log10 𝑁  histograms 
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between “Total” dataset (blue) and stratiform rain can be found, which are due to the dominant role 
of stratiform rain. 

The normalized frequency of DSD sample occurrence is shown in Figure 5. Note that the TH15 
line in 𝑊–𝐷  domain (Figure 5b) can be generated by combining Eqs. (7) and (14). The highest 
frequency of occurrence is in the ranges of 𝐷  about 0.8−1.1 mm and log10 𝑁  about 3.2−4.1, 
corresponding to rainwater content 𝑊  within 0.02−0.11 g m–3. The distribution of normalized 
frequency of DSD in both log10 𝑁 –𝐷  and 𝑊–𝐷  domains are similar to the analyses in Dolan et al. 
[46] (their Figures 2b and 2e) in the midlatitudes. Therefore, this study provides new evidence from 
midlatitude Asian (northern China) to further support such analysis. 

 
Figure 5. Normalized occurrence frequency of DSD sample in (a) log10 𝑁 − 𝐷  and (b) 𝑊 − 𝐷  
domains. The dashed and dot-dashed lines represent the C−S separation lines from BR09 and TH15, 
respectively. 

In Figure 6, the log10 𝑁 − 𝐷  pairs are color coded by rain rate 𝑅 and 𝑍  to investigate the 
interrelations among them. Similar patterns can be found in Figures 6a and 6b that the increases of 
both 𝑅  and 𝑍  are proportional to the increases of log10 𝑁  and 𝐷 , illustrating the internal 
relation between rain rate and radar reflectivity, or the 𝑍 –𝑅 relationship that will be discussed in 
Section 4. The TH15 line crosses all levels of 𝑅 and 𝑍 , whereas BR09 line is almost equivalent to a 
threshold of 𝑅 (8.6 mm h–1) or 𝑍  (36.8 dBZ). Similar conclusion has been drawn for tropical, 
maritime regions with 𝑅 = 10 mm h–1 and 𝑍  = 40 dBZ [53], which are slightly higher than our 
results. 

 
Figure 6. Scatterplots of log10 𝑁  vs. 𝐷  color coded by (a) 𝑅 and (b) 𝑍 . The units of 𝑅 and 𝑍  
are in mm h–1 and dBZ, respectively. The dashed and dot-dashed lines represent the C−S separation 
lines from BR09 and TH15, respectively. 
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Interestingly, fewer DSD samples fell within log10 𝑁  > 4 and 𝐷  > 1 mm (see Figures 4−6) 
compared to the results observed during the Asian Summer Monsoon Season in Eastrn [14] (their 
Figure 6) or Southern China [54] (their Figure 6), and in tropical, oceanic islands [53] (their Figures 
14a and 14b). In addition, more DSD samples exist in the range above BR09 line but below TH15 line. 
Referring to Dolan et al. [46] and Bringi et al. [51], warm rain with the collision-coalescence process 
has a great contribution to the precipitation in Eastern and Southern China during the Asian 
Summer Monsoon Season and tropical, oceanic regions. On the contrary, mixed phase precipitaiton 
processes may dominante the rainfall microphysics near the disdrometer site in Beijing. The 
enhanced mixed phase precipitation processes can produce larger raindrops when the ice-based 
hydrometers melt, which need to be further investigated in future. 

Datasets for convective and stratiform rain are further divided into months, as shown in the 
log10 𝑁 –𝐷  domain in Figure 7, to see the monthly variations in DSD and better compare with 
previous findings. For stratiform rain, the MEAN values of log10 𝑁  and 𝐷  in each month are all 
concentrated near the highest frequency of occurrences (Figure 5a), which corresponds to the 
“ambiguous” area in Figure 12 from Dolan et al. [46]. For convective rain, those values are 
distributed in a larger range from the mixed area to the ice-based area (from April to August), as 
well as aggregation/riming area (September and October) in Figure 12 from Dolan et al. [46]. Note 
that for convective rain the MEAN values of log10 𝑁 –𝐷  pairs in months from May to August are 
almost all around the value of 3.61 and 2.03 mm for C_All dataset with minor variations. Their STD 
values are also similar, which means similar microphysical processes dominated the precipitation 
during these months. However, such characteristics are not observed in other months. Relatively 
larger log10 𝑁  and smaller 𝐷  indicate relatively more warm rain processes in April, while in 
September and October obviously lower log10 𝑁  and larger 𝐷  indicate the relatively intense 
ice-based processes, such as aggregation and riming that sharply exhausting the number of small 
size hydrometers but slowly increasing the size of drops. Such analyses demonstrate the seasonal 
variation of dominating microphysical processes in Beijing. Overall, all MEAN values for both rain 
types in each month are below the TH15 line, illustrating that different microphysical processes are 
dominating the precipitation between midlatitude and Eastern and Southern China during the 
Asian Summer Monsoon Season, as well as tropical, oceanic regions. 

 
Figure 7. The MEAN values of log10 𝑁  vs. 𝐷  together with the respective ± 1 × STD values plotted 
as error bars for convective (triangle) and stratiform (square) rain. The dataset for both rain types, 
including all data, are plotted in black, whereas the monthly results are indicated by different colors. 
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The dashed and dot-dashed lines represent the C−S separation lines from BR09 and TH15, 
respectively. 

3.3. Discussion on C−S classification schemes 

The classification of precipitation into convective and stratiform is important in this study. 
Previous studies have proved that BR09 and TH15 schemes in log10 𝑁 –𝐷  domain are applicable 
based on the measurements not only from disdrometers but also from polarimetric radars [46, 50, 53, 
55, 56]. As such, these classification approaches are adopted. However, there are also a few other 
C−S classification schemes. In order to reveal the impacts of the classification approach on the 
analysis results, this study also applied the C−S classification schemes described in Testud et al. [52] 
(hereafter referred as to TE01) and Bringi et al. [51] (hereafter referred as to BR03) for comparison 
purpose. Both schemes are popularly used as well, and both are based on the variation of 𝑅 with 
time and utilize 10 (5) adjacent DSD measurements at a 1-min (2-min) interval. The major difference 
between them is that TE01 assesses the values of 𝑅 with an upper limit of 10 mm h–1 for stratiform 
rain, whereas BR03 evaluates the standard deviation of 𝑅 (𝜎 ) with a lower threshold of 5 mm h–1 
for convective rain. It should be mentioned that some DSDs may satisfy the conditions 𝑅 < 5 mm h–

1 and 𝜎  ≤ 1.5 mm h–1 according to BR03, and, thus, fail to be classified as either stratiform or 
convective rain. 

TH15 scheme is not suitable for Beijing, because no obvious peak of sample occurrences above 
Eq. (14) can be found in Figure 5. Therefore, only integral rainfall parameters derived from BR09, 
BR03, and TE01 are listed in Table 2. Compared with BR09, both TE01 and BR03 schemes classify 
more convective (less stratiform) DSDs, which result in more (less) rainfall amount and a higher 
proportion of convective (stratiform) rain. However, almost all DSD parameter values for both rain 
types derived by TE01 and BR03 are not higher than those derived based on BR09, except the 〈log 𝑁 〉 value for convective rain. Compared with Figure 4, convective rain classified by TE01 
(Figure S1) and BR03 (Figure S2) in log10 𝑁 –𝐷  domain contain much more samples under BR09 
line but above TH15 line, corresponding to the DSDs with higher number concentration but smaller 
size. As a result, the smallest 〈log 𝑁 〉 but highest 〈𝐷 〉 for convective rain are obtained by BR09. 

For stratiform rain, the DSD parameters from S_TE01 are higher than those from S_BR03. For 
convective rain, however, it is the opposite (Table 2). Further study shows that the percentage of 
samples with 𝑅 > 5 mm h–1 in C_BR03 is higher than that in C_TE01. In other words, the lower 
threshold of 5 mm h–1 for convective rain set in BR03 scheme plays a key role in the different results 
between TE01 and BR03. 

In summary, for stratiform rain, the impacts of different C−S classification schemes are not 
distinct relative to convective rain, due to the higher number of samples for the former than the 
latter. Although DSDs classified by the aforementioned three schemes in log10 𝑁 –𝐷  domain can 
be separated by BR09 line in general (Figures 4, S1, and S2), the specific properties of DSDs could be 
different. The BR09 scheme is recommended, since it has been proved with radar observations [55, 
56]. 

4. Radar-based Quantitative Precipitation Estimation 

This study first computed 𝑍  and 𝑅 using Eqs. (5) and (10), based on the DSD measurements, 
to support weather radar applications in Beijing. The power-law relation 𝑍 =a𝑅  was then derived 
using nonlinear regression approach. It is well known that the 𝑍 –𝑅 relationship is dependent on 
local DSD variability, which can be influenced by many factors, such as rainfall type, climate regime, 
and orographic effect [17, 35, 57]. Finding a suitable 𝑍 –𝑅 relation for Beijing is also critical to 
RMAPS model for QPE forecast [36]. 

Figure 8 shows a scatterplot of 𝑍 –𝑅 pairs for both rain types classified by BR09 scheme along 
with the corresponding fitted power-law curves and equations. The fitted curve for the entire 
dataset is highlighted in black dots. For comparison, other four commonly used 𝑍 –𝑅 relationships 
are also indicated in Figure 8, including those for the continental stratiform rain (𝑍 = 200𝑅 . ) [58], 
tropical systems (𝑍 = 250𝑅 . ) [59], operational WSR-88D radars (𝑍 = 300𝑅 . ) [60], and Meiyu 
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convective rain in China (𝑍 = 368𝑅 . ) [11]. Obviously, 𝑍  is proportional to 𝑅 in the double 
logarithmic domain. Based on the fitted relations for the two rain types, for a given 𝑍 , higher 𝑅 can 
be obtained using the stratiform relation than a convective algorithm. The relationship for the entire 
dataset (i.e., 𝑍 = 265.14𝑅 . ) is closer to the relationship for stratiform rain. 

 
Figure 8. Scatterplot of 𝑍  (mm6 m–3) vs. 𝑅  (mm h–1) computed from PARSIVEL2 DSD 
measurements for stratiform (red dots) and convective (blue dots) rain classified using BR09 scheme. 
The fitted power-law curves for stratiform and convective rain, as well as the entire dataset, are 
indicated by thick solid dark-red, solid dark-blue, and black dotted lines, respectively. The 
relationships for continental stratiform rain, 𝑍 = 200𝑅 .  [58], tropical systems, 𝑍 = 250𝑅 .  [59], 
the operational WSR-88D, 𝑍 = 300𝑅 .  [60], and Meiyu convective rain, 𝑍 = 368𝑅 .  [11] are also 
indicated in thin dashed yellow, purple, lime and green lines, respectively. Equations are overlaid 
using the same color with the corresponding curves. 

It is worth noting that the relationship for the operational WSR-88D (thin dashed lime line) [60] 
is very similar to our result based on the entire dataset, which implies that the relationship 𝑍 =300𝑅 .  could potentially be employed for QPE in Beijing. For convective rain, both 𝑍 = 250𝑅 .  
and 𝑍 = 368𝑅 .  will underestimate the rainfall intensities, likely due to the smaller diameter and 
higher number concentration of raindrops in these two climate regions than in Beijing (as detailed in 
Section 3.2). Compared with 𝑍 = 300𝑅 . , 𝑍 = 200𝑅 .  has relatively larger discrepancy 
compared to our result. 

Although a suitable 𝑍 –𝑅  relationship can be helpful to retrieve rain rate from radar 
reflectivity, the dispersion of samples in 𝑍 –𝑅 domain is still large. For example, for a given 𝑍 = 103 
mm6 m–3, 𝑅 can range from 0.5−10 mm h–1 (Figure 8). To further investigate the essence of 𝑍 –𝑅 
relationships from a microphysical point of view, the scatter distribution of 𝑍 –𝑅 pairs are color 
coded by 𝐷  and log10 𝑁  in Figures 9a and 9b. It is concluded that DSDs can be further grouped in 
size or number concentration in 𝑍 –𝑅 domain, which means the QPE could be further improved 
when considering more physical observables. 
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Figure 9. Scatterplots of 𝑍  (mm6 m–3) vs. 𝑅 (mm h–1) color coded by (a) 𝐷 , (b) log10 𝑁 , (c) 𝐾 , 
and (d) 𝑍 . The 𝑍 = 300𝑅 .  dashed line is superimposed for reference. 

In addition, dual-polarization radar variables are computed using the T-matrix method. The 
polarimetric measurements are proven to be capable of improving the performance of QPE. Figures 
9c and 9d show the distribution of 𝑍  versus 𝑅, color coded by 𝐾  and 𝑍 , respectively. Overall, 
similar variation patterns can be seen compared with Figures 9a and 9b. This is not surprising, since 𝐷  and log10 𝑁  can essentially be derived from the combination of 𝑍 , 𝑍 , and 𝐾  [34, 45, 61]. 

The distributions of 𝑍 , 𝑍 , and 𝐾  are illustrated in Figure 10. It should be noted again that 𝑍  in dBZ is used in Figure 10a, while QPE estimators are fitted using 𝑍  in linear scale. The details 
of boxplot in the center of each panel are listed in Table 3. The median value of 𝑍  is about 20 dBZ, 
and the number of 𝑍  higher than 40 dBZ is less than 5%. A large amount of 𝐾  are smaller than 
0.1 ° km–1. The distribution of each parameter has two peaks: The first peak of 𝑍  and 𝐾  is close 
to their median values, while the second peaks are at about 27.5 dBZ and 0.07 ° km–1, respectively. 
The two peaks of 𝑍  are about 0.13 and 0.45 dB, and the median value lies between the two peaks. 

 
Figure 10. The distributions of (a) 𝑍 , (b) 𝑍 , and (c) 𝐾  derived from DSD measurements using 
the T-matrix scattering approach. 
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Table 3. The quantiles of polarization radar variables derived from DSDs using the T-matrix 
scattering method. 

 min 5% 25% median 75% 95% max 𝑍  (dBZ) -4.37 4.59 13.88  20.35  27.58  38.93  60.21  𝑍  (dB) 1.00e-4  1.95e-2  0.12  0.25  0.57  1.71  4.95  𝐾  (° km–1) 1.03e-5  1.42e-4  2.85e-3  1.24e-2 5.82e-2  0.48  13.82  

This study also derived the polarimetric radar rainfall relations 𝑅 (𝑍 , 𝑍 ), 𝑅 (𝐾 , 𝑍 ), 
and 𝑅 (𝐾 ) using the least-squares method and compared with the 𝑍 –𝑅 relationships. Here, 
the subscript “dpr” represents Dual-Polarization Radar for short. The obtained estimators based on 
the total DSD dataset are listed as follows: 𝑅dpr(𝑍 , 𝑍 ) = 𝛼𝑍 10 , (15) 𝑅dpr(𝐾 , 𝑍 ) = 𝛼𝐾 10 , (16) 𝑅dpr(𝐾 ) = 𝛼𝐾 , (17) 𝑅dpr(𝑍 ) = 𝛼𝑍 , (18) 

where 𝛼, 𝛽, and 𝛾 are generic coefficients and exponents in each relation. The specific values are 
listed in Table 4. 

Table 4. The fitted parameters of radar QPE estimators (Eqs. 15-18) derived using the total DSD 
dataset. 

Parameters 𝑅dpr(𝑍 , 𝑍 ) 𝑅dpr(𝐾 , 𝑍 ) 𝑅dpr(𝐾 ) 𝑅dpr(𝑍 ) 𝛼 5.696×10‒3 23.045 15.375 6.986×10‒2 𝛽 0.986 0.947 0.836 0.540 𝛾 ‒0.464 ‒0.101 ---- ---- 

In order to evaluate the application performance of various QPE estimators, the hourly rainfall 
amount (mm) derived using each radar rainfall relation is compared with collocated rain gauge 
observations (distance between disdrometer and gauge is less than 10 m). Figures 11a–d shows the 
scatter plots of rainfall estimated using radar relations versus gauge measurements. In addition, a set 
of evaluation metrics, including the Pearson correlation coefficient (PCC), standard deviation (STD), 
normalized mean absolute error (NMAE), and root-mean-square error (RMSE) are computed and 
indicated in Figure 11. 

Obviously, 𝑅 (𝑍 , 𝑍 ) performs the best in terms of all evaluation metrics, followed by 𝑅 (𝐾 , 𝑍 ) , 𝑅 (𝐾 ) , and then 𝑅 (𝑍 ) . The estimated hourly rainfall amount from 𝑅 (𝑍 , 𝑍 ) (Figure 11a) is the closest to rain gauge measurements at low intensities. However, 𝑅 (𝐾 , 𝑍 ) provides the best estimation at higher rainfall intensities, especially during severe 
precipitation hours. 

Recent studies [5, 6] demonstrated that the combination of different estimators may improve 
the accuracy of QPE. However, their achievements were mainly based on S-band radar 
measurements. In this study, we attempted to extend this strategy to X-band applications. Similar 
thresholds to the Dual-Polarization Radar Operational Processing System version 2 (DROPS2) [5] are 
used at X-band: 𝑍 = 37 dBZ, 𝑍 = 0.185 dB, and 𝐾 = 0.03 ° km–1. For clarification, this paper 
referred to the implemented DROPS2.0 architecture as 𝑅 (DROPS2–X) . As expected, 𝑅 (DROPS2–X) (Figure 11e) provides the best results among various rainfall relations, which 
demonstrates the feasibility of the thresholds applied on X-band dual-polarization radar variables. 
Compared with Figure 11b, 𝑅 (DROPS2–X) inherits the advantage of 𝑅 (𝐾 , 𝑍 ) for all severe 
precipitation hours. Nevertheless, it should be noted that except 𝑅 (𝑍 ), the differences among all 
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other QPE estimators are not distinct: All have PCC higher than 0.98, STD and RMSE smaller than 
1.0, and NMAE smaller than 0.2. 

 
Figure 11. Scattergram (based on the total rainfall observations) of hourly rainfall estimates (mm) 
from various radar rainfall relations vs. rain gauge measurements: (a) 𝑅dpr(𝑍ℎ, 𝑍DR) , (b) 𝑅dpr(𝐾DP, 𝑍DR), (c) 𝑅dpr(𝐾DP), (d) 𝑅dpr(𝑍ℎ), and (e) 𝑅dpr(DROPS2–X). The grey diagonal straight line 
in each panel represents the 1–1 relationship. The quantitative evaluation results are also indicated in 
each panel, including the Pearson correlation coefficient (PCC), standard deviation (STD—mm), 
normalized mean absolute error (NMAE), and root-mean-square error (RMSE—mm). 
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5. Conclusions 

To investigate the microphysical properties of surface precipitation and improve the accuracy 
of radar QPE, 14-month continuous PARSIVEL2 measurements during 2017–2018 in Beijing, China, 
were analyzed in this study. After quality control, a total of 25,499 1-min DSD spectra were obtained, 
corresponding to 1013.78 mm of total rainfall. The major rainy periods were from June to August, 
which contributed to 81.5% of rainfall amount and 78.3% of total DSD samples. The least 
contribution of rainfall was from September. In October, the precipitation tends to be steady with 
relatively long time but low intensity. 

DSD dataset was classified as stratiform and convective rain types using the BR09 C−S scheme 
[50] in log10 𝑁 –𝐷  domain. A large number of samples were identified as stratiform, which 
accounted for less than half of the total rainfall amount. The mean integral rainfall parameters, such 
as 〈𝑅〉, 〈log 𝑁 〉, 〈𝐷 〉, and three X-band dual-polarization variables, were higher in convective 
rain than stratiform rain. The occurrence of DSDs concentrated with 𝐷  and log10 𝑁  in the ranges 
of 0.8−1.1 mm and 3.2−4.1, respectively, which corresponds to 𝑊  about 0.02−0.11 g m–3. The 
increases of 𝑅 and 𝑍  were proportional to the increases of log10 𝑁  and 𝐷 , and BR09 line was 
equivalent to 𝑅 = 8.6 mm h–1 and 𝑍  = 36.8 dBZ. The comparation with other C−S classification 
schemes showed the similar distribution in log10 𝑁 –𝐷  domain, but the detailed characteristics of 
DSDs among different schemes were different, with larger discrepancies in convective rain than 
stratiform rain. The different predominant microphysical processes in Beijing and other climate 
regions result in different DSD distributions in log10 𝑁 –𝐷  domain, especially for convective rain. 
Compared to the warm rain characterized by a collision-coalescence process in Eastern and Southern 
China during the Asian Summer Monsoon Season, as well as in tropical, oceanic regions, the 
precipitation in Beijing is dominated more by mixed phase precipitation microphysical processes. 
The melting large ice-phase hydrometers increased 𝐷  but decreased 𝑁  compared to other 
climate regions. For stratiform rain, the mean values of log10 𝑁  and 𝐷  correspond to the high 
occurance ranges. For convective rain, three groups were separated, which showed distinct seasonal 
variations. The mean values of log10 𝑁 –𝐷  pairs from May to August (Group 1) clustered together 
while those from April (Group 2) and September-October (Group 3) were distributed on the two 
sides of Group 1 above the BR09 line. Group 2 tends to contain more warm rain processes, while 
Group 3 was dominated by intense ice-based processes, such as aggregation and riming that sharply 
decrease the number of small size hydrometers but slowly increase the particle size. This finding 
provides additional insight to precipitation microphysics in midlatitude Asian (northern China) and 
further appends the archievements of Dolan et al. [46]. 

In addition, dual-polarization radar variables were computed from the DSD dataset using the 
T-matrix scattering method and the radar-based QPE estimators were derived through nonlinear 
regression analysis. The estimated rainfall products using radar rainfall relations were also 
independently verified using collocated rain gauge measurements. It was concluded that for 
single-polarization variable, the fitted 𝑍 –𝑅 relationship, 𝑍 = 265.14𝑅 . , was almost coincident 
with the operational WSR-88D rainfall estimator [60], 𝑍 = 300𝑅 . ; for dual-polarization radar 
applications, 𝑅 (𝑍 , 𝑍 ) performed the best for hourly rainfall estimation, while 𝑅 (𝐾 , 𝑍 ) 
performed the best at high rainfall intensities. In addition, a blended algorithm is derived based on 
the architecture of DROPS2 [5] to enhance radar rainfall estimation. It was shown that 𝑅 (DROPS2–X) performed better than any individual QPE estimators at hourly scale. Future work 
will focus on the large scale application of 𝑅 (DROPS2–X) for the X-band dual-polarization radar 
network being deployed in Beijing. 

Supplementary Materials  
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Figure S1. As in Figure 4, but for the TE01 classification scheme. 

 

Figure S2. As in Figure 4, but for BR03 classification scheme. 
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