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Abstract: Lakes and reservoirs are essential elements of the hydrological and biochemical cycles,
considered sentinels of global climate change. However, comprehensive quantifications of their water
storage changes (∆V) at a large spatiotemporal scale are still rare. Here, we integrated a global
surface water dataset and SRTM digital elevation models, both available from Google Earth Engine
platform at a spatial resolution of 30 m, to evaluate ∆V for a total of 760 lakes and reservoirs across
China at an annual timescale since 1984. The results indicated that (1) the aggregated water storage
went through a slight increase of 41.5 Gt (1.7 Gt/yr) during 1985–2005, a significant decrease of
100 Gt (−20.6 Gt/yr) during 2005–2009, and then increased by 136.3 Gt (21.3 Gt/yr) during 2009–2015.
(2) The increasing trend was largely attributed to lakes and reservoirs in the Tibetan Plateau Lake
Zone, and the decreasing trend was mainly due to the North and Northwest Lake Zone, with little
variations observed for the Northeast and Southwest Lake Zones. (3) Qinghai lake was associated
with the largest increase (18.3 Gt) and Poyang lake presented the largest decline (−9.2 Gt). The results
can help advance our understanding of the impact of climate change and improve future projection.
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1. Introduction

1.1. Importance of Water Storage Change Assessment

Lakes and reservoirs are essential elements of the hydrological and biochemical cycles and are
a vital resource for industrial, agricultural, domestic, and hydropower water use [1]. Lakes and
reservoirs are also considered sentinels of global climate change due to their sensitivity to environmental
changes [2]. Climate change and human activities, including dam construction, water diversion, and
land-use land cover change, have led to significant changes in the number, water level, surface area, and
volume of lakes and reservoirs, especially during the past several decades [3]. Considering the variation
on bathymetry, water storage change can be used to better diagnose the extent of environmental change,
compared to water level and area [4]. Lake and reservoir water storage is a critical term in surface water
balance and an important variable integrating the effect from hydroclimatic condition and human control.
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Water storage changes in lakes and reservoirs present significant spatial and temporal variability,
reflecting heterogeneity of local conditions in terms of climate, hydrology, topography, land cover and
human disturbance. Monitoring water storage change can help to understand the dynamics of the
global hydrological cycle and predict the impact of global changes on water resources [5]. Assessing
water storage changes in lakes and reservoirs is consequently becoming increasingly important for the
sustainable management of water resources.

1.2. Limitation of Current Assessments

However, until now, the spatio-temporal characteristics of water storage change have remained
inadequately assessed. Comprehensive quantifications of water storage change in lakes and reservoirs
are still lacking at the large spatial and temporal scales [6,7]. Spatially, the existing assessments
are mainly concentrated on: (1) large lakes such as Qinghai Lake [8,9], Poyang Lake [10], and Lake
Victoria [5]; (2) a small number of lakes and reservoirs, for example, 11 large lakes in South Tibet [4],
27 reservoirs in South Asia [11], 30 lakes in Tibetan Plateau [12], and 114 lakes larger than 50 km2 in
Tibetan Plateau [13]; (3) specific regions such as the Tibetan Plateau, due to its unique climatic and
topographic condition, significant ecological effects, and sensitive responses to climate change [14,15],
accumulating a series of important research findings [7,12,14–18]. Long-term analyses can enrich
our knowledge about the history and current situation of lakes and reservoirs and advance our
understanding of the mechanism of water storage change [5]. Yet, current assessments have been
limited to a short time period, including analyses at several time points [12] and analyses over the last
decade, as in the 2002–2015 period [7].

1.3. Major Assessment Approach

Water storage change in lakes and reservoirs has been mainly assessed by combining water level
and water area. The identification of water storage change at large scales has been challenging largely
due to the scarce and discontinuous in-situ measurements on water levels. The on-site measurement is
time-consuming and labor-intensive, and the situation of sparse observation is unlikely to get improved
soon, especially for developing countries [19]. The development of remote sensing technology has
provided a fast and effective alternative for evaluating water storage change in lakes and reservoirs with
increasing products on water area and water level [4]. Landsat satellite images have been widely used
in mapping lakes and reservoirs due to their high spatial resolution, long period of data availability
and open access, and radar and laser altimeter satellites (e.g. TOPEX/POSEIDON, ENVISAT, JASON-1,
ICESat/GLAS) have been applied to monitor changes in the water elevation of the lake and reservoir
considering the high accuracy [14]. Most existing assessments on water storage change estimated
volumetric changes by combining water area identified by the spectral sensors with water level
measured by the altimeter satellites. For instance, for the purpose of evaluating water storage change
in the Tibetan Plateau, Song et al. used water level data provided by ICESat/GLAS (2003–2009) and
identified water area based on MSS/TM/ETM+ data (1970–2011) [12], and Zhang et al. employed the
ICESat (2003–2009) and Landsat image data (1970s and 1989–2015) [17]. Nevertheless, the limitations
of remote sensing data have constrained their application in water storage change assessment. Water
storage analyses based on remote sensing data are confined in both time and space. The data provided
by lidar altimeter satellites are particularly applicable to large lakes, and the monitoring period was
usually limited. For example, ICESat data were only available between 2003 and 2009. Therefore,
as mentioned above, the existing water storage change studies have been primarily focused on a small
number of lakes/reservoirs and limited to a relatively short time period [7].

Recently, DEM data has been applied to estimate water storage change since it includes bathymetric
information. A geo-statistical approach refers to developing a statistical model based on topographic
variables. To estimate water storage change, the general idea of DEM-based Geo-statistical methods is
extracting water area and level from DEM to develop hypsometric relationships and calculating the
corresponding water level and area based on hypsometric functions. Utilizing DEM information to
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assess water storage changes is becoming a hot topic in current research. For example, Bonnema and
Hossain evaluated water storage change for 20 reservoirs in the Mekong River Basin [20], Pan et al.
estimated water level for Lake Champlain [21], Gao and Zhang analyzed water storage for a total of 27
reservoirs in South Asia based on MODIS and DEM [11], and Yang et al. applied DEM-based method
to 114 lakes on the Tibetan Plateau [13]. The DEM-based approach has provided an opportunity to
assess water storage change even in ungagged regions with finite data availability.

1.4. The Objective and Research Content of This Study

The overarching goal of this study is to develop advanced methodology that can further extend
the spatial and temporal scales of water storage change assessment and reveal the spatio-temporal
patterns of water storage change in China’s lakes and reservoirs. Google Earth Engine (GEE), as a
cloud-based platform, provides parallel computation for large amounts of freely available geospatial
data and novel and robust computation algorithms for planetary-scale analyses [22]. The revolution
in geospatial data availability and computational power can greatly facilitate the assessment of
water storage change at large spatiotemporal scales [23,24]. Based on the GEE platform, combining
geo-statistical models, our study integrated global surface water (GSW) dataset and SRTM digital
elevation models (SRTM-DEM), both available from GEE platform at a spatial resolution of 30 m,
in order to determine the spatiotemporal patterns of water storage changes across China at an annual
timescale. This study spans more than 30 years on a time scale (1984–2015) and evaluates 760 lakes
and reservoirs in mainland China, each with an area greater than 10 km2, with a total area accounting
for about 80% of the total water surface area. Therefore, their water storage changes can well represent
the temporal and spatial variation characteristics of all waterbodies in China. Our study uncovered
the spatiotemporal characteristics of water storage change in China’s lakes and reservoirs and also
demonstrated the advantage of combining Landsat derived products, DEM, and GEE to support water
resources assessment, which is especially needed in ungagged regions.

2. Materials and Methods

2.1. Materials

The Global Surface Water (GSW) [25] and Shuttle Radar Topography Mission digital elevation
(SRTM-DEM) are the two major supporting data of this study. GSW were generated using
3,066,102 scenes from Landsat 5, 7, and 8 acquired between 16 March 1984 and 10 October 2015
and contain information on the spatial location and temporal distribution of surface water, serving
as a good basis for dynamic analysis on water coverage [25]. Here, we mainly used three data types
from GSW, including (1) GSW monthly water coverage; (2) GSW max-extent; and (3) GSW water
occurrence. GSW monthly water coverage data provide global monthly water coverage data, with
each pixel individually classified into water, non-water, and no data. Note that GSW classified as
no data the contaminated pixels (due to snow, ice, cloud, terrain shadow, and sensor-related issues
including the scan line corrector failure) and did not distinguish lakes and reservoirs from other open
water bodies including rivers, wetlands, and inundated floodplains. Derived based on the statistics of
these monthly water coverage images, GSW max-extent data are available as binary images containing
a value of 1 anywhere water has ever been detected, and GSW water occurrence data indicate the
frequency that water was present in the pixel (ranging between 0 and 100), during the 32-year period.
SRTM-DEM data (Version 3.0) was provided by NASA Jet Propulsion Laboratory (JPL) and offers
digital elevation models collected during February 2000 on a near-global scale, which has undergone a
void-filling process using open-source data (ASTER GDEM2, GMTED2010, and NED).

HydroLAKES data [26] provides the shoreline polygons of all global lakes and reservoirs with a
surface area of at least 0.1 km2 and was developed by compiling multiple datasets including SRTM
Water Body Data (SWBD), Global Lakes and Wetlands Database (GLWD), and Global Reservoir and
Dam database (GRanD), which was used here to select lakes and reservoirs of analysis and to determine
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their geographical extent. The Remote sensing monitoring data of land use in China were obtained from
Resource and Environment Data Cloud Platform in the Data Center for Resources and Environmental
Sciences, which included land use information at the resolution of 1 km and was applied here to aid
the selection of lakes and reservoirs. River shapefile was obtained from China’s ecosystem assessment
and ecological security pattern database and was used here to identify the connectivity of lakes and
reservoirs to rivers and to determine the buffer distance of lakes and reservoirs. The China Lake dataset
provides the boundary shapefile of lakes (1:250,000) based on the first lake investigation in China
during the 1960s and was from the Lake-Watershed Science Data Center of National Earth System
Science Data Sharing Infrastructure. Water level data from the Hydroweb dataset was created by
LEGOS (Laboratoire d’Etude en Ge´ophysique et Oce´anographie Spatiale) in 2003 and was derived
based on satellite altimetry [4], which was used for the verification. The relevant information of the
dataset used in this study are listed in Table 1.

Table 1. List of the dataset used in this study.

Item Dataset Source Spatial Resolution Temporal
Scale Use in This Study

1 Global Surface
Water (GSW)

Provided by EC Joint Research
Center and accessed at the GEE

platform
30 m

Monthly, from
March 1984 to
October 2015

To provide dynamic
information on water

coverage

2 SRTM-DEM Provided by NASA JPL and
accessed at the GEE platform 30 m February 2000 To develop hypsometric

relationships

3 HydroLAKES
data

Developed by the Global
HydroLAB and downloaded from

HydroSHEDS website
(https://www.hydrosheds.org)

Lakes/reservoirs
with a surface area of

at least 0.1 km2
2000s

To help select
lakes/reservoirs of analysis

and determine their
geographical extent

4

Remote sensing
monitoring

data of land use
in China

Data Center for Resources and
Environmental Sciences
(http://www.resdc.cn/)

1 km 1990 and 2015 To aid the selection of
lakes and reservoirs

5 River shapefile

China’s ecosystem assessment
and ecological security pattern

database
(http://www.ecosystem.csdb.cn)

/ 2000s

To identify the
connectivity of

lakes/reservoirs to rivers
and determine the buffer

distance

6 China Lake
dataset

Lake-Watershed Science Data
Center of National Earth System

Science Data Sharing
Infrastructure

(http://lake.geodata.cn)

1:250,000 1960s To provide boundary
information for lakes

7 Hydroweb
Developed by LEGOS and

downloaded from Hydroweb
(http://hydroweb.theia-land.fr/)

Large lakes and
reservoirs

Around
1992–2015

To validate the trend of
water surface elevation

2.2. Methods

Based on the GEE platform, combined with multi-source remote sensing data and geo-statistical
models, this study evaluated water storage change for China’s lakes and reservoirs during the last
30 years. The flowchart of the methodology is illustrated in Figure 1. Our data processing was
implemented using ArcGIS (for data preprocessing), GEE (for extraction and correction of water
coverage, and also extraction of A–E pairs), and R software (for statistical analysis on contamination
ratios, hypsometric analysis, identification of spatio-temporal patterns, and plots- making). The explicit
methods are introduced below.

https://www.hydrosheds.org
http://www.resdc.cn/
http://www.ecosystem.csdb.cn
http://lake.geodata.cn
http://hydroweb.theia-land.fr/
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2.2.1. Selection of Study Objects and Extraction of Reference Boundary

HydroLAKES data was adopted as the reference boundary for lakes and reservoirs in our study,
considering its comprehensiveness [26]. A total of 829 large lakes and reservoirs in mainland China
were selected from HydroLAKES based on the water surface area threshold of 10 km2 (Figure 2).
However, some existing issues of the HydroLAKES data identified from our pilot study could inevitably
affect the dynamic analysis and thus require further modification. Due to the misclassification of
paddy fields into water bodies in HydroLAKES data, we applied 1-km land use raster data (for the
years of 1990 and 2015) and counted the numbers of pixels within each lake/reservoir classified as a
water feature. Lakes and reservoirs containing zero water pixels for either of the two time points were
removed from our selection. Considering the geographical displacement of some lakes and reservoirs,
we compared lakes/reservoirs from the HydroLAKES dataset with ArcGIS online images and the
China Lake dataset (1960s). Some manual modification was required to correct the displacement of
water bodies.
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Figure 2. The reference boundaries for 829 lakes and reservoirs and 5 lake zones in mainland China.
The division of the lakes zones was based on Ma [27] and renamed here, including (1) the Northeast
Lake Zone (NELZ), (2) the North and Northwest Lake Zone (NNWLZ), (3) the East Lake Zone (ELZ),
(4) the Southwest Lake Zone (SWLZ), and (5) the Tibetan Plateau Lake Zone (TPLZ).

In addition, HydroLAKES data provides snapshots of shoreline polygons of lakes and reservoirs
during observation and thus lacks dynamic information. The boundaries of lakes and reservoirs
advance and retreat in response to hydroclimatic conditions. Directly using HydroLAKES as a reference
boundary can result in underestimation of water area in wet seasons when analyzing dynamics of water
bodies, especially when the lakes/reservoirs were originally observed during dry seasons. Therefore,
we constructed outward buffer zones around individual lakes and reservoirs, with the buffer distances
determined according to both the nearest distance from them to their closest lakes or reservoirs and
their connectivity to rivers. The goal was to develop appropriate buffer zones large enough to include
the potential expansions of water area in the study period, but also not too large to mix with the water
area in river courses. For each lake/reservoir, we extracted the continuous water feature with the
largest area from the GSW max-extent data within the buffer zone and considered it the reference
boundary for dynamic analysis. The continuous water feature was formed from the water pixels
with four-connected neighbors. The extracted reference boundaries were considered as the maximum
shoreline boundaries for lakes and reservoirs and the dynamic patterns of lakes and reservoirs were
thus included within the reference boundaries.

2.2.2. Extraction and Correction of Dynamic Water Coverage

As mentioned above, GSW data included some unrecognized no data grids due to contamination
from clouds, snow, ice, and terrain shadows. These contaminations could lead to significant
underestimation of water area if left without any treatment, especially for regions with frequent
cloud cover. Both the water surface area and the effect of such contaminations change with climatic
conditions, presenting monthly variation. Within the reference boundaries of individual lakes and
reservoirs, we extracted the raw GSW monthly water coverage (1985–2015) and calculated the ratio of
no data pixel count to the total pixel count (defined here as contamination ratio) for each month in each
year. We determined the months of analysis by selecting the months with the lowest contamination
ratio, in order to minimize the effect of contaminated pixels on the long-term dynamic assessment.
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Additionally, we combined GSW water occurrence data with the raw GSW monthly water
coverage data and applied recently developed algorithm to automatically repair the contaminated no
data pixels [28]. The correction of the raw monthly water coverage assumed that the contaminated
pixels should be covered by water if the uncontaminated ones with the same water occurrence values
as the contaminated pixels were classified as water. We adopted the same empirical weighting factor
as Zhao and Gao [28] but applied the algorithm to all pixels in the water bodies with contamination
ratio smaller than or equal to 0.95 to guarantee a consistent correction effect. The images for lakes and
reservoirs with a contamination ratio larger than 0.95 were discarded from analysis. The enhanced
monthly water coverage data can therefore provide a more accurate and continuous estimation on
water level and water storage change for China’s lakes and reservoirs. Note, for enhanced monthly
water coverage data, data points more than 1.5 interquartile ranges below the first quartile or above
the third quartile were considered outliers and excluded from analyses.

2.2.3. Estimation and Verification of Water Storage Change

SRTM-DEM data at the resolution of 30 m provides valuable bathymetric information for inferring
water storage changes. Our DEM-based Geo-statistical method used elevation as the major predictor
variable and applied regression equations of four different types to construct hypsometric relationships.
Specifically, we employed SRTM-DEM data to extract the values of elevation (E) within the reference
boundary and the corresponding area (A) when water reaches the elevation for each lake and reservoir.
Four different curves, including linear, power law, segmented linear, and quadratic polynomial
relationships, were applied to fit the A–E pairs and the relationship with the highest R2 among the four
was selected as the hypsometric function between water area and elevation. Our geo-statistic approach
constructed a unique hypsometric function, A = f (E) and derived specific regression coefficients, for
each lake and reservoir, which thus can better represent the bathymetry.

Based on the enhanced monthly water coverage during the study period, the corresponding
elevation values were calculated according to the derived hypsometric function for each lake and
reservoir. The relative water storage change compared to the first year were estimated by integrating
the hypsometric relationships (Equation (1)).

∆V =

∫ Et

Et0

f (E)dE (1)

where, t0 indicates the first year of analysis, t indicates the specific year of analysis, E refers to elevation,
Et0 and Et denote the elevation values for the corresponding years, and ∆V represents the relative
water storage change from t0 to t. Note t0 are varied for different lakes and reservoirs based on the
availability and contamination condition of images.

The dynamic water level data from Hydroweb were available for a total of 30 lakes in mainland
China. We compared the water level data from Hydroweb with our estimated elevation values for the
30 lakes, and also compared the temporal trends of the two data, indicated by the slopes of the linear
regressions, considering the varied base levels of elevation.

2.2.4. Characterization of the Spatio-Temporal Patterns of Water Storage Change

The annual water storage change was estimated for all lakes and reservoirs with a surface area
larger than 10 km2 during the period of 1984–2015. Temporally, the Mann-Kendall non-parametric
trend test (M–K test) was employed here to analyze the temporal trend of ∆V. For lakes and reservoirs
with significant temporal trend at the level of 0.1, linear curve was fitted to the annual ∆V and slope (m)
was calculated to represent the changing rate of ∆V. While for lakes and reservoirs without significant
trends, quadratic polynomial curve was fitted and the coefficient of the 2nd degree term (a) was used
to identify the temporal trend.
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Spatially, considering the climatic and topographic variation across China, we analyzed the spatial
distribution characteristics of ∆V in the lakes and reservoirs by region. Previous regionalization of lake
zones by Ma [27] was adopted, which divided China into five lake zones, including (1) the Northeast
Lake Zone (NELZ), (2) the North and Northwest Lake Zone (NNWLZ), (3) the East Lake Zone (ELZ),
(4) the Southwest Lake Zone (SWLZ), and (5) the Tibetan Plateau Lake Zone (TPLZ).

3. Results

3.1. Extraction and Correction of Dynamic Water Coverage

Due to multiple-source contaminations, raw water coverage data can result in significant
underestimation of water area and lead to inaccurate dynamic trends. The extraction of raw water
coverage was therefore conducted during the months with low contamination ratio. Based on the
boxplots (Figure 3a) of the contamination ratio of 829 lakes and reservoirs by month (1984–2015),
September was found to have the lowest mean contamination ratio (0.44), closely followed by October
(0.45) and then August (0.47). Also, these three months were found to present the lowest contamination
ratio for the majority of lakes and reservoirs (134, 223, and 279 for August, September, and October,
Figure 3b). Therefore, the months of analysis here were determined as August-October, and the average
water area for the three months (after excluding the month with contamination ratio larger than 0.4)
was used to represent the yearly water area.

Remote Sens. 2019, 11, 1467 8 of 18 

Where, 𝑡  indicates the first year of analysis, t indicates the specific year of analysis, 𝐸 refers to elevation, 𝐸  and 𝐸  denote the elevation values for the corresponding years, and ∆V represents the relative water 
storage change from 𝑡  to 𝑡. Note 𝑡  are varied for different lakes and reservoirs based on the availability and 
contamination condition of images. 

The dynamic water level data from Hydroweb were available for a total of 30 lakes in mainland China. 
We compared the water level data from Hydroweb with our estimated elevation values for the 30 lakes, 
and also compared the temporal trends of the two data, indicated by the slopes of the linear regressions, 
considering the varied base levels of elevation. 

2.2.4. Characterization of the spatio-temporal patterns of water storage change 

The annual water storage change was estimated for all lakes and reservoirs with a surface area larger 
than 10 km2 during the period of 1984–2015. Temporally, the Mann-Kendall non-parametric trend test (M–
K test) was employed here to analyze the temporal trend of ∆V. For lakes and reservoirs with significant 
temporal trend at the level of 0.1, linear curve was fitted to the annual ∆V and slope (m) was calculated to 
represent the changing rate of ∆V. While for lakes and reservoirs without significant trends, quadratic 
polynomial curve was fitted and the coefficient of the 2nd degree term (a) was used to identify the temporal 
trend. 

Spatially, considering the climatic and topographic variation across China, we analyzed the spatial 
distribution characteristics of ∆V in the lakes and reservoirs by region. Previous regionalization of lake 
zones by Ma [27] was adopted, which divided China into five lake zones, including (1) the Northeast Lake 
Zone (NELZ), (2) the North and Northwest Lake Zone (NNWLZ), (3) the East Lake Zone (ELZ), (4) the 
Southwest Lake Zone (SWLZ), and (5) the Tibetan Plateau Lake Zone (TPLZ). 

3. Results

3.1. Extraction and Correction of Dynamic Water Coverage 

Due to multiple-source contaminations, raw water coverage data can result in significant 
underestimation of water area and lead to inaccurate dynamic trends. The extraction of raw water coverage 
was therefore conducted during the months with low contamination ratio. Based on the boxplots (Figure 
3a) of the contamination ratio of 829 lakes and reservoirs by month (1984–2015), September was found to 
have the lowest mean contamination ratio (0.44), closely followed by October (0.45) and then August (0.47). 
Also, these three months were found to present the lowest contamination ratio for the majority of lakes and 
reservoirs (134, 223, and 279 for August, September, and October, Figure 3b). Therefore, the months of 
analysis here were determined as August-October, and the average water area for the three months (after 
excluding the month with contamination ratio larger than 0.4) was used to represent the yearly water area. 
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reservoirs by month, 1984–2015. (b) Histogram on the month with the lowest contamination ratio for
829 lakes and reservoirs.

The application of the automatic correction on the raw water coverage greatly improved the
estimation of water area as seen from Figure 4. By comparing the total water area from August to
October over time between the raw and the enhanced water coverage for the 829 lakes and reservoirs,
it was demonstrated that obvious underestimation of total water area existed from the raw water
coverage. The increase on water area from the raw water coverage to the enhanced water coverage
was found to be averaged at 21.18 × 103 km2, ranging between 3.0 × 103 km2 in 1986 to 47.0 × 103 km2

in 2012. Also, similar to the increasing trend found on the total surface area of global reservoirs in the
previous study [28], the total water area for lakes and reservoirs in China also presented an increasing
trend, which was mainly contributed to the improved data coverage over time, especially with the
launch of Landsat 7 in 1999 [25] (More details could be found from ref 25).
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Figure 4. Time series of total water area from August to October, 1984–2015, for 829 lakes and reservoirs.
Raw water coverage and enhance water coverage are represented in grey and green, respectively.

3.2. Hypsometric Analysis and Validation of Estimated Elevation

Four different function forms were used to fit the A–E pairs derived based on SRTM-DEM data.
For each lake/reservoir, the relationship with the highest R2 among the four was selected as the
hypsometric function. Two large lakes, the Poyang lake (with an area of 3197.9 km2) in ELZ and
Nam Co lake (2004.0 km2) in TPLZ, were used here as examples to show the developed hypsometric
functions (Figure 5a,b). Both of the two hypsometric functions were fitted using segmented linear
relationships, and their fitting R2 were both larger than 0.990. Furthermore, nine other lakes and
reservoirs across China with different sizes, ranging from 11.1 km2 to 1575.4 km2, were also included to
demonstrate the good fitting of hypsometric relationships (R2 > 0.980) regardless of their diverse sizes
(Figures S1 and S2). For the 818 lakes and reservoirs in China of hypsometric analysis, 770 waterbodies
were found to hold segmented linear relationships, 47 in quadratic polynomial relationship, and 1 in
power law function. Histogram of the R2 for hypsometric functions demonstrated good fitting, with a
mean value of 0.989 and standard deviation of 0.025 (Figure 5c).
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Water storage change was estimated using the information on the changes of water area and
elevation. Dynamic water area values were extracted from GSW data, while elevation values were
estimated according to the derived hypsometric functions. Note that extrapolation of hypsometric
function was necessary when water surface is below the minimum water surface at the time of the
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SRTM-DEM observation, February 2000. For example, elevation values were calculated based on the
extrapolated hypsometric function for three years (1988, 1991, and 1994) among the 25 years of analysis
for Nam Co Lake. However, such extrapolation caused limited effect on our estimation, since 65% of
data points in our analysis were associated with elevation values larger than the minimum elevation of
the water when collecting SRTM-DEM data in February 2000, and the average extrapolation ratio for
all lakes was 34% (e.g. 12% for Nam Co and 0% for Poyang lake).

The validation of our results was focused on elevation. Water level data for a total of 30 lakes
across China from Hydroweb were used for validation. Nam Co and Poyang lakes were again used
to show the comparison of the temporal trends between estimated elevation and Hydroweb water
level (Figure 6a,b). Due to the varied base levels of elevation, a deviation of elevation of about 4.0 m
was observed for both lakes; however, the general trends were found to be similar, especially for Nam
Co Lake, the Root Mean Square Error of which was calculated as 0.6 m after removing an elevation
deviation of 4.0 m. Furthermore, the temporal trend for our estimated elevation values were compared
to the trend for Hydroweb water level data during August-October, which indicated generally good
consistency (slope = 1.05) and fitting (R2 = 0.72, Figure 6c).
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estimated elevation and Hydroweb water level for Nam Co lake, 1995–2015. (b) Comparison of the
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(c) Comparison of the changing rate of our estimated elevation with the trend from Hydroweb water
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3.3. Spatio-Temporal Patterns of Water Storage Change

Water storage change was estimated for 760 lakes and reservoirs with water area record of more
than 10 years after removing outliers. Among the five lake zones, TPLZ included the largest number
of lakes and reservoirs (311), followed by ELZ (233), NNWLZ (103), NELZ (80), and SWLZ (30).
The remaining three lakes/reservoirs were interacted with multiple lake zones (Table 2.).

Table 2. Count of lakes and reservoirs based on the trend types of water storage change for the different
lake zones and whole mainland China.

Lake Zone
Count of Lakes and Reservoirs

Mono-Tonically
Increasing

Mono-Tonically
Decreasing

Recently
Increasing

Recently
Decreasing

No Obvious
Trend Total

NELZ 15 21 30 6 8 80
NNWLZ 22 30 20 27 4 103

ELZ 13 62 72 65 21 233
SWLZ 2 11 12 5 0 30
TPLZ 224 11 20 52 4 311
others 1 0 2 0 0 3
China 277 135 156 155 37 760
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Based on the results of the M-K test and the linear/polynomial regressions on the temporal changes
of ∆V, we identified five trend types of ∆V: (1) Monotonically increasing (MI), (2) Monotonically
decreasing (MD), (3) Recently increasing (RI), (4) Recently decreasing (RD), and (5) No obvious trend
(NT). Among them, the first two types were both associated with significant results on M-K test (p < 0.1)
but with varied signs on the slope of linear regression (m > 0 for type MI and m < 0 for type MD).
M–K tests were not significant for the last three types. When the extreme point identified from the
polynomial regression was within the range of study period, we classified it as RI if the coefficient of
the 2nd degree term a > 0 and regarded it as RD if a < 0. When the extreme point was outside of the
study period, we classified it as NT. By trend type, lakes and reservoirs of MI type were mostly found
in TPLZ, which accounted for 80.9% of all water bodies of MI type, while the majority of lakes and
reservoirs of the other four types were all found in ELZ, 45.9% for MD, 46.2% for RI, 41.9% for RD, and
56.8% for NT.

By lake zone, the dominant trend type for TPLZ was found to be MI, with 224 of the 311 lakes and
reservoirs classified as MI (67.7 %). No obvious dominant trend type was found for the remaining four
lake zones. In NNWLZ, water storage was found to have decreased for most lakes and reservoirs,
with MD and RD accounting for 29.1% and 26.2%. In NELZ and SWLZ, the major trend types were RI
and MD. And in ELZ, the major three trend types, RI, RD, and MD, were identified for 30.9%, 27.9%,
and 26.6% of all lakes and reservoirs (Table 2 and Figure 7).

Remote Sens. 2019, 11, 1467 12 of 18 

RD if a < 0. When the extreme point was outside of the study period, we classified it as NT. By trend type, 
lakes and reservoirs of MI type were mostly found in TPLZ, which accounted for 80.9% of all water bodies 
of MI type, while the majority of lakes and reservoirs of the other four types were all found in ELZ, 45.9% 
for MD, 46.2% for RI, 41.9% for RD, and 56.8% for NT. 

By lake zone, the dominant trend type for TPLZ was found to be MI, with 224 of the 311 lakes and 
reservoirs classified as MI (67.7 %). No obvious dominant trend type was found for the remaining four lake 
zones. In NNWLZ, water storage was found to have decreased for most lakes and reservoirs, with MD and 
RD accounting for 29.1% and 26.2%. In NELZ and SWLZ, the major trend types were RI and MD. And in 
ELZ, the major three trend types, RI, RD, and MD, were identified for 30.9%, 27.9%, and 26.6% of all lakes 
and reservoirs (Table 2 and Figure 7).  

Figure 7. Spatial distribution of the five temporal trend types of water storage change (∆V) in lakes and 
reservoirs across China, 1984–2015 (N= 760). 

Based on the water storage change trend (Figure 8a), lakes and reservoirs with large decreasing rate 
(< -0.020 Gt/yr) were mainly distributed along the 400 mm precipitation line in northeastern China (40–
45°N), while those with a large increasing rate were found in TPLZ. Figure 8b showed overall water storage 
changes for the entire study period, with the positive values indicating an increase in water storage and 
the negative values indicating a decrease in water storage. The largest increase in water storage was found 
for Qinghai lake, which increased by 18.3 Gt from 1995 to 2015, followed by Selin Co (15.0 Gt, 1995–2015) 
and Nam Co (0.5 Gt, 1994–2015). These three lakes were the three largest salt lakes in China and were all 
located in TPLZ, where MI was identified as the dominant trend type. The lakes presenting the largest 

Figure 7. Spatial distribution of the five temporal trend types of water storage change (∆V) in lakes
and reservoirs across China, 1984–2015 (N = 760).

Based on the water storage change trend (Figure 8a), lakes and reservoirs with large decreasing
rate (<−0.020 Gt/yr) were mainly distributed along the 400 mm precipitation line in northeastern China
(40–45◦N), while those with a large increasing rate were found in TPLZ. Figure 8b showed overall water
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storage changes for the entire study period, with the positive values indicating an increase in water
storage and the negative values indicating a decrease in water storage. The largest increase in water
storage was found for Qinghai lake, which increased by 18.3 Gt from 1995 to 2015, followed by Selin Co
(15.0 Gt, 1995–2015) and Nam Co (0.5 Gt, 1994–2015). These three lakes were the three largest salt lakes
in China and were all located in TPLZ, where MI was identified as the dominant trend type. The lakes
presenting the largest declines on water storage included Poyang lake, the largest freshwater lake,
(−9.2 Gt), Bei Hulsan lake in TPLZ (−8.1 Gt), Hulun lake in NNWLZ (−7.8 Gt), Yamdrok lake (−6.3 Gt)
and Dongting, the 2nd largest freshwater lake (−6.3 Gt), during the period 1995–2015 (Figure 8b).
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In addition, aggregated water storage change for the whole of mainland China (Figure 9a) generally
presented three periods: (1) a minor increasing trend during 1985–2005, (2) a large decrease during
2005–2009, and (3) a fast increase during 2009–2015. The count of lakes and reservoirs (Figure 9b)
changed over time, with the water storage change of the new lakes/reservoirs got accounted when
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they first emerged and the disappearing ones presented zero water storage at the corresponding years.
During the first period of 1985–2005, water storage change increased slightly by 41.5 Gt at the rate of
1.7 Gt/yr (R2 = 0.44, p < 0.01), despite the total number of lakes and reservoirs showing a dramatic
increase from 126 to 747 (Figure 9b). Water storage change presented a significant decrease (−100 Gt)
at a large rate of 20.6 Gt/yr (R2 = 0.84, p < 0.05) from 2005 to 2009, and then increased by 136.3 Gt at
the rate of 21.3 Gt/yr (R2 = 0.87, p < 0.01) during the period of 2009–2015. Note that the number of
lakes and reservoirs during the last two periods were almost stable at around 730 (Figure 9b) and thus
caused limited effect on the observed water storage trend. The increasing water storage in recent years
(after 2009) was dominated by the lakes and reservoirs in TPLZ, which presented an obvious increase
at the rate of 5.8 Gt/yr (R2 = 0.86, p < 0.01). Conversely, NNWLZ showed a generally decreasing trend
in water storage from 1984 to 2015 (−3.6 Gt/yr, R2 = 0.47, p < 0.01), but with a significant decrease
(−156.7 Gt) during 1999-2011 and a large increase (117.8 Gt) afterwards. The overall decreasing water
storage in China was largely due to the NNWLZ. Water storage in ELZ also presented a small decrease
at the rate of 0.9 Gt/yr (R2 = 0.42, p < 0.01), while little variations were observed on water storage
changes for regions NELZ and SWLZ over time.
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4. Discussion

4.1. Methodological Improvement

4.1.1. Extension of the Spatio-Temporal Scale of ∆V Assessment

Our study provides an advanced and feasible approach to further extend the spatio-temporal scale
of water storage change assessment. We analyzed a total of 829 lakes and reservoirs (>10 km2) in China
based on the GSW dataset and calculated dynamic water storage change for 760 of them annually
from 1984 to 2015 at 30-m spatial resolution. Our assessment was based on GSW and SRTM-DEM
data, and we evaluated water storage change by developing geo-statistical models. Such a DEM-based
assessment was previously applied and approved with acceptable accuracy [11,13,20,21]; however,
adoption of the GEE platform here greatly increased the number of water bodies of analysis and
extended the temporal scale of assessment. Compared to previous studies [7,12,13,29], our assessment
is more comprehensive regarding the spatial and temporal scales. To the best of our knowledge,
this study conducted an assessment on the largest number of lakes and reservoirs (760) with the longest
time period (1984–2015) at high spatial (30 m) and temporal (annually) resolutions.

4.1.2. Consideration of the Spatio-Temporal Details

Despite focused on a national-scale assessment, our analysis emphasized the spatial and temporal
details. Spatially, we developed relationships between water area and elevation for each of the 829 lakes
and reservoirs and selected the one with the highest R2 as the hypsometric function. The large R2

values reflected the overall good fitting and demonstrated that the hypsometric functions can well
represent the bathymetry of lakes and reservoirs (Figure 5). Temporally, we delineated the maximum
shoreline boundaries for each lake and reservoir based on the GSW max-extent data, which guaranteed
the inclusion of water pixels within the reference boundaries as shorelines advance and retreat in
response to the dynamic hydroclimatic condition over time. The high resolution of 30 m ensures
high-precision extraction of dynamic water area and robust construction of hypsometric relationships.
Furthermore, we selected the month of analysis by comparing the contamination ratios for each month
(Figure 3) and corrected the original GSW water coverage data by combining GSW water occurrence
data with the raw GSW monthly water coverage data according to a recently developed approach [28].
These decreased the effect of the contaminated pixels due to clouds, snow, ice, and terrain shadows,
and thus improved the accuracy of our dynamic assessment (Figure 4).

4.2. Implications

Methodologically, leveraging the GEE platform and geo-statistical model, this study has
successfully extended the spatial and temporal scales of assessments on water storage change,
which provides strong technical support for establishing a systematic and quantitative method on
water storage change assessment. Our study demonstrates the effectiveness of combining Landsat
images, DEM and GEE on water resource assessment and contributes to the application of remote
sensing and geo-statistical methods in the field of hydrology. This approach can be further applied to
monitor surface water and to evaluate the effect of climate change.

Scientifically, the long-term trend on water storage change identified from our study has important
scientific significance, which are valuable for effective promotion of climate adaptation and water
resource management. The increasing ∆V trend in TPLZ (5.8 Gt/yr) was consistent with the previous
study on water storage for the endorheic Tibetan Plateau, which was found to have increased at an
average rate of 7.34 ± 0.62 Gt/yr during 2002-2015 [7]. Also, the significant ∆V decrease in NNWLZ also
agreed with disappearing lakes and drastic shrinkage of lake areas found for Mongolian Plateau [30].
Our national assessment could serve as the basis for identifying the mechanism and evaluating the
major driving forces of water storage change by region [7,31,32]. This result can also help tackle a series
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of fundamental scientific questions involving climate change, hydrologic modelling, water resource
sustainability, and ecosystem services.

Dataset-wise, our study has the potential to greatly enrich the current dataset on lakes and
reservoirs. With the improvement of remote sensing technology and the enrichment of remote
sensing products, a series of lake and reservoir dataset have been generated and updated [26,33–36],
including the Global Lakes and Wetlands Database (GLWD) [37], GLObal WAter BOdies database
(GLOWABO) [35], and Global Reservoir and Dam (GRanD) [34]. These global lake and reservoir datasets
provided basic attributes including geographical location, extent, area, perimeter, and temperature [36];
however, few of them included water storage estimation, let alone dynamic record over a long time
period. The only exception was the HydroLAKES dataset, which estimated the total water storage for
lakes with a surface area of 0.1 km2 or above but still lack the dynamic information [26]. The assessment
approach we adopted in this study could be widely applied, including the ungauged areas, to evaluate
water storage change and develop regional and even global dataset on dynamic water storage change
for lakes and reservoirs.

4.3. Limitations

Still, some limitations existed in our study. First, on using DEM to derive bathymetry, we developed
hypsometric relationship for individual lake and reservoir and assumed it constant over time and
steady above and below the water surface when collecting SRTM-DEM data, which could inevitably
lead to errors if the surrounding topography changes or the variation by elevation varies significantly.
Second, on the correction of water coverage, we adopted the same empirical weighting factor (0.17) as
a previous study [28] and assumed it worked well for our purpose considering its good performance
for global-scale coverage. Third, due to the lack of field measurements, our validation was confined to
30 lakes across China with dynamic data on water level. However, the comparison on the temporal
trend between our estimated elevation and Hydroweb water level data indicated good consistency
(Figure 6). Future work could improve this with more available data.

5. Conclusions

In this study, we extended the spatial and temporal scales of water storage change assessment and
revealed the spatial and temporal patterns of water storage change for China’s lakes and reservoirs
during the last three decades:

(1) The aggregated water storage in China went through a slight increase of 41.5 Gt (at the rate of
1.7 Gt/yr) during 1985–2005, a significant decrease of 100 Gt (20.6 Gt/yr) during 2005–2009, and then
increased by 136.3 Gt (21.3 Gt/yr) during 2009–2015 (Figure 9).

(2) The trend on water storage change varied across the five lake zones. Water storage in TPLZ
increased at the rate of 5.8 Gt/yr, with MI as the dominant trend type (Table 2), which contributed to
the overall increasing trend during 2009–2015. In contrast, NNWLZ experienced a significant decrease
(-156.7 Gt) during 1999–2011 and a large increase (117.8 Gt) afterwards, which contributed to the overall
decreasing water storage (2005–2009). Water storage in ELZ presented a small decrease (0.9 Gt/yr),
while few variations were observed on water storage changes for regions NELZ and SWLZ.

(3) For individual lake and reservoir (Figure 8), Qinghai lake was associated with the largest
increase in water storage (18.3 Gt) and Poyang lake presented the largest decline (−9.2 Gt).

Our developed assessment approach and our identified patterns of water storage changes in lakes
and reservoirs is of great significance for advancing the sustainable management of water resources
and predicting the impact of climate change, especially in the ungagged regions.
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