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Abstract: Early and precise spatio-temporal monitoring of tree vitality is key for steering management
decisions in pome fruit orchards. Spaceborne remote sensing instruments face a tradeoff between
spatial and spectral resolution, while manned aircraft sensor-platform systems are very expensive. In
order to address the shortcomings of these platforms, this study investigates the potential of Remotely
Piloted Aircraft Systems (RPAS) to facilitate rapid, low cost, and flexible chlorophyll monitoring. Due
to the complexity of orchard scenery a robust chlorophyll retrieval model on RPAS level has not yet
been developed. In this study, specific focus therefore lies on evaluating the sensitivity of retrieval
models to confounding factors. For this study, multispectral and hyperspectral imagery was collected
over pome fruit orchards. Sensitivities of both univariate and multivariate retrieval models were
demonstrated under different species, phenology, shade, and illumination scenes. Results illustrate
that multivariate models have a significantly higher accuracy than univariate models as the former
provide accuracies for the canopy chlorophyll content retrieval of R2 = 0.80 and Relative Root Mean
Square Error (RRMSE) = 12% for the hyperspectral sensor. Random forest regression on multispectral
imagery (R2 > 0.9 for May, June, July, and August, and R2 = 0.5 for October) and hyperspectral
imagery (0.6 < R2 < 0.9) led to satisfactory high and consistent accuracies for all months.

Keywords: chlorophyll; fruit orchards; RPAS; multivariate; multispectral remote sensing;
hyperspectral remote sensing; random forest

1. Introduction

In pome fruit orchards, timely management decisions rely on the early and precise localization of
sub-optimally performing trees. Foliar chlorophyll, an integrated proxy of solar radiation absorption
and thus primary production [1] is widely acknowledged as a key indicator of crop performance [2–4],
hence its monitoring is a high priority. Although accurate, chemical analysis of leaf chlorophyll content
is destructive, expensive, and time-consuming. Optical contact sensors for in-field measurements
of chlorophyll at leaf (e.g., SPAD; Minolta Camera Co., Japan) and canopy level (e.g., LiDAR-RGB
systems) [5] provide a non-destructive alternative for chlorophyll content monitoring. However, these
techniques remain labor-intensive, meanwhile covering only a limited number of samples in space
and time.
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In recent years, remote sensing has been put forward as a viable solution to circumvent these
spatial and temporal monitoring constraints. Several attempts have been made to estimate chlorophyll
content of fruit tree canopies using satellite observations [6,7]. Yet, because of the discontinuous open
canopies typical for most perennial cropping systems, mixed pixels impeding the effectiveness of
crop performance interpretation prevail in agricultural image scenes [8,9]. Furthermore, continuous
monitoring of chlorophyll dynamics throughout the growing season, which is a prerequisite for
timely interventions, is seriously hampered by the pronounced cloud cover in continental climates.
In addition, the spectral resolution of most traditional satellite systems is currently also too coarse
compared to a suggested bandwidth of less than 10 nm for precision agriculture [10]. So, in short,
traditional remote sensing platforms do not allow to provide timely information with sufficient spatial
resolution which are demanded in precision horticulture.

In contrast, Remotely Piloted Aircraft Systems (RPAS) are very flexible in their revisit time, depend
less on weather conditions, and offer much higher spatial resolutions (<10 cm). The potential of this
type of platform to estimate canopy chlorophyll in fruit orchards has been shown in recent studies [11].
Yet, although promising, these existing studies do not demonstrate the sensitivity and transferability
of the chlorophyll retrieval models. Therefore, they impede a comprehensive assessment of the full
potential of the technology for operational use in pome fruit orchards. First, the technology was tested,
and chlorophyll retrieval models calibrated, on peach and olive orchards [11]. Whereas peach and
olive trees are characterized by a relatively high leaf area index and a closed canopy, the situation for
e.g., pome fruit is totally different. Apple trees have generally a quite sparse and open canopy, and this
is even more the case for pear trees [12]. This characteristic further complicates image interpretation.

Second, in previous studies it was not assessed whether the accuracies of the chlorophyll retrieval
models derived from RPAS observations are consistent throughout the growing season. Indeed,
previous research was mainly focused on unitemporal high spectral and spatial resolution data for
canopy chlorophyll content (CCC) retrieval [11,13–15]. A useful CCC retrieval model should however
be consistent throughout the entire growing season. Robustness to phenological changes such as
changes in the biochemical content of leaves [16,17], leaf area index [18–20], and crop load [21] are
critical since they potentially all influence the chlorophyll retrieval accuracy. This leads to some
researchers opting for development of growth stage specific models [22]. However, having to develop
separate models for each phenological stage is cumbersome since phenology in fruit orchards is highly
influenced by environmental factors, such as temperature and relief [23,24]. Therefore, demanding
field observations to determine phenological stage or advanced and performant models which predict
the phenological stage are required [25]. Alternatively, radiative transfer models can be used to account
for confounding effects of other biophysical parameters [26] on CCC retrieval. Although effective
(R2 = 0.89, RMSE (Root Mean Square Error) = 4.2 µg/cm2 ) [11] these physical based models need a
significant amount of input data and are computationally demanding. Furthermore, the more realistic,
the more complex the models are and the higher their need for detailed input data, making them
harder to invert [26,27]. In addition, these physical models, except for introduced gaussian noise, do
not take into account confounding factors which are not specified in the model [28]. Third, in case
operational use of RPAS is envisaged, the CCC retrieval models should be robust against changing
image acquisition conditions causing variation in canopy shade and scene illumination. The former
is mainly influenced by time (solar angle), while the latter is determined by clouds, the viewing
angle, and radiometric calibration. In most studies, imagery was collected close to solar noon to
prevent excessive shading [11,14,29]. Moreover, flying within a strict flight window limits the potential
coverage and revisit time of RPAS monitoring. It would thus be good to look at the influence of
shade on the performance of different CCC retrieval models. Furthermore, suboptimal performance of
commonly applied univariate models, such as vegetation indices, has been attributed to its sensitivity
to variations in scene illumination [15].
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Moreover, currently not all scene illumination differences are being corrected for by commercial
RPAS processing software packages. For example, Agisoft PhotoScan Pro (Agisoft LLC, St. Petersburg,
Russia) employed for calibrating Parrot Sequoia®(Parrot Drone SAS, Paris, France), uses several
photograph parameters to calculate reflectance. Illumination variations are corrected for in the
software package with ‘color correction/balancing’ only considering the homogeneity of adjacent
images histogram and neglecting the bidirectional reflectance distribution function (BRDF) effect within
a single image [30,31]. Additionally, radiometric normalization is not straightforward in radiometric
correction of high spatial resolution RPAS imagery. Especially in complex tree canopies, non-uniformity
becomes more obvious at increasing resolutions since observed topographic and BRDF effects are
amplified within and between image scenes. Increased spectral reflectance variability at smaller pixel
sizes further adds on this issue. All these factors limit the use of time series of RPAS imagery to monitor
CCC throughout the growing season [30].

Univariate models such as vegetation indices (VI’s) rely on carefully selected band ratios which
are then related to the parameter of interest. VI’s are defined to enhance spectral features sensitive to a
vegetation property while reducing noise by combining some spectral bands into a VI. These VI’s are
simple to compute but do not exploit the wealth of spectral information in other bands. In contrast
to univariate models, multivariate models are better in separating the confounding factors from the
parameter we want to extract [26]. The higher accuracy of multivariate compared to univariate models
for CCC retrieval was already proven for unitemporal crop and tree species data by Verrelst et al.
(2012a) [13] and Degerickx et al. (2018) [14]. An extensive overview of the use of multivariate models
for estimating biochemical parameters of agricultural crops using RPAS imagery was given by the
reviews of Pádua et al. (2017) and Adão et al. (2017) [32,33].

The main objective of this study is to develop a robust and reliable CCC retrieval model for pome
fruit tree monitoring using RPAS platforms equipped with an optical sensor. The main questions are
what type of sensor is needed for accurate chlorophyll monitoring, as well as which type of CCC
retrieval model is most suitable to cope with the many confounding factors. Confounding factors in
this study are defined as factors which interfere with an accurate CCC retrieval. The robustness of
different CCC retrieval models will be evaluated, in order to make sound decisions on how an accurate
RPAS-based chlorophyll monitoring system can be set up for pome fruit orchards.

Key in our study is to evaluate the robustness of CCC retrieval models of sensors with multispectral
and hyperspectral resolution against:

1. shadow—we evaluate the CCC retrieval model shade sensitivity by comparing CCC retrieval
models extracted from full and sunlit signals from both sensors;

2. species—we evaluate the leaf chlorophyll content (LCC) and CCC retrieval model sensitivity of
apple and pear species and both species combined from multi- and hyperspectral sensor systems;

3. phenology—we evaluate the CCC retrieval model sensitivity to phenological stages by comparing
the unitemporal with the multitemporal model performance;

4. illumination differences—we evaluate the CCC retrieval model sensitivity to illumination
differences by comparing the performance of unitemporal and multitemporal models on image
acquisition days with cloudy and clear skies.

2. Materials and Methods

2.1. Study Area

Data for this study was collected during the growing season of 2017 from a pear (Pyrus communis)
and apple (Malus Domestica) orchard in Belgium (Figure 1). The pear orchard, which was part of a
drought and nitrogen treatment experiment, was located at the research station pcfruit (Proefcentrum
Fruitteelt) in Kerkom, Belgium. The experimental design was composed of two adjacent rows with
‘Conference’ pear trees planted in 2000 on a Quince A rootstock with ‘Beurré Hardy’ and ‘Triomphe
de Vienne’ as pollinators. Each row of 90 trees was divided in plots of five trees, consisting of three
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central experimental trees and two buffer trees. Three treatments were applied on the field: no nitrogen
fertilization, double nitrogen fertilization (400 kg/ha Ca(NO3)2), and drought (induced by covering the
soil with sails). There were also control plots which received standard nitrogen fertilization (200 kg/ha
Ca(NO3)2). From each treatment, nine trees were selected to be monitored with ground measurements,
thus 36 trees were selected in total.

The apple orchard, in which a fruitlet thinning experiment was conducted with metamitron, a
chemical thinner, was located in Nieuwerkerken, Belgium. The experimental design, containing four
adjacent rows with ‘Golden Delicious’ apple trees was planted in 2009. M9 was used as a rootstock
and ‘Granny Smith’ as a pollinator. Each row was divided in plots of six trees, consisting of four
central experimental trees and two buffer trees. Seven treatments were applied, differing in metamitron
application timing with a dose rate of 247.5 g/ha. Each plot was treated with metamitron on another
date, namely 16, 18, 22, 24, 26, and 30 May, and 1 June. These dates correspond to trees in the phenology
BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) stages of 69 (end
of flowering (16–18 May)), 71 (fruit size up to 10 mm, fruit fall after flowering (22 May)) and 73
(second fruit fall (24 May–1 June) [34]. There were also control plots which received no thinning of the
fruitlets. From each treatment and the control, all trees, so 48 in total, were monitored with ground
measurements. A randomized block design was used to set-up both experiments. In this way, it was
assumed that each plot in the field was influenced by similar environmental factors (e.g., soil type,
moisture, weather). These experiments were expected to cause a wide range of chlorophyll values and
were therefore chosen. The general characteristics and experimental design are provided in Table A1
in the Appendix A.
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Figure 1. The pear (left) and apple (right) orchard locations in Belgium with a detail of the hyperspectral image in the Red-Green-Blue (RGB) channels (upper) and the 
multispectral in false color (green, red, red edge) (below). 

Figure 1. The pear (left) and apple (right) orchard locations in Belgium with a detail of the hyperspectral image in the Red-Green-Blue (RGB) channels (upper) and the
multispectral in false color (green, red, red edge) (below).
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2.2. Remotely Piloted Aircraft System Imagery

Throughout the growing season of 2017 RPAS flights were conducted over the experimental
orchards in May, June, July, August, and October. These dates correspond to different key moments in
the growing season: the spring flush in May, the physiological and induced fruit drop in June, the
vegetative growth stop, fruit growth and fruit ripening in July, harvest in August and September,
and senescence in October [34]. Detailed information on the multispectral and hyperspectral flight
campaign is summarized in Tables A2 and A3 in the Appendix A. A detailed description of the sensor
characteristics and preprocessing is given in the Supplementary Data. All datasets will be made
available as part of BELAIR HESBANIA 2017 (SR/67/331a) [35].

2.2.1. Multispectral Imagery

The multispectral sensor Parrot Sequoia (Parrot Drone SAS, Paris, France) is a synchronized array
of four single-band cameras (each with a similar 1.2 MP sensor with 3.75 µm pixel pitch and a 4 mm
lens, but with a different interference filter in front of each sensor). These four bands are situated in the
green (530–570 nm), red (640–680 nm), red-edge (730–740 nm), and near-infrared (770–810 nm) regions.
The Parrot Sequoia was mounted inside the fixed-wing SenseFly eBee (SenseFly, Cheseaux-Losanne,
Switserland) remotely piloted aircraft system. The spatial resolution of the multispectral images was
8 cm for a nominal flight height of 85 m above ground level, and images were acquired with 85% front-
and sideward overlap. Images were processed through a structure from motion (SfM) photogrammetry
workflow in the commercial software Agisoft PhotoScan 1.4.4. Before and after each flight, three
four-band images were acquired from the calibration panel on the ground. In Agisoft PhotoScan,
a reflectance calibration region of interest (ROI) was manually digitized on each band of the panel
images, excluding edges and dirt spots. Then, the digital number (DN)-to-reflectance calibration
was executed and transferred to all images, taking irradiance sensor values into account. Geometric
correction is based on the use of ground control points in Agisoft PhotoScan. The alignment was
run based on initial values of pixel pitch, focal length, and radial distortion, without self-calibrating
parameters during the alignment (adaptive camera model fitting disabled). Then, the position of the
real time kinematic (RTK) ground measurement on the marker was digitized on at least nine images
for every marker visible in the flight imagery. Next, the camera self-calibration was run.

2.2.2. Hyperspectral Imagery

The hyperspectral Headwall Micro-Hyperspec sensor (Headwall Inc., USA), measures 326 bands
in a spectral range of 400–1000 nm. The images have a spatial resolution of 5 cm at a normal flying
height of 54 m. The sensor was mounted on the Altura Zenith ATX8 rotorcraft (Aerialtronics, The
Netherlands). Simultaneously with the airborne data acquisition, ground reference data was collected
from Ground Control Points (GCP’s) and a spectral reference target. This data was used for geometric
and radiometric image calibration. For the radiometric and spectral calibration, the reference target,
being a tarp with a reflectivity level of 36%, was manually selected from the hypercube. From this
target area an average DN spectrum was created. Each spectrum from the hypercube was divided by
this average DN spectrum and multiplied by the actual reflectance spectrum of the reflectance target.
The latter was measured by the supplier of the target and is slightly wavelength dependent. Finally,
a spline fit was performed on each hypercube spectrum using noise dependent smoothing factors to
generate a smoothed reflectance hypercube. The geometric correction was performed using VITO’s
own developed C++ module and was based on direct georeferencing. Input data from the sensor’s
(Global Navigation Satellite Systems/Inertial Measurement Unit) GNSS/IMU, the sensor geometric
model, boresight correction data and elevation data are further used during the geometric correction
process. The data were projected to Lambert72 with an output pixel size of 5 × 5 cm.
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2.3. Leaf Spectral Measurements

During the 2017 growing season, subsequent apple and pear leaf spectral measurements were
taken as close as possible to the timing of each RPAS flight. Hyperspectral leaf measurements were
collected using a Fieldspec 4 spectroradiometer (Malvern Panalytical, Longmont, CO, USA), with a
contact probe and an attached light source. The internal stabilized light provided an even and reliable
illumination source at selectable levels, ensuring consistent and properly directed full-range energy to
the reference disk and samples. The radiometer measured in the range of 350–2500 nm. The sampling
interval was 1.4 nm at 350–1050 nm, while it was 2 nm at the 1050–2500 nm spectral range. Before
measuring the leaves, the ASD was optimized and a white reference was taken on spectralon. From
each tree of the 36 pear and 48 apple trees, 10 top-shoot leaves and 10 middle-branch leaves were
randomly selected, representing the canopy. Top-shoot leaves are assumed to make up a smaller part
of the whole canopy but are closer to the nadir-looking sensor, while middle-shoot leaves contribute
more to the whole canopy but overlap more with other branches and are at a larger distance from the
sensor. Furthermore, a set of additional leaves was collected for which both the spectral reflectance
was measured, and leaf chlorophyll destructively determined via chemical analysis (Section 2.6).
The dataset comprised 204 pear (mean LCC = 55.5 µg/cm2, range LCC = 0.7–91.9 µg/cm2, standard
deviation = 14.4 µg/cm2) and 183 apple leaves (mean LCC = 53.2 µg/cm2, range LCC = 22–89.1 µg/cm2,
standard deviation = 13.2 µg/cm2) which were sampled throughout the growing season.

2.4. Phenology

The phenological growth stages for the apple and pear trees as specified through the BBCH
code [34] are summarized in Tables A2 and A3. Perennial pome fruit have a very rapid leaf area
development in spring due to the existing structure, nutrient and carbon reserves. By bloom, the
canopy of a mature tree has developed 20% of its maximal leaf area [36]. Full bloom was on 5 April for
pear and two weeks later, on 18 April for apple. Apple physiological and induced fruit fall of small
fruits occurred between 23 May and 19 June, while this was later for pear trees namely between 30
May and 23 June. Canopy development generally continues until midsummer [36]. Apple trees were
picked mid-September, while the pear trees were already picked at the end of August. In mid-October,
the timing of the last image acquisitions, leaf senescence and abscission had already started.

2.5. Chlorophyll Retrieval Workflow

Our workflow to retrieve canopy chlorophyll content from airborne multispectral and
hyperspectral RPAS data comprised four steps (Figure 2). First, a species-independent leaf chlorophyll
model was developed and applied to the leaf spectra, taken from each tree (Section 2.6). This gave us
the reference CCC per individual tree. Second, individual canopies were detected, delineated, and
masked for either background or background and shade from the RPAS imagery (Section 2.7). Third,
the spectral information of each tree segment was extracted from the RPAS imagery to estimate the
CCC with CCC retrieval models (Section 2.8). Fourth, the CCC retrieval model sensitivity was assessed
under different scenarios of confounding factors (Section 2.9).
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Figure 2. Overview of the proposed workflow to extract leaf chlorophyll content (LCC) and
canopy chlorophyll content (CCC) from Remotely Piloted Aircraft Systems (RPAS) multispectral
and hyperspectral data.

2.6. Reference Canopy Chlorophyll Content

The reference CCC, which is the real or ground reference chlorophyll content of each tree, was
determined by averaging the LCC of 20 sampled leaves per tree (see Section 2.3). In order to establish
a relation between the leaf spectral measurements taken by the ASD spectroradiometer and leaf
chlorophyll content, a spectral calibration curve was built with the set of leaves which was collected
throughout the growing season. After the leaf reflectance was measured according to the protocol
described in Section 2.3, leaves were stored in an ice chest and transported to the lab. For chemical
analysis, acetone was used as solvent to bring chlorophyll into solution. Absorbance was measured
with a spectrophotometer at three wavelengths: 662, 645, and 740 nm [37]. Leaf chlorophyll content
was determined by using these absorbances in the Lichenthaler and Buschmann (2001) [37] equations.

2.7. Tree Delineation and Masking

First, tree tops were identified on the canopy height model (CHM) of both the multispectral and
hyperspectral imagery with an algorithm, searching for the maximum height in a window. Some
tree tops needed to be manually adjusted by looking at tree shadow patterns on the grass. Each
canopy top was then delineated using a circle with a diameter comprising the central part of the tree
while preventing overlap with neighboring trees. Random forest classification was used to perform
segmentation on the multispectral and hyperspectral data [38,39]. Training data comprised 10 polygons
for the classes soil, sunlit sail, grass, shaded grass, sunlit canopy, and shaded canopy. Individual
random forest models were developed for each image since the large illumination differences between
imagery would demand an extensive training dataset to make a general model with a high accuracy
feasible which was beyond the scope of this study. Accuracy metrics (overall accuracy > 0.9, Kappa >

0.9) of the random forest classification are given in the Supplementary Data. Background, defined as
soil, sail, and shaded grass was masked in the multispectral image to retrieve the full canopy spectra.
By averaging the spectra of all pixels belonging to one canopy, the full canopy spectrum was extracted
(Figure A1). The class ‘sunlit grass’ could not be masked since it had too much overlap with the sunlit
canopy class. For the hyperspectral imagery sunlit grass could be separated more easily from the sunlit
canopy and therefore this class was also masked. For the sunlit canopy spectrum, only the sunlit pixels
were averaged by also masking the canopy shade class (Figure A1).
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2.8. Retrieval Models

Datasets for calibrating and validating LCC and CCC retrieval models were formed by combining
the respective LCC with the leaf spectra and the combination of the reference CCC (Section 2.6) with
the respective canopy spectrum (Section 2.7) of each tree for each month. Univariate and multivariate
retrieval models were tested.

2.8.1. Univariate Retrieval Models

For the univariate models, three established chlorophyll and greenness indices were selected from
relevant literature (Table 1) [22]. As the objective of this study was not to give an extensive overview
of all existing chlorophyll vegetation indices, also a generic normalized difference vegetation index
(NDVI) [40] was calculated, defined as NDVI with wavelengths λ1 and λ2 in order to provide the best
correlation with the parameter of interest. This two-band index is optimized for local applications, but
has shown to lack generic capacity in other studies [26].

Table 1. Chlorophyll and greenness indices.

VI Formula Reference

NDVI
(Rλ1 − Rλ2)

(Rλ1 + Rλ2)
Rouse et al. (1974) [41]

TCARI 3 [(R700 −R670) − 0.2(R700 −R550)
R700
R670

Haboudane et al. (2002) [42]

PRI
R531 − R570
R531 + R570

Gamon et al. (1992) [43]

REIP 700 + 40 *

R670 + R780
2

− R700

R740 + R700
Guyot et al. (1988) [44]

2.8.2. Multivariate Retrieval Models

In this study, 15 multivariate models were selected based on reviews [26,45] and preliminary
testing. This includes six linear models and 10 non-linear models. These models can further be divided
in parametric and non-parametric methods. Additional information about these classes can be found
in Moser et al. (2018) and James et al. (2013) [45,46]. Data processing and analyses were performed in
the R statistical environment using the caret package [47] and the packages it is dependent upon (see
Table 2).

Table 2. Summary of the multivariate models.

Model Class Model
Subclass Regression Model Abbreviation Package Reference

Linear Stepwise linear regression with
sequential selection RSS leaps [48]

Linear Least angle regression LARS lars [49]
Linear Ridge regression RR elasticnet [50]

Linear Ridge regression with variable
selection RRVS foba [51]

Linear Linear regression with elastic net ENET elasticnet [50]
Linear Projection pursuit regression PPR MASS [52]

Non-linear Decision tree Random forest RF randomForest [39]

Non-linear Decision tree Evolutionary algorithm for
regression trees TMGA evtree [53]

Non-linear Decision tree Stochastic gradient boosting SGB gbm [54]

Non-linear Kernel Support vector machines with
linear kernel SVML kernlab [55]

Non-linear Kernel Support vector machines with
radial kernel SVMR kernlab [55]
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Table 2. Cont.

Model Class Model
Subclass Regression Model Abbreviation Package Reference

Non-linear Kernel Gaussian processes regression
with linear kernel GPRL kernlab [55]

Non-linear Kernel Gaussian processes regression
with radial kernel GPRR kernlab [55]

Non-linear Instance based
and clustering K-nearest neighbor KNN kknn [56]

Non-linear Instance based
and clustering

Subtractive clustering and fuzzy
c-means rules SBC frbs [57]

Linear Models

The linear parametric models are all based on the standard linear regression model with p variables
and with response y predicted by Equation (1). A model fitting procedure is applied to produce the
vector of coefficients β̂ = (β̂0, . . . , β̂p). In stepwise linear regression with sequential selection (RSS)
multiple regression is recursively applied a number of times. The process is a combination of forward
and backward selection, evaluating a small number of subsets of variables by either adding or deleting
variables one at a time [58]. The least angle regression (LARS) is also a linear regression model but is a
computationally more efficient variant to the standard forward selection method. The LARS procedure
works similar to linear regression with forward selection, starting with all coefficients equal to zero,
and finding the variable most correlated with the response. Unlike standard forward selection, LARS
proceeds in a direction equiangular between the two variables until a third variable is selected. LARS
then proceeds equiangularly between these three variables, thus along the “least angle direction,” until
a fourth variable enters and the process is repeated [59].

ŷ = β̂0 + x1 β̂1 + . . .+ xpβ̂p, (1)

Y = Xβ+ ε, (2)

β̂ = (x′x)−1(x′y). (3)

In ridge regression (RR), the β estimation procedure is based on adding small positive quantities to the
diagonal of X’X (see Equation (3)). This adjustment is needed when the variables are multicollinear,
which can be the case for hyperspectral data, leading to incorrect estimations of β [60]. In ridge
regression with variable selection (RRVS), variables are selected based on adaptive forward and
backward selection [61]. Linear regression with elastic net (ENET) is also a combination of regularization
and variable selection methods but based on LARS. This model encourages a grouping effect, where
strongly correlated variables tend to be in or out of the model together. The elastic net is particularly
useful when the number of variables largely exceeds the number of observations as is often the
case with hyperspectral data [62]. Finally, a non-parametric linear regression technique, projection
pursuit regression (PPR) was also explored. This method forms a linear combination of nonlinear
functions [63].

Non-Linear Models

Non-linear multivariate retrieval models also referred to as machine learning regression algorithms
apply non-linear transformations, assuming non-explicit relationships between variables [46]. These
retrieval models are in this study divided in three large classes, namely (i) decision tree and additive
models, (ii) kernel methods, and (iii) instance based or clustering models (Table 2). Based on the
high potential of decision tree and additive models, three additional models were tested. First, an
evolutionary algorithm for regression trees was applied. This algorithm first initializes a set of trees
with random split rules in the root nodes. Second, mutation and crossover operators are applied to
modify the trees’ structure and the tests that are applied in the internal nodes. After each modification
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step a survivor selection mechanism selects the best candidate models for the next iteration. In this
evolutionary process the mean quality of the population increases over time [53]. Next, random
forest (RF) was tested which gives as output the average prediction over a set of trained decision
trees [38]. Finally, gradient boosting (SGB) was tested, which constructs additive regression models by
sequentially fitting a simple parameterized function (weak learner) to current residuals by least-squares
at each iteration. Specifically, at each iteration a subsample of the training data is drawn at random
from the full training dataset. This randomly selected subsample is then used in place of the full sample
to fit the weak learner and compute the model update for the current iteration. This randomized
approach also increases robustness against overcapacity of the weak learner [64].

Kernel machines quantify similarities between input variables of a dataset. Similarity reproduces a
linear dot product computed in a possibly higher dimensional feature space, yet without ever computing
the data location in the feature space [26]. Support vector machines (SVMs) are a well-known example
of kernel machines. SVMs integrate kernels with learning criteria that optimize generalization
capability [65]. A support vector machine constructs a hyperplane or a set of hyperplanes in a high
or even infinite dimensional space. Intuitively, one expects a good separation by application of a
hyperplane, with the largest distance to the nearest training data point of any class [26]. Gaussian
process regression is also a kernel technique but has a Bayesian distribution to describe relationships
among the input variables. It is described by its mean and covariance as well. This represents an
expected covariance between function values at a given point [26,65].

Instance-based models typically build up a database of example data and compare new data to
the database using a similarity measure in order to find the best match and make a prediction. The
nearest neighbor method (KNN) is such an instance-based model, both simple and nonparametric
method, where a new observation is placed into the class of the observation from the learning set
that is closest to the new observation, with respect to the covariates used [66]. Subtractive clustering
and fuzzy c-means rules (SBC) uses a subtractive clustering method to obtain cluster centers. SBC
considers each data point as a potential cluster center. A data point has a high potential value if that
data point has many nearby neighbors. The highest potential is chosen as the cluster center. The
process of determining new clusters and updating potentials repeats until the remaining potential of
all data points falls below some fraction of the potential of the first cluster center. After getting all the
cluster centers from subtractive clustering, the cluster centers are optimized by fuzzy c-mean [67].

2.9. Confounding Factors

In order to test the sensitivity of LCC and CCC retrieval models to confounding factors, main
confounding factors were determined and evaluated in four different scenarios (canopy shade, species,
phenology, and illumination) in the pome orchard scenery (Figure 2). Canopy shade differences
within an orchard, result from tree size, variations in heights within canopies, and tree spacing [68].
Furthermore, shade fraction within the canopy is influenced by time of flight (sun angle). In order to
prevent excessive shading, solar noon flights are recommended and applied in most studies. However,
flying within a strict flight window limits potential coverage and revisit time of RPAS monitoring. By
quantifying shade influence on the retrieval model accuracy, we can therefore decide if flying within
this strict flight window is needed. CCC retrieval model sensitivity to shade was investigated by
comparing the performance of retrieval models based on full and sunlit spectra of both multispectral
and hyperspectral imagery. The influence of leaf parameters (i.e., biochemistry, specific leaf area, etc.)
and canopy parameters (e.g., LAI, LAD, etc.) of apple and pear species was investigated by comparing
the performance of individual species LCC and CCC retrieval models (i.e., apple and pear separately)
with mixed species LCC and CCC retrieval models.

The best performing LCC model was applied on the LCC dataset collected in 2017 and the
resulting LCC dynamics will be interpreted based on phenology and physiology. The species effect
on the CCC retrieval models will be evaluated for both the multispectral and hyperspectral imagery.
Since the influence of shade was already investigated in a previous section only sunlit spectra were
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included in this analysis. As previously mentioned in Section 2.3, apple and pear trees develop at a
different pace, reaching phenological stages at different moments in time (Tables A2 and A3). Therefore,
CCC retrieval model sensitivity for specific dates (unitemporal) could be influenced by phenology.
However, retrieval model performance can also be influenced by illumination differences due to clouds
during image acquisition. CCC retrieval model sensitivity to phenological variations was tested for
each species to gain insight in how well the multitemporal retrieval models perform on individual
phenological stages, corresponding to individual months (i.e., unitemporal data) (Tables A2 and A3). In
addition, to assess the necessity of phenological stage specific models, the performance of unitemporal
models was explored. These assessments were done for both sunlit multispectral and hyperspectral
canopy spectra.

In order to quantify the effect of illumination variability, the performance of multi- and unitemporal
CC retrieval models of a homogenously (i.e., clear sky or haze) and heterogeneously (i.e., cloudy)
illuminated image were compared. For this objective, the July and August images were chosen since in
July it was cloudy during the image acquisition for both orchards, while in August we had clear sky
conditions during both flights. These two consecutive months were also chosen because the canopy is
fully developed and the phenological stages are very close to each other. This entails that the model
performance differences could largely be attributed to the differences in cloud cover.

2.10. Accuracy Assessment

The LCC and CCC datasets were partitioned in 80% training and 20% testing data, hence a
five-fold cross-validation, which was repeated 10 times. This sampling distribution was found to be
optimal in Verrelst et al. (2012b) [29]. The motivation being, that it is important to strive for accurate
retrievals over a wide range of chlorophyll concentrations, requiring a wide range of training samples
in the generation of the model. In turn, sufficient testing samples should be kept aside to employ a
solid validation [29]. Chlorophyll retrieval model performance was tested with the accuracy metrics,
coefficient of determination R2 (Equation (4)), RMSE (Equation (5)) and Relative RMSE (RRMSE)
(Equation (6)). The Root Mean Square Error (RMSE) was calculated to quantify the difference between
the real and estimated chlorophyll content for all models. RMSE is a measure of the residual standard
deviation and the closer to zero the better the fit. The RRMSE is the RMSE divided by the range of real
chlorophyll content values.

R2 =

∑k
p=1

(
CC∗p −CC

)2

∑k
p=1

(
CCp −CC

)2 , (4)

RMSE =

√√√√√ k∑
p=1

(
CC∗p −CC

)2

k
. (5)

RRMSE =

√∑k
p=1

(CC∗p−CC)
2

k

Max
(
CCp

)
−Min

(
CCp

) . (6)

In Equations (4), (5), and (6) CCp is the reference chlorophyll content on leaf or canopy level, CCp*
is the estimated chlorophyll content on leaf or canopy level, CC is the average chlorophyll content on
leaf or canopy level and k represents the number of measurements. For the LCC, k is equal to 204 for
pear and 183 for apple. For the CCC, k is 48 for apple and 33 for pear for each month. In combination
with Tables A2 and A3 this attributes k equal to 144 (165) and 192 (165) CCC values for, respectively,
the hyperspectral and multispectral imagery of apple (pear).
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3. Results

3.1. Canopy Shade

We observed that the most accurate multivariate method outperformed the best performing
vegetation indices by more than 12% and 15% respectively for the multispectral and hyperspectral data
(Figure 3 and Table A4). In general, multispectral indices had a higher accuracy than hyperspectral
indices except for the NDVI. Sensor differences and the radiometric calibration as mentioned in
Section 2.2 and the Supplementary Data both influence the signal to noise ratio of the images. For
most multivariate models, lower RMSE’s and higher R2 were achieved for the hyperspectral data
(0.7 < R2 < 0.8, RMSE < 3) than for the multispectral data (0.5 < R2 < 0.7, RMSE < 4). Shade removal
led to better retrieval accuracies for most methods. This effect was larger for the multispectral data (R2

increased with 0.03 and RMSE decreased with 0.15) than for the hyperspectral data (R2 increased with
0.02 and RMSE decreased with 0.10). Multivariate non-linear models and more specifically the kernel
methods (0.73 < R2 < 0.8) and RF (R2 > 0.7) performed well for both the multispectral and hyperspectral
imagery. These models also showed the highest robustness to shade. Using the full canopy in some
cases even led to higher accuracies than limiting the spectrum to the sunlit pixels. While sunlit pixels
are theorized to present tree status better, full canopy use leads to a bigger sample size. Multivariate
linear models achieved high accuracies for the hyperspectral data (R2 > 0.8) but were less suitable for
the multispectral data (R2 > 0.6). As noted in earlier research, linear models demand more features
than non-linear models to fit non-linear relationships for achieving high accuracies [14,69].Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 43 

 

 

Figure 3. Univariate (blue) and multivariate linear (orange), as well as non-linear (green) retrieval model 
accuracy in R2 of CCC retrieval for both hyperspectral and multispectral image data with the use of the full 
and sunlit canopy spectra. Abbreviations of the models: RSS = regression with stepwise selection, LARS = 
least angle regression, ENET = elastic net regularization, RR = ridge regression, RRVS = ridge regression 
with variable selection, PPR = projection pursuit regression, RF = random forest, TMGA = tree models from 
genetic algorithms, SGB = stochastic gradient boosting, SVMR = support vector machines with radial basis 
function kernel, SVML = support vector machines with linear basis function kernel, GPRR = gaussian 
process regression with radial basis function kernel, GPRL = gaussian process regression with linear basis 
function kernel, KNN = K-nearest neighbors, SBC = subtractive clustering and fuzzy c-means rules  

3.2. Species sensitivity  

3.2.1. Leaf chlorophyll content  

For both apple and pear, RSS provided the highest R2 (0.88 for pear leaves, 0.82 for apple leaves) 
and lowest RMSE (5 μg/cm2 for pear, 5.6 μg/cm2 for apple) for LCC retrieval (Table 3). RSS also had 
the highest accuracy for the mixed-species model (R2 = 0.85, RMSE = 5.34 μg/cm2). However, taking 
into account the standard deviation of these metrics the difference in performance of the best 
vegetation index and the best performing multivariate method was negligible. As expected, the 
vegetation indices estimated the LCC with quite high accuracies. The coefficient of determination is 
similar to the multitemporal LCC retrieval models accuracy for apple R2 = 0.83 [70] and R2 = 0.85 for 
pear [15] in other research. Apple and pear leaf chlorophyll dynamics retrieved from the LCC 
retrieval model are shown in Figure 4. LCC ranged from 40 to 50 μg/cm2 in May and stayed relatively 
stable until June for apple while showing a small increase for pear. Between June and July LCC 
increased for apple, reaching 57–65 μg/cm2. For pear this increase was slower, reaching its peak in 
August with values ranging from 55 to 65 μg/cm2. At the end of August, beginning of September, 

Figure 3. Univariate (blue) and multivariate linear (orange), as well as non-linear (green) retrieval
model accuracy in R2 of CCC retrieval for both hyperspectral and multispectral image data with the
use of the full and sunlit canopy spectra. Abbreviations of the models: RSS = regression with stepwise
selection, LARS = least angle regression, ENET = elastic net regularization, RR = ridge regression,
RRVS = ridge regression with variable selection, PPR = projection pursuit regression, RF = random
forest, TMGA = tree models from genetic algorithms, SGB = stochastic gradient boosting, SVMR =

support vector machines with radial basis function kernel, SVML = support vector machines with
linear basis function kernel, GPRR = gaussian process regression with radial basis function kernel,
GPRL = gaussian process regression with linear basis function kernel, KNN = K-nearest neighbors,
SBC = subtractive clustering and fuzzy c-means rules
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3.2. Species Sensitivity

3.2.1. Leaf Chlorophyll Content

For both apple and pear, RSS provided the highest R2 (0.88 for pear leaves, 0.82 for apple leaves)
and lowest RMSE (5 µg/cm2 for pear, 5.6 µg/cm2 for apple) for LCC retrieval (Table 3). RSS also had the
highest accuracy for the mixed-species model (R2 = 0.85, RMSE = 5.34 µg/cm2). However, taking into
account the standard deviation of these metrics the difference in performance of the best vegetation
index and the best performing multivariate method was negligible. As expected, the vegetation
indices estimated the LCC with quite high accuracies. The coefficient of determination is similar to the
multitemporal LCC retrieval models accuracy for apple R2 = 0.83 [70] and R2 = 0.85 for pear [15] in
other research. Apple and pear leaf chlorophyll dynamics retrieved from the LCC retrieval model are
shown in Figure 4. LCC ranged from 40 to 50 µg/cm2 in May and stayed relatively stable until June
for apple while showing a small increase for pear. Between June and July LCC increased for apple,
reaching 57–65 µg/cm2. For pear this increase was slower, reaching its peak in August with values
ranging from 55 to 65 µg/cm2. At the end of August, beginning of September, LCC began decreasing
with the onset of senescence to 40–50 µg/cm2 for pear and 47–55 µg/cm2 for apple.
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Table 3. Mean R2 (standard deviation), Root Mean Square Error (RMSE) (standard deviation) and relative RMSE (RRMSE) statistics of the LCC retrieval models from
hyperspectral data.

Models Hyperspectral Leaf Spectrum Hyperspectral Leaf Spectrum Hyperspectral Leaf Spectrum
Species Apple Pear Pear and Apple

VI models R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE
Best NDVI 0.83 (0.05) 5.53 (0.56) 8.2% 0.87 (0.05) 5.17 (0.68) 5.7% 0.84 (0.03) 5.60 (0.45) 6.17%
TCARI/OSAVI 0.70 (0.06) 7.25 (0.72) 10.8% 0.61 (0.13) 9.35 (2.12) 10.3% 0.50 (0.07) 9.88 (0.92) 10.89%
PRI 0.30 (0.09) 11.00 (0.97) 16.4% 0.53 (0.16) 9.71 (0.82) 10.6% 0.43 (0.11) 10.46 (0.78) 11.53%
REIP 0.78 (0.06) 6.22 (0.65) 9.3% 0.61 (0.13) 12.00 (2.69) 13.2% 0.53 (0.13) 11.63 (3.67) 12.82%
Linear multivariate
models
RSS 0.82 (0.07) 5.60 (0.99) 8.3% 0.88 (0.05) 5.01 (1.10) 5.5% 0.85 (0.05) 5.34 (0.78) 5.9%
LARS 0.79 (0.11) 6.05 (1.64) 9.0% 0.82 (0.14) 5.18 (3.66) 5.7% 0.85 (0.06) 5.42 (1.46) 5.9%
ENET 0.81 (0.09) 5.80 (1.34) 8.6% 0.87 (0.09) 5.24 (2.08) 5.7% 0.84 (0.06) 5.44 (1.04) 6.0%
RR 0.80 (0.10) 5.99 (1.51) 8.9% 0.87 (0.10) 5.52 (2.81) 6.1% 0.83 (0.06) 5.58 (1.31) 6.1%
RRVS 0.81 (0.08) 5.75 (1.11) 8.6% 0.88 (0.05) 5.02 (1.24) 5.5% 0.84 (0.06) 5.46 (1.02) 6.0%
PPR 0.51 (0.14) 11.17 (1.83) 16.7% 0.67 (0.23) 8.91 (3.60) 9.8% 0.77 (0.06) 6.89 (0.06) 7.6%
Non-Linear
multivariate models
RF 0.77 (0.10) 6.30 (1.32) 9.4% 0.83 (0.10) 5.94 (1.89) 6.5% 0.78 (0.11) 6.40 (1.14) 7.0%
TMGA 0.67 (0.11) 7.77 (1.40) 11.6% 0.78 (0.13) 6.67 (1.52) 7.3% 0.69 (0.14) 7.59 (1.32) 8.3%
SGB 0.78 (0.07) 6.18 (1.01) 9.2% 0.79 (0.07) 6.90 (1.01) 7.6% 0.78 (0.08) 6.54 (0.97) 7.2%
SVMR 0.77 (0.09) 6.66 (1.34) 9.9% 0.69 (0.12) 7.28 (3.07) 8.0% 0.77 (0.09) 6.96 (1.77) 7.6%
SVML 0.80 (0.08) 5.82 (1.08) 8.7% 0.87 (0.05) 5.22 (1.26) 5.7% 0.77 (0.05) 5.48 (0.85) 6.0%
GPRR 0.70 (0.10) 7.54 (1.23) 11.2% 0.66 (0.11) 9.48 (2.77) 10.4% 0.67 (0.11) 8.47 (1.91) 9.3%
GPRL 0.80 (0.08) 5.87 (1.06) 8.8% 0.87 (0.05) 5.11 (1.04) 5.6% 0.84 (0.05) 5.45 (0.80) 6.0%
KNN 0.61 (0.15) 8.29 (1.49) 12.4% 0.74 (0.17) 7.56 (2.08) 8.3% 0.64 (0.11) 8.28 (1.03) 9.1%
SBC 0.53 (0.5) 9.33 (1.68) 13.9% 0.40 (0.19) 11.10 (1.87) 12.2% 0.51 (0.14) 9.64 (1.32) 10.6%
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3.2.2. Canopy Chlorophyll Content

The multivariate methods again outperformed the vegetation indices, but this observation was
less pronounced for the apple trees than for the pear trees (Figure 5). The hyperspectral apple specific
models (apple: RSS, RRVS, RF, SGB: R2 = 0.90–0.91, RRMSE = 9%) (Table A5) outperformed the
multispectral apple specific models (apple: PPR: R2 = 0.77, RRMSE = 15%) (Table A6). It is striking that
the linear methods, thus both vegetation indices and the linear multivariate models, gave the highest
accuracies for the apple trees. For pear, the difference between the best performing hyperspectral
and multispectral models was smaller (pear hyperspectral: ENET, RR, RRVS: R2 = 0.82, RRMSE =

10%; pear multispectral: KNN R2 = 0.84, RRMSE = 10%). In general, the hyperspectral pear models
performed worse than the hyperspectral apple models, while they performed more similarly for the
multispectral data.
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Figure 5. Univariate (blue) and multivariate linear (orange) and non-linear (green) retrieval model
accuracy in R2 for CCC retrieval for multispectral (left) and hyperspectral (right) image data with
the use of the sunlit canopy spectra of apple, pear and both species combined. Abbreviations of the
models: RSS = regression with stepwise selection, LARS = least angle regression, ENET = elastic net
regularization, RR = ridge regression, RRVS = ridge regression with variable selection, PPR = projection
pursuit regression, RF = random forest, TMGA = tree models from genetic algorithms, SGB = stochastic
gradient boosting, SVMR = support vector machines with radial basis function kernel, SVML = support
vector machines with linear basis function kernel, GPRR = gaussian process regression with radial
basis function kernel, GPRL = gaussian process regression with linear basis function kernel, KNN =

K-nearest neighbors, SBC = subtractive clustering and fuzzy c-means rules.

The lower performance of the hyperspectral pear models compared to the multispectral pear
models (Figure 5) was unexpected. Therefore, the relationship between the canopy spectra of the
multispectral and hyperspectral sensor was investigated for each month separately and all months
together (Table 4). The hyperspectral canopy spectra were resampled to the spectral resolution of
the multispectral sensor assuming a gaussian distribution. For all months, except for August, the
correlation between the multispectral and resampled hyperspectral canopy pear spectra was very
poor to high (0.2 < R2 < 0.7). The August spectra of pear and the apple spectra of all months had a
very poor to medium correlation (0.01 < R2 < 0.35). The low correlations for those months was likely
due to the difference in flight plan between the multispectral and hyperspectral imagery, leading to a
different canopy-sensor-sun geometry (see Supplementary Data). For the months with medium to
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high correlation, the hyperspectral sensor was flown parallel to the orientation of the fruit tree rows,
while for the other months the hyperspectral sensor was flown perpendicular to the row orientation.
In addition, there was a difference in solar position for the different sensors (Tables A2 and A3) and a
difference in projection of the trees due to the lower overlap of the hyperspectral sensor compared to
the multispectral sensor (see Supplementary Data).

Table 4. R2 between the multispectral and resampled hyperspectral canopy spectra.

Band All May June July August October

Pear Green <0.01 0.34 0.59 0.54 0.07 0.67
Red 0.06 0.25 0.55 0.23 0.09 0.78

Red edge 0.03 0.21 0.27 0.57 <0.01 0.26
NIR 0.03 0.27 0.3 0.6 <0.01 0.4

Apple Green 0.13 0.03 0.02 / 0.19 /
Red 0.01 0.1 0.09 / 0.19 /

Red edge 0.35 0.21 0.05 / 0.08 /
NIR 0.27 0.27 <0.01 / 0.1 /

In Table A7, the results of the CCC retrieval from the sunlit hyperspectral imagery is given,
excluding the hyperspectral imagery of pear for August. This led to a decrease in accuracy for the
individual hyperspectral pear CCC models but an increase of the accuracy of the mixed species
hyperspectral CCC models. Excluding August decreased the range of chlorophyll values (Figure 4)
leading to lower R2 for pear but the mixed models were still based on the high chlorophyll values of
apple to compensate for this loss.

3.3. Unitemporal versus Multitemporal

3.3.1. Unitemporal

Results of the univariate and multivariate unitemporal CCC retrieval models of apple and pear
can be found in Tables A8 and A9. In general, the unitemporal CCC retrieval models have a low
performance with most R2 < 0.30. This is the case for both multispectral and hyperspectral imagery.
There is one outlier in May with a R2 of 0.67 for apple for the multispectral data. The R2 of unitemporal
univariate models is more consistent over the growing season compared to that of multivariate models.

3.3.2. Multitemporal

Most of the multitemporal models have a very poor accuracy R2 < 0.3 (Tables 5–8). Yet, some
multitemporal models have medium to high accuracies (0.3 < R2 < 0.99) for most individual months.
For the multispectral imagery, the RF multitemporal model performs best for all months for apple
and pear trees individually (Table 5) and mixed (Table 6). For May, the RF model for apples performs
best, while for the other months the performance of the pear RF model is better. For mixed species, the
CCC model on sunlit multispectral imagery (Table 6) PPR, SBC, GPRR, SVMR, GBM, and RF give high
accuracies for all months, except for October. RF is the only model giving a mediocre accuracy for
October (R2 = 0.5) and very high accuracies for the other months (R2 > 0.9). The mixed multitemporal
RF model (Table 6) for the multispectral imagery also outperforms the individual species models (0.5 <

R2 < 0.97 versus 0.26 < R2 < 0.82) (Table 5), except for October.



Remote Sens. 2019, 11, 1468 18 of 39

Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data.

Weather ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI

May

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 43 

Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.00
(0.04)

0.00
(0.04)

0.00
(0.04)

0.01
(0.1)

0.00
(0.04)

0.00
(0.04)

0.10
(0.15)

0.00
(0.04)

0.26
(0.01)

0.07
(0.02)

0.45
(0.81)

0.00
(0.04)

0.60
(0.04)

0.01
(0.04) 0 (0.05)

June
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.01 (0) 0.01 (0) 0.01 (0)
0.01
(0.1) 0.01 (0) 0.01 (0) 0.04 (0) 0.01 (0)

0.14
(0.01)

0.15
(0.01)

0.82
(0.35) 0.01 (0)

0.47
(0.01)

0.02
(0.01) 0 (0)

July
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.02 (0) 0.02 (0) 0.02 (0)
0.00
(0.07)

0.0
(0.02) 0.02 (0)

0.07
(0.01) 0.03 (0)

0.21
(0.03)

0.01
(0.01)

0.71
(0.26) 0.03 (0)

0.29
(0.03) 0.08 (0) 0.04 (0)

August
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.04
(0.02)

0.04
(0.02)

0.04
(0.02)

0.01
(0.01)

0.04
(0.02)

0.04
(0.02)

0.16
(0.04)

0.03
(0.02) 0.15 (0)

0.12
(0.07)

0.70
(0.32)

0.03
(0.01)

0.35
(0.03)

0.00
(0.01)

0.01
(0.03)

October
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72 0.11 0.24 0.00 0.24

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data.

Weather ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA SGB

May
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.67 0.71 0.67 0.86 0.67 0.67 0.86 0.69 0.86 0.94 0.97 0.86 0.86 0.79 0.9

June
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.08 0.04 0.08 0.52 0.08 0.08 0.16 0.07 0.56 0.64 0.9 0.09 0.65 0.75 0.72

July
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.61 0.59 0.61 0.76 0.61 0.61 0.62 0.59 0.79 0.9 0.97 0.61 0.83 0.8 0.84

August
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.61 0.58 0.61 0.82 0.61 0.61 0.75 0.61 0.78 0.84 0.95 0.59 0.75 0.81 0.87

October
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 
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For the sunlit hyperspectral imagery (Table 7) two linear (LARS and PPR) and two non-linear
(SBC and RF) multivariate models give the best results. PPR and RF give the most steady and highest
performance for pear and apple trees respectively. For each individual month, CCC is retrieved with
the highest accuracy with PPR on hyperspectral data for the pear trees, except for August (PPR May
R2 = 0.86, June R2 = 0.79, July R2 = 0.76, October R2 = 0.96), where SBC leads to higher accuracies (SBC:
R2 = 0.88 versus PPR: R2 = 0.56) (Table 7). For apple trees, both SBC and RF give very high accuracies
for all months R2 > 0.9 (Table 7), while PPR has a higher accuracy for May and August but has a low
accuracy for June (R2 < 0.4). LARS is the fastest multivariate regression model but had mediocre to
high retrieval accuracies (0.4 < R2 < 0.94) for the hyperspectral data of apple and pear (Table 7). In
order to see the effect of row orientation on the retrieval accuracies (Section 3.2.1), the hyperspectral
image of August was removed for the pear trees (Table 8). This increased the retrieval accuracies of
RF for the months July and October by 17% and 82% compared to the model with August included.
For SBC, the exclusion of August led to increased accuracies for May and June (165% and 93%) but a
decrease in accuracy for July (31%). The other models were less affected by the exclusion of the August
imagery. Sunlit hyperspectral CCC retrieval models for mixed species were also evaluated for each
month separately (Table A10). RF, PPR, and SBC deliver consistently the highest accuracies (0.3 < R2 <

0.99) for the hyperspectral imagery. From these models, RF is the most consistent of all the models,
reaching similar accuracies for each month (0.6 < R2 < 0.9), while the PPR and SBC reach very high
accuracies for some months (June, August, and October) and medium to even low accuracies for other
months (May and July). The removal of the August hyperspectral imagery of the pear orchard was
important to reach these high accuracies for August.
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Table 7. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from hyperspectral data.

Weather ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA

May
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(0.99)

0.24
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0.07
(0.5)

0.07
(0.5) 0.00 (0)

June
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(0.09)

0.23
(0.91)
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Table 8. R2 accuracy metric of multitemporal CCC retrieval models for pear trees from hyperspectral data (without August).

Weather ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA SGB

May
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(0.01) 

0.01 
(0.03) 
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4. Discussion

4.1. Physiological and Phenological Interpretation of CCC Dynamics

To our knowledge absolute numbers of CCC differences between fruit trees and over the full
growing season have never been reported for a relatively large sample of fruit trees. In addition,
we want to see if our results can be supported with the body of knowledge regarding fruit tree
phenology and physiology. CCC differences between trees within one month provide insight into the
physiological performance, while CCC differences from one month to the other offer information on
tree phenology [71]. As leaves mature, chlorophyll accumulates in the leaves from May until July or
August (Figure 4). The increase in CCC from June until July for Golden Delicious was also observed by
Prsa et al. (2007) [4]. The sharpness of the peak in July was dependent on tree nitrogen status, the lower
the nitrogen fertilization, the steeper the peak in July [4] and thus the steeper the fall of CCC in August.

From July (apple)/August (pear) onwards, chlorophyll was degraded during senescence unraveling
carotenoids and anthocyanins [72]. From early September until November, a further constant loss of
CCC in apple trees was in agreement with the findings of Spencer et al. (1973) [73]. Presence of fruit
on the trees was observed to delay chlorophyll degradation [74]. However, this was not the case in this
study since the pear trees were picked first on August 29, followed by the apple trees on September 12.
This could be due to the fact that the effect of crop load on leaf senescence is species specific. However,
the decrease in CCC was stronger for the pear than for apple from August to October. In both trials
(Table A1), stressors (i.e., metamitron, nitrogen deficit, drought) were applied to cause within month
CCC differences since these stressors influence photosynthetic activity, for which chlorophyll is a
strong indicator (Figures 6 and 7) [4,42,75]. However, the effect of the treatments on the chlorophyll
content of the trees was smaller than expected with only a reduced chlorophyll content of trees stressed
with drought compared to the other treatments (Figure 7).
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4.2. Confounding Factor Identification, Importance, and Mitigation

The higher number of bands of the hyperspectral imagery (i.e., 280 bands) compared to the
multispectral imagery (i.e., 4 bands) led to the higher general performance of these models for
all confounding factors (Figure 3). However, multispectral indices had a higher accuracy than
hyperspectral indices except for the NDVI. The former is in contrast to expectations since previous
research showed that narrowband indices exceed wide band index accuracy [76]. Noise, which plays a
larger role in narrow band indices is a likely source of this observation [77]. The presence of shade
had no impact on the retrieval accuracies of the multitemporal multivariate multispectral (R2 decrease
of 0.03 and RMSE increase by 0.15) and hyperspectral CCC models (R2 decrease of 0.02 and RMSE
increase by 0.10). The high performing models can benefit from the entire wealth of available features
(e.g., PPR, RR, SBC) while it offers other models the flexibility to select the best bands to mitigate
the influence of confounding factors (e.g., ENET, LARS, RRVS, RF). Models belonging to the first
class will need all bands available in the hyperspectral sensor, while models in the second class offer
the opportunity to develop a custom-made commercial multispectral sensor by identifying the most
informative bands. While the hyperspectral vegetation indices did not decrease in accuracy due to
the presence of shade, the multispectral vegetation indices were strongly impacted by the presence of
shade with a decrease in accuracy between R2 = 0.01 and 0.18 (Table A4).
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4.2.1. Tree Architecture, Shade, and Crop Load Differences between Species

Mixed and species-specific model performance were compared to test the potential of a generic
model for pome fruit trees. LCC retrieval models performed generally better (Table 3) than the CCC
retrieval models (Figure 5 and Table A7) due to the fact that there are fewer confounding factors since
leaves are measured in a controlled environment. Multispectral species-specific models for apple
and pear outperformed the mixed-species models (Figure 5). For the hyperspectral sensor, only the
apple specific model led to higher accuracies compared to the mixed model (Figure 5). One of the
main causes of the lower accuracy of the species specific pear CCC retrieval models was probably
the August imagery (odels performed generally better (Tables 4, 8 and A10). The August imagery of
the pear orchard was different from the other months because of its deviating flight plan: the RPAS
was flown perpendicular to the orchard rows, while it was flown parallel to the rows on other dates,
leading to a different field of view of the trees hence adding an additional confounding factor in the
imagery. Ideally, the RPAS platform was flown with sunlight parallel to the rows of the fruit orchard.
This was not always feasible due to strict airspace regulations.

In addition, tree architecture might explain the differences in model robustness for both species.
Although both tree species were trained in spindle, they did differ in their height-width ratio, overall
canopy shape, and age. Pear tree classical training system is characterized by very sparse branches
and leaves for most of the tree height, with leaves clustered mostly on a small lower tree region. In
general, classical trained pear trees have a 50% smaller leaf cover area and larger leaf wall porosity than
the apple classical training system for most of the tree height [12]. These characteristics of pear trees
likely led to higher within canopy shading and more background presence, introducing additional
noise and thus explaining the lower accuracy of the species-specific pear hyperspectral CCC retrieval
models. Furthermore, the flight time influences the percentage of shade as well. In May and October,
hyperspectral image acquisition for the pear orchard was outside the recommended flight window
(Table A3). In May, the canopy was not yet fully developed (see Section 2.4) leading to an even more
discontinuous canopy [78]. In addition, the weather was cloudy over the orchard during the May
image acquisition.

However, in August there was also a hyperspectral image acquisition over the apple orchard
outside the recommended flight window but as sunset was setting in (Table A3). A low sun elevation
angle in combination with diffuse light reduces within canopy shading for this tree shape [79]. However,
shade pixels proved to have a negligible negative impact on the retrieval accuracies for the hyperspectral
and multispectral models in this study (Figure 3). While sunlit pixels are theorized to present tree
status better, full canopy use leads to a bigger sample size. A low shade fraction in combination
with a fully developed canopy in August (Section 2.4) had probably minor negative impacts on the
retrieval accuracy for apple. In addition, in July and August, pear fruits already thickened more than
apple fruit (Table A2), hence contributing to the canopy signal but the chlorophyll content of the fruits
was not taken into account with the ground measurements. The presence of fruit decreases canopy
reflectance in the near infrared regions of the canopy spectrum (700–900 nm) [21], while this region and
specifically the red edge (point of maximum slope between VIS and NIR), proved to be very important
for LCC and CCC retrieval [80–82]. Finally, the hyperspectral apple data was more homogenous than
the hyperspectral pear data since both contained the same amount of sample data but spread over five
months for the pear trees but only for three months for the apple data (Table A3). Hence the same
amount of observations is used to handle a higher heterogeneity in confounding factors (i.e., field of
view, phenology, tree architecture, shade fraction) for the pear trees.
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4.2.2. Illumination Variability Caused by Weather

Illumination conditions, thus favorably a clear sky, could not be proven to be a determining factor
for retrieval accuracies for all multitemporal models (e.g., August, October (clear sky) versus May,
June, and July (haze and cloudy) (Tables 5 and 6). Only for the hyperspectral LARS and SBC model
an increase in R2 can be seen for clear sky days (i.e., August. October) compared to days with haze
(i.e., May, June) or cloudy days (i.e., July) (Table 7). Phenology and illumination conditions varied
on most flight days (Tables A2 and A3) so these confounding factors could not be uncoupled for
most months except for July and August. For these consecutive months, tree phenology is assumed
to be quite similar since the canopy stops developing mid-summer (Section 2.4) but illumination
conditions were different on both dates. Hence these months are ideal to uncouple the phenology
effect and the illumination effect. Only the hyperspectral LARS, SBC (Table 7), and the multispectral
RF (Table 6) showed higher R2 accuracies for August compared to July. Therefore, even for the months
with similar phenology, illumination conditions could not be proven to have a negative impact on all
retrieval models.

4.3. Multispectral versus Hyperspectral CCC Monitoring in Practice

For monitoring the average seasonal CCC dynamics of both apple and pear trees the hyperspectral
models (i.e., ENET, RR, RRVS, and KNN) give a slightly higher accuracy (R2 = 0.8. RRMSE = 12%)
compared to the best performing multispectral models (i.e., PPR, SVMR, GPRR, and KNN with R2 =

0.72–0.73, RRMSE = 15%) (Table A4). However, from a practical point of view, retrieving the CCC
variability between trees on one date with a high accuracy is more important. CCC variations within a
single orchard were better monitored with multitemporal (Tables 5–8) than with unitemporal models
(Tables A8 and A9). Possible causes for the low performance of unitemporal models were probably a
combination of the large BRDF effects due to the complex tree architecture [30] in combination with
the relatively small within orchard variability in CCC in the trials compared to the between month
CCC variability (Figures 4, 6 and 7). In addition, a smaller sample size for model calibration was
available for the unitemporal (33–48 samples) versus the multitemporal modelling (144–240 samples)
to diminish the effect of the confounding factors over the parameter of interest. Low sample sizes
lead to lower retrieval accuracies and a higher variability in retrieval models [83]. GPR models even
demand over 600 samples to achieve optimal accuracies [84].

For estimating CCC differences between trees on a single month, the multitemporal RF model
gave the most consistent and in general, highest retrieval accuracies on the multispectral imagery (R2 >

0.9 for May, June, July, and August and R2 = 0.5 for October) (Table 6) and hyperspectral imagery (0.6
< R2 < 0.9 for all months) (Table A10). The higher performance of the hyperspectral compared to the
multispectral CCC retrieval model for October (R2 = 0.85 versus R2 = 0.49) is likely due to an under
sampling during the senescence period in October. During senescence, the chlorophyll content of the
leaves decreases (Figures 4, 6 and 7), while anthocyanin content remains constant or increases, leading
to a stronger interference with the spectral region important for chlorophyll retrieval [85]. The mixed
model (Table 6) even outperformed the species specific models (Table 5) for the individual months
of the multispectral imagery. This is in contrast with the earlier observations (Figure 5) where the
species specific models always outperformed the mixed models. This is probably also caused by the
sample size. In Figure 5 the sampling points of all months are combined, while in Table 5 the model
performance is tested on sampling points of only one month. For the hyperspectral imagery, the apple
species specific RF model (Table 7) still outperforms the mixed RF model (Table 8). The uniformity of
the flight plan and tree architecture probably overruled the effect of the smaller sample size in this case.
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Other models which performed similar but less consistent than RF, were PPR and SBC. PPR
and SBC are not frequently used for remote sensing applications but in an extensive study on the
performance of 77 regression models on 48 datasets, PPR ranked 13th, RF ranked 6th and SBC did not
even make the top 20 of best performing models. For small but difficult datasets RF ranks even higher
at position 3 and for small but easy datasets PPR ranks position 6. The fact that SBC was ranked so low
could be due to long running time errors which occurred for 85% of the investigated datasets since
the model is quite slow [86]. In addition, the regression rules family to which SBC belongs in ranks
the first position. However, in contrast to SBC and PPR, RF does not need all available bands and
reaches moderate accuracies (R2~0.7) with 10 bands and maximal accuracy with 40 bands. This offers
the opportunity to generate a custom-made MS sensor. However, the commercial MS sensor in this
study already gives satisfying results for most months with RF to retrieve the CCC with R2 > 0.9.

4.4. Limitations and Recommendations for Future Research

This study was limited to CCC retrieval in fruit orchards, since our goal was to develop and evaluate
a RPAS chlorophyll monitoring system for fruit orchards as an alternative to field measurements. Tree
delineation and shade removal were very labor-intensive steps, not ready for full automatization and
beyond the scope of this paper. A robust and automatized method to delineate fruit trees was however
explored in recent research on citrus trees [87]. In this study, the best performing classes of models and
specific models were identified. For the objectives of this study the models were kept in their default
settings. However, some classes of multivariate models could be further improved by optimized band
selection [69], hyper parameter optimization [88], or active learning to select the best observations
to build the retrieval models [84]. Furthermore, data reduction methods were not explored but can
also further improve the retrieval models. The importance of the lack of BRDF correction in RPAS
preprocessing chains is known [30] but was not quantified in this study and hence only indirectly
studied as part of the other confounding factors. It would be interesting to quantify the BRDF effects
and correct for them [15,89]. This would reduce the noise and lead to higher retrieval accuracies for
the multispectral sensor. Instead of removing the noise, different viewing geometries of the sensor
could also be used to give a more complete image of the canopy, resulting in better retrieval accuracies
for tree parameters since a larger sample of the canopy is taken into account [90]. Data collection to
calibrate models was very labor-intensive, therefore the importance of stage specific phenology models
could not be proven or refuted due to the limited sample set for each month. Moreover, data collection
for this study was limited to two orchards in one year. The methodology should be transferrable to
other orchards and years. However, additional training data might be needed to address the different
confounding factors present in these orchards to reach the same accuracy levels. In this study we
looked at the average spectrum per tree. It would also be interesting to use the high spatial resolution
to spot chlorophyll content differences within the canopy [5] since these patterns can inform growers
about the type of stress the tree is experiencing.

5. Conclusions

The main objective of this study was to develop a robust CCC retrieval model for pome fruit tree
monitoring using RPAS platforms equipped with an optical sensor. Chlorophyll is an important variable
for steering management practices. Yet, orchard scenery complexity prevented a comprehensive
assessment of the full potential of this technology for operational use in earlier studies. In this paper
the accuracies of 15 multivariate and four univariate models were compared in four scenarios: the
presence of within canopy shade, species (i.e., apple, pear, and mixed), phenology, and illumination
conditions (i.e., weather). In addition, the economically priced multispectral sensor Sequioa was
also compared to the more expensive hyperspectral sensor Microhyperspec. Through the evaluation
of chlorophyll retrieval models on multispectral and hyperspectral time series, the importance of
confounding factors was highlighted, while it was demonstrated that multitemporal multivariate
models outperformed all other retrieval models. Overall, the most important conclusions of the current
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study can be summarized as follows. Random Forest, Subtractive clustering and fuzzy c-means rules
and Projection pursuit regression are the preferred multivariate models to most accurately monitor the
chlorophyll dynamics for apple and pear trees. Random forest however outperforms the other models
in consistency, robustness and needs less bands to reach a high accuracy. Both the multitemporal
Random Forest on multispectral imagery (R2 > 0.9 for May, June, July, and August and R2 = 0.5 for
October) and hyperspectral imagery (0.6 < R2 < 0.9) led to satisfactory high retrieval accuracies. An
advantage of the hyperspectral sensor was that there were more bands available to mitigate the effects
of shade (i.e., vegetation indices), the interference of anthocyanins (i.e., October), and species (i.e.,
apple, pear). However, the availability of bands could not correct for the difference in field of view
(FOV) on one date (i.e., August) and additional sample heterogeneity (i.e., pear versus apple). Finally,
since the multispectral sensor is cheaper for practical use in the orchard during the growing season,
it would be preferable to use the random forest model on the Sequoia multispectral imagery or a
custom-made sensor. For the senescence period, more data should be collected to see if the model
performance on the multispectral imagery can be improved or if hyperspectral imagery will need to
be used.
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Appendix A

Table A1. General characteristics and experimental design of the pear and apple orchard.

General Characteristics Pear Orchard Apple Orchard

Cultivar Conference Golden Delicious
Experiment Drought-nutrient Chemical thinning with metamitron
Rootstock Quince C M9
Planting year 2004 2009
Training system Bush Spindle Bush Spindle
Number of rows 2 rows 4 rows
Treatments No nitrogen. Double nitrogen. Drought 7 different application times with metamitron
Total number of plots 16 plots 32 plots
Experimental trees per plot 6 3
Total number of trees in the experiment 76 96
Total number of monitored trees 36 48
Row distance × tree distance (m) 3.75 × 1.75 3 × 1.5
Mean tree height (m) 4.18 3

Table A2. Summary of the multispectral RPAS flight dates. date of the field spectrometer (ASD) measurements and growth stages.

Experimental
Field RPAS Multispectral Acquisition Time RPAS

Multispectral Solar Noon ASD Growth Stage

Apple

17 May 01:24-01:36 p.m. 01:38 p.m. 23–25 May Fruit fall after flowering (fruit size up to 10 mm) (BBCH71)
14 June 09:07-09.21 a.m. 01:42 p.m. 12–19 June Fruit size up to 20 mm, second fruit fall (BBCH 72-73)
26 July 10:54-11:07 a.m. 01:49 p.m. 26–27 July Fruit growth and ripening BBCH (73-87)

29 August 03:00-03:14 p.m. 01:49 p.m. 4–7 September Fruit ripe for picking (BBCH 87)
16 October 08:30-08:43 a.m. 01:28 p.m. 12–13 October Leaf senescence

Pear

17 May 03:32-03:50 p.m. 01:38 p.m. 30–31 May Fruit fall after flowering, second fruit fall (BBCH 71-73)
14 June 02:43-03:03 p.m. 01:42 p.m. 20–23 June Second fruit fall (BBCH 72-73)
13 July 11:47 a.m. - 12:12 p.m. 01:48 p.m. 18–19 July Fruit growth and ripening (BBCH 73-87)

22 August 10:17-10:33 a.m. 01:45 p.m. 14–16 August Fruit ripe for picking (BBCH 87)
16 October 12:54-01:09 p.m. 01:28 p.m. 12–13 October Leaf senescence
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Table A3. Summary of the hyperspectral RPAS flight dates. date of the field spectrometer (ASD) measurements and growth stages.

Experimental Field RPAS
Hyperspectral

Acquisition Time RPAS
Hyperspectral Solar Noon ASD Growth Stage

Apple

17 May 02:01-02:07 p.m. 01:38 p.m. 23–25 May Fruit fall after flowering (fruit size up to 10 mm) (BBCH 71)
14 June 12:08-12:15 p.m. 01:42 p.m. 12–19 June Fruit size up to 20 mm, second fruit fall(BBCH 72-73)

01:49 p.m. 26–27 July Fruit growth and ripening BBCH (73-87)
29 August 06:23-06:32 p.m. 01:43 p.m. 4–7 September Fruit ripe for picking (BBCH 87)

Pear

17 May 03:58 – 04:06 p.m. 01:38 p.m. 30–31 May Fruit fall after flowering, second fruit fall (BBCH 71-73)
14 June 01:17-01:26 p.m. 01:42 p.m. 20–23 June Second fruit fall (BBCH 72-73)
13 July 02:20-02:27 p.m. 01:48 p.m. 18–19 July Fruit growth and ripening (BBCH 73-87)

22 August 11:24-11:32 a.m. 01:45 p.m. 14–16 August Fruit ripe for picking (BBCH 87)
16 October 03:29-03:35 p.m. 01:28 p.m. 12–13 October Leaf senescence
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Table A4. Mean R2 (standard deviation), RMSE (standard deviation), and RRMSE statistics for the multispectral and hyperspectral data for retrieval of canopy
chlorophyll content using the full and sunlit canopy spectrum.

Models Multispectral Full Canopy
Spectrum

Multispectral Sunlit Canopy
Spectrum

Hyperspectral Full Canopy
Spectrum

Hyperspectral Sunlit Canopy
Spectrum

VI models R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE

Best NDVI 0.50
(0.05)

4.83
(0.29) 20.0% 0.51

(0.05)
4.8

(0.30) 19.9% 0.53 4.41 18.3% 0.56 4.28 17.7%

TCARI/OSAVI 0.43
(0.07)

5.18
(0.36) 21.5% 0.49

(0.07)
4.9

(0.36) 20.3% 0.02
(0.02)

6.31
(0.17) 26.2% 0.03

(0.03)
5.63

(0.18) 23.3%

PRI 0.36
(0.07)

5.29
(0.32) 21.9% 0.51

(0.06)
4.8

(0.32) 19.9% 0.13
(0.06)

5.91
(0.25) 24.5% 0.13

(0.06)
5.23

(0.23) 21.7%

REIP 0.41
(0.08)

5.48
(0.38) 22.7% 0.59

(0.05)
4.4

(0.31) 18.2% 0.24
(0.07)

5.52
(0.28) 22.9% 0.22

(0.06)
4.78

(0.25) 19.8%

Linear multivariate models

RSS 0.58
(0.11)

4.43
(0.52) 18.4% 0.64

(0.05)
4.11

(0.31) 17.0% 0.63
(0.08)

3.86
(0.42) 16.0% 0.63

(0.08)
3.89

(0.45) 16.1%

LARS 0.58
(0.06)

4.44
(0.26) 18.4% 0.64

(0.06)
4.11

(0.28) 17.0% 0.76
(0.06)

3.08
(0.34) 12.8% 0.79

(0.06)
2.91

(0.30) 12.1%

ENET 0.58
(0.06)

4.43
(0.25) 18.4% 0.64

(0.06)
4.11

(0.27) 17.0%
0.70
9.00

(0.05)

2.91
(0.38) 12.1% 0.80

(0.06)
2.83

(0.40) 11.7%

RR 0.58
(0.05)

4.43
(0.28) 18.4% 0.64

(0.05)
4.12

(0.29) 17.1% 0.79
(0.05)

2.91
(0.39) 12.1% 0.80

(0.04)
2.83

(0.42) 11.7%

RRVS 0.58
(0.05)

4.43
(0.27) 18.4% 0.64

(0.05)
4.12

(0.31) 17.1% 0.78
(0.07)

3.03
(0.33) 12.6% 0.79

(0.08)
2.93

(0.45) 12.1%

PPR 0.66
(0.07)

4.00
(0.46) 16.6% 0.73

(0.07)
3.57

(0.48) 14.8% 0.59
(0.12)

4.44
(0.96) 18.4% 0.58

(0.15)
4.48

(1.15) 18.6%
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Table A4. Cont.

Models Multispectral Full Canopy
Spectrum

Multispectral Sunlit Canopy
Spectrum

Hyperspectral Full Canopy
Spectrum

Hyperspectral Sunlit Canopy
Spectrum

Non-linear multivariate models

RF 0.70
(0.08)

3.84
(0.51) 15.9% 0.67

(0.09)
3.93

(0.52) 16.3% 0.72
(0.08)

3.40
(0.50) 14.1% 0.74

(0.07)
3.24

(0.48) 13.4%

TMGA 0.47
(0.09)

5.07
(0.43) 21.0% 0.54

(0.10)
4.71

(0.56) 19.5% 0.63
(0.11)

3.89
(0.63) 16.1% 0.65

(0.11)
3.78

(0.64) 15.7%

SGB 0.68
(0.07)

3.89
(0.38) 16.1% 0.67

(0.08)
3.91

(0.44) 16.2% 0.68
(0.09)

3.57
(0.50) 14.8% 0.73

(0.07)
3.29

(0.40) 13.6%

SVMR 0.77
(0.06)

3.3
(0.40) 13.7% 0.72

(0.07)
3.64

(0.41) 15.1% 0.74
(0.06)

3.21
(0.37) 13.3% 0.79

(0.04)
2.95

(0.29) 12.2%

SVML 0.58
(0.05)

4.46
(0.29) 18.5% 0.64

(0.05)
4.14

(0.31) 17.2% 0.73
(0.05)

3.28
(0.32) 13.6% 0.77

(0.04)
3.33

(0.29) 13.8%

GPRR 0.76
(0.05)

3.43
(0.37) 14.2% 0.72

(0.06)
3.67

(0.39) 15.2% 0.74
(0.05)

3.28
(0.31) 13.6% 0.78

(0.04)
3.05

(0.28) 12.6%

GPRL 0.58
(0.05)

4.45
(0.29) 18.4% 0.64

(0.05)
4.14

(0.31) 17.2% 0.73
(0.05)

3.30
(0.31) 13.7% 0.73

(0.06)
3.31

(0.36) 13.7%

KNN 0.78
(0.08)

3.22
(0.58) 13.3% 0.72

(0.08)
3.63

(0.56) 15.0% 0.77
(0.07)

3.02
(0.45) 12.5% 0.79

(0.05)
2.88

(0.37) 11.9%

SBC 0.53
(0.08)

4.75
(0.37) 19.7% 0.6

(0.08)
4.38

(0.37) 18.2% 0.75
(0.08)

3.19
(0.53) 13.2% 0.75

(0.07)
3.19

(0.47) 13.2%
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Table A5. Mean R2 (standard deviation), RMSE (standard deviation), and RRMSE statistics of the CCC retrieval models from sunlit hyperspectral RPAS imagery.

Models Hyperspectral Sunlit Canopy Spectrum Hyperspectral Sunlit Canopy Spectrum Hyperspectral Sunlit Canopy Spectrum
Species Apple Pear Pear and Apple
VI models R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE
Best NDVI 0.83 2.79 12.6% 0.36 4.67 19.4% 0.56 4.28 17.7%
TCARI/OSAVI 0.25 (0.14) 5.80 (0.60) 26.2% 0.06 (0.13) 5.76 (0.48) 23.9% 0.03 (0.03) 5.63 (0.18) 23.3%
PRI 0.43 (0.16) 5.09 (0.75) 23.0% 0.18 (0.10) 5.30 (0.33) 22.0% 0.13 (0.06) 5.23 (0.23) 21.7%
REIP 0.55 (0.08) 4.48 (0.42) 20.3% 0.30 (0.12) 4.94 (0.43) 20.5% 0.22 (0.06) 4.78 (0.25) 19.8%
Linear multivariate models
RSS 0.91 (0.02) 2.03 (0.23) 9.2% 0.61 (0.12) 4.69 (0.67) 19.4% 0.63 (0.05) 3.89 (0.45) 16.1%
LARS 0.91 (0.05) 2.24 (0.54) 10.1% 0.73 (0.08) 3.22 (0.35) 13.3% 0.79 (0.06) 2.91 (0.64) 12.1%
ENET 0.90 (0.05) 2.10 (0.63) 9.5% 0.82 (0.15) 2.49 (0.53) 10.3% 0.80 (0.06) 2.83 (0.40) 11.7%
RR 0.91 (0.04) 2.13 (0.12) 9.6% 0.82 (0.13) 2.49 (0.55) 10.3% 0.80 (0.04) 2.83 (0.42) 11.7%
RRVS 0.91 (0.04) 2.03 (0.42) 9.2% 0.82 (0.10) 2.54 (0.42) 10.5% 0.79 (0.08) 2.93 (0.45) 12.1%
PRR 0.41 (0.17) 6.39 (0.13) 28.9% 0.70 (0.09) 3.44 (0.54) 14.3% 0.58 (0.15) 4.48 (1.15) 18.6%
Non-linear multivariate models
RF 0.90 (0.02) 2.09 (0.22) 9.4% 0.60 (0.12) 3.66 (0.54) 15.2% 0.74 (0.07) 3.24 (0.48) 13.4%
TMGA 0.87 (0.09) 2.28 (0.72) 10.3% 0.47 (0.14) 4.24 (0.64) 17.6% 0.65 (0.11) 3.78 (0.64) 15.7%
SGB 0.91 (0.02) 2.04 (0.22) 9.2% 0.54 (0.12) 3.91 (0.53) 16.2% 0.73 (0.07) 3.29 (0.40) 13.6%
SVMR 0.90 (0.03) 2.16 (0.22) 9.8% 0.57 (0.09) 3.82 (0.43) 15.8% 0.79 (0.04) 2.95 (0.29) 12.2%
SVML 0.90 (0.02) 2.09 (0.26) 9.4% 0.78 (0.07) 2.75 (0.39) 11.4% 0.77 (0.04) 3.33 (0.29) 13.8%
GPRR 0.87 (0.03) 2.53 (0.30) 11.4% 0.58 (0.09) 3.92 (0.43) 16.2% 0.78 (0.04) 3.05 (0.28) 12.6%
GPRL 0.91 (0.02) 2.05 (0.22) 9.3% 0.77 (0.12) 2.81 (0.55) 11.6% 0.73 (0.06) 3.31 (0.36) 13.7%
KNN 0.91 (0.02) 2.05 (0.20) 9.3% 0.62 (0.12) 3.59 (0.55) 14.9% 0.79 (0.05) 2.88 (0.37) 11.9%
SBC 0.87 (0.03) 2.53 (0.03) 11.4% 0.60 (0.14) 3.70 (0.71) 15.3% 0.75 (0.07) 3.19 (0.47) 13.2%
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Table A6. Mean R2 (standard deviation), RMSE (standard deviation), and RRMSE statistics of the CCC retrieval models from sunlit multispectral RPAS imagery.

Models Multispectral Sunlit Canopy Spectrum Multispectral Sunlit Canopy Spectrum Multispectral Sunlit Canopy Spectrum
Species Apple Pear Pear and Apple

VI models R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE
Best NDVI 0.72 (0.06) 4.12 (0.41) 17.2% 0.62 (0.07) 3.58 (0.35) 14.8% 0.51 (0.05) 4.80 (0.30) 19.9%

TCARI/OSAVI 0.74 (0.09) 3.96 (0.48) 16.5% 0.43 (0.09) 4.32 (0.41) 17.9% 0.49 (0.07) 4.90 (0.36) 20.3%
PRI 0.72 (0.08) 4.12 (0.41) 17.2% 0.38 (0.03) 4.55 (0.33) 18.9% 0.51 (0.06) 4.80 (0.32) 19.9%

REIP 0.66 (0.05) 4.54 (0.38) 18.9% 0.62 (0.09) 3.56 (0.38) 14.8% 0.59 (0.05) 4.40 (0.31) 18.2%
Linear multivariate models

RSS 0.69 (0.07) 4.33 (0.46) 18.1% 0.66 (0.11) 3.40 (0.49) 14.1% 0.64 (0.05) 4.11 (0.31) 17.0%
LARS 0.69 (0.07) 4.33 (0.37) 18.1% 0.66 (0.09) 3.39 (0.34) 14.0% 0.64 (0.06) 4.11 (0.28) 17.0%
ENET 0.69 (0.06) 4.33 (0.34) 18.1% 0.66 (0.10) 3.39 (0.38) 14.0% 0.64 (0.06) 4.11 (0.27) 17.0%

RR 0.69 (0.06) 4.33 (0.39) 18.1% 0.66 (0.09) 3.39 (0.44) 14.0% 0.64 (0.05) 4.12 (0.29) 17.1%
RRVS 0.69 (0.06) 4.33 (0.40) 18.1% 0.66 (0.09) 3.39 (0.42) 14.0% 0.64 (0.05) 4.12 (0.31) 17.1%
PPR 0.77 (0.07) 3.67 (0.62) 15.3% 0.70 (0.09) 3.16 (0.50) 13.1% 0.73 (0.07) 3.57 (0.48) 14.8%

Non-linear multivariate models
RF 0.68 (0.09) 4.32 (0.59) 18.0% 0.77 (0.08) 2.78 (0.54) 11.5% 0.67 (0.09) 3.93 (0.52) 16.3%

TMGA 0.60 (0.13) 4.97 (0.83) 20.7% 0.63 (0.15) 3.60 (0.75) 14.9% 0.54 (0.10) 4.71 (0.56) 19.5%
SGB 0.68 (0.08) 4.35 (0.51) 18.1% 0.71 (0.09) 3.10 (0.53) 12.8% 0.67 (0.08) 3.91 (0.44) 16.2%

SVMR 0.70 (0.07) 4.24 (0.47) 17.7% 0.80 (0.05) 2.63 (0.33) 10.9% 0.72 (0.07) 3.64 (0.41) 15.1%
SVML 0.68 (0.05) 4.38 (0.38) 18.3% 0.65 (0.08) 2.63 (0.44) 10.9% 0.64 (0.05) 4.14 (0.31) 17.2%
GPRR 0.70 (0.06) 4.32 (0.43) 18.0% 0.81 (0.05) 2.66 (0.31) 11.0% 0.72 (0.06) 3.67 (0.39) 15.2%
GPRL 0.68 (0.05) 4.35 (0.37) 18.1% 0.65 (0.08) 3.43 (0.42) 14.2% 0.64 (0.05) 4.14 (0.31) 17.2%
KNN 0.67 (0.09) 4.45 (0.60) 18.6% 0.84 (0.05) 2.35 (0.35) 9.7% 0.72 (0.08) 3.63 (0.56) 15.0%
SBC 0.59 (0.09) 5.00 (0.48) 20.9% 0.79 (0.08) 2.66 (0.42) 11.0% 0.60 (0.08) 4.38 (0.37) 18.2%
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Table A7. Mean R2 (standard deviation), RMSE (standard deviation), and RRMSE statistics of the CCC retrieval models from hyperspectral RPAS imagery (without
pear August).

Hyperspectral Sunlit Hyperspectral Sunlit Hyperspectral Sunlit
Models Apple Pear Pear and Apple

VI models R2 RMSE RRMSE R2 RMSE RRMSE R2 RMSE RRMSE
Best NDVI 0.83 2.79 12.6% 0.54 2.98 15.3% 0.54 3.84 17.3%

TCARI/OSAVI 0.25 (0.14) 5.80 (0.60) 26.2% 0.08 (0.12) 4.23 (0.41) 21.7% 0.05 (0.03) 5.54 (0.25) 25.0%
PRI 0.43 (0.16) 5.09 (0.75) 23.0% 0.09 (0.08) 4.13 (0.30) 21.2% 0.11 (0.06) 5.33 (0.25) 24.0%

REIP 0.55 (0.08) 4.48 (0.42) 20.3% 0.13 (0.09) 4.05 (0.30) 20.8% 0.18 (0.09) 5.13 (0.32) 23.1%
Linear multivariate models

RSS 0.91 (0.02) 2.03 (0.23) 9.2% 0.60 (0.11) 2.78 (0.48) 15.9% 0.73 (0.08) 3.64 (0.33) 16.4%
LARS 0.91 (0.05) 2.24 (0.54) 10.1% 0.61 (0.09) 2.97 (0.41) 16.8% 0.80 (0.06) 2.82 (0.26) 12.7%
ENET 0.90 (0.05) 2.10 (0.63) 9.5% 0.70 (0.11) 2.46 (0.65) 13.8% 0.80 (0.05) 2.76 (0.25) 12.4%

RR 0.91 (0.04) 2.13 (0.12) 9.6% 0.69 (0.11) 2.49 (0.82) 13.9% 0.80 (0.04) 2.82 (0.23) 12.7%
RRVS 0.91 (0.04) 2.03 (0.42) 9.2% 0.70 (0.10) 2.43 (0.43) 13.9% 0.78 (0.06) 3.07 (0.27) 13.8%
PPR 0.41 (0.17) 6.39 (0.13) 28.9% 0.49 (0.15) 3.78 (0.72) 21.8% 0.67 (0.13) 4.45 (0.83) 20.1%

Non-linear multivariate models
RF 0.90 (0.02) 2.09 (0.22) 9.4% 0.52 (0.12) 3.04 (0.42) 16.7% 0.80 (0.06) 2.92 (0.33) 13.2%

TMGA 0.87 (0.09) 2.28 (0.72) 10.3% 0.38 (0.11) 3.51 (0.44) 19.7% 0.76 (0.08) 3.32 (0.39) 15.0%
SGB 0.91 (0.02) 2.04 (0.22) 9.2% 0.51 (0.12) 3.01 (0.42) 16.1% 0.80 (0.07) 2.82 (0.31) 12.7%

SVMR 0.90 (0.03) 2.16 (0.22) 9.8% 0.53 (0.12) 2.97 (0.35) 16.5% 0.81 (0.05) 2.79 (0.29) 12.6%
SVML 0.90 (0.02) 2.09 (0.26) 9.4% 0.71 (0.08) 2.40 (0.41) 13.5% 0.77 (0.06) 3.07 (0.29) 13.8%
GPRR 0.87 (0.03) 2.53 (0.30) 11.4% 0.53 (0.12) 3.06 (0.34) 17.0% 0.81 (0.04) 2.79 (0.26) 12.6%
GPRL 0.91 (0.02) 2.05 (0.22) 9.3% 0.70 (0.08) 2.43 (0.42) 13.9% 0.77 (0.03) 3.05 (0.24) 13.7%
KNN 0.91 (0.02) 2.05 (0.20) 9.3% 0.51 (0.10) 3.15 (0.35) 16.7% 0.82 (0.04) 2.63 (0.21) 11.9%
SBC 0.87 (0.03) 2.53 (0.03) 11.4% 0.48 (0.12) 3.28 (0.48) 18.3% 0.78 (0.05) 3.03 (0.28) 13.7%
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Table A8. R2 accuracy metric of unitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data.

Weather ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI

May
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0.22
(0.09)

0.26
(0.08)

0.25
(0.12)

0.15
(0.06)

0.24
(0.10)

0.23
(0.67)

June
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July 
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0.02 
(0) 
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0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 
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0.71 
(0.26) 

0.03 
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0.03 
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0.20
(0.11)

0.24
(0.13)
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(0.12)

0.21
(0.13)

0.25
(0.08)

0.22
(0.10)

0.20
(0.14)

0.21
(0.07)

0.24
(0.07)

0.16
(0.11)

0.19
(0.15)

0.13
(0.07)

0.28
(0.13)

0.21
(0.12)

July
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Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 
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0.19
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(0.10)

0.21
(0.10)

0.16
(0.08)

0.15
(0.10)

0.15
(0.09)

0.15
(0.07)

0.21
(0.14)

0.18
(0.11)

0.16
(0.08)

0.09
(0.08)

0.25
(0.13)

August
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 
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0.19
(0.08)

0.17
(0.09)

0.16
(0.07)

0.14
(0.08)

0.09
(0.14)

0.17
(0.08)

0.15
(0.08)

0.20
(0.09)

0.20
(0.24)

0.15
(0.19)

0.11
(0.10)

0.23
(0.10)

0.19
(0.23)

0.24
(0.11)

October
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 
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0.26 0.26 0.29 0.21 0.27 0.31 0.15 0.26 0.12 0.20 0.16 0.27 0.12 0.14 0.37

Table A9. R2 accuracy metric of unitemporal CCC retrieval models for pear (apple) trees from sunlit hyperspectral data.

Weather ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA

May
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
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0.00 
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0.16
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0.18
(0.14)

0.19
(0.10)

0.21
(0.11)
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(0.08)

0.18
(0.10)

0.20
(0.19)

0.21
(0.07)

0.15
(0.19)

0.15
(0.08)

0.21
(0.19)

0.19
(0.07)

June
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
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0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
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0.00 
(0.04) 
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(0) 
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(0.07) 0.0 (0.02) 

0.02 
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(0) 
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(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 
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0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 
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(0.10)

0.14
(0.13)

0.15
(0.11)

0.17
(0.23)

0.14
(0.12)

0.20
(0.08)

0.19
(0.11)

0.15
(0.12)

0.11
(0.15)

0.25
(0.16)

0.13
(0.07)

0.17
(0.11)

0.13
(0.12)

0.23
(0.15)

July
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 
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(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
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0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.24 0.19 0.24 0.18 0.21 0.32 0.20 0.21 0.20 0.18 0.15 0.20 0.23 0.11

August
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 

Table 6. R2 accuracy metric of multitemporal CCC retrieval models for all trees from sunlit multispectral data. 

Weather  ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA BestVI 

May 
0.00 
(0.04) 

0.00 
(0.04) 

0.00 
(0.04) 

0.01 
(0.1) 0.00 (0.04) 

0.00 
(0.04) 

0.10 
(0.15) 

0.00 
(0.04) 

0.26 
(0.01) 

0.07 
(0.02) 

0.45 
(0.81) 

0.00 
(0.04) 

0.60 
(0.04) 

0.01 
(0.04) 

0 
(0.05) 

June 
0.01 
(0) 

0.01 
(0) 

0.01 
(0) 

0.01 
(0.1) 0.01 (0) 

0.01 
(0) 

0.04 
(0) 

0.01 
(0) 

0.14 
(0.01) 

0.15 
(0.01) 

0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
(0) 

0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.25
(0.10)

0.19
(0.08)

0.19
(0.16)

0.18
(0.19)

0.19
(0.09)

0.22
(0.10)

0.13
(0.12)

0.18
(0.09)

0.10
(0.14)

0.20
(0.10)

0.12
(0.08)

0.18
(0.09)

0.23
(0.14)

0.15
(0.14)

October
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Table 5. R2 accuracy metric of multitemporal CCC retrieval models for pear (apple) trees from sunlit multispectral data. 
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Table A10. R2 accuracy metric of multitemporal CCC retrieval models for all trees from hyperspectral data with August and (without August of pear).

Weather ENET LARS RSS PPR RR RRVS SBC GPRL GPRR KNN RF SVML SVMR TMGA SGB

May
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0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 
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0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 
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(0.07) 

0.70 
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0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 
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(0.31)

0.26
(0.33)

0.09
(0.14)

0.59
(0.61)

0.28
(0.37)

0.35
(0.45)

0.49
(0.55)

0.16
(0.23)

0.29
(0.32)

0.5
(0.5)

0.73
(0.75)

0.16
(0.59)

0.37
(0.23)

0.18
(0.40)

0.65
(0.18)

June
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(0.63)

0.57
(0.63)

0.39
(0.42)

0.76
(0.80)

0.60
(0.65)

0.63
(0.66)

0.83
(0.84)

0.47
(0.56)

0.74
(0.74)

0.85
(0.85)

0.9
(0.89)

0.47
(0.81)

0.79
(0.58)

0.68
(0.79)

0.82
(0.64)

July
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(<0.01)

<0.01
(<0.01)
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(0.33)
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(<0.01)

0.02
(<0.01)

0.3
(0.47)

<0.01
(<0.01)

0.03
(0.05)

0.31
(0.30)

0.57
(0.56)

<0.01
(0.32)

0.03
(0.02)

0.01
(0.04)

0.22
(0.02)

August
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0.07 
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0.03 
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0.21 
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(0.01) 

0.71 
(0.26) 

0.03 
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0.29 
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(0) 

August 
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0.03 
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0.35 
(0.03) 

0.00 
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0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.06
(0.03)

0.03
(0.03)

0.07
(0.02)

0.71
(0.54)

0.06
(0.06)

0.1
(0.13)

0.9
(0.96)

<0.01
(<0.01)

0.07
(0.07)

0.31
(0.59)

0.5
(0.68)

0.03
(0.36)

0.24
(<0.01)

<0.01
(0.26)

0.44
(<0.01)

October
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0.82 
(0.35) 

0.01 
(0) 

0.47 
(0.01) 

0.02 
(0.01) 0 (0) 

July 
0.02 
(0) 

0.02 
(0) 

0.02 
(0) 

0.00 
(0.07) 0.0 (0.02) 

0.02 
(0) 

0.07 
(0.01) 

0.03 
(0) 

0.21 
(0.03) 

0.01 
(0.01) 

0.71 
(0.26) 

0.03 
(0) 

0.29 
(0.03) 0.08 (0) 

0.04 
(0) 

August 
0.04 
(0.02) 

0.04 
(0.02) 

0.04 
(0.02) 

0.01 
(0.01) 0.04 (0.02) 

0.04 
(0.02) 

0.16 
(0.04) 

0.03 
(0.02) 

0.15 
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0.12 
(0.07) 

0.70 
(0.32) 

0.03 
(0.01) 

0.35 
(0.03) 

0.00 
(0.01) 

0.01 
(0.03) 

October 0.13 0.13 0.13 0.00 0.13 0.14 0.01 0.17 0.20 0.02 0.72  0.11 0.24 0.00 0.24 

0.02
(0.04)

<0.01
(0.05)

0.02
(<0.01)

0.61
(0.72)

0.02
(0.08)

0.07
(0.15)

0.99
(0.99)

0.01
(<0.01)

0.16
(0.41)

0.08
(0.57)

0.08
(0.85)

<0.01
(0.61)

0.18
(<0.01)

0.22
(0.46)

0.56
(0.11)
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