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Abstract: Net primary productivity (NPP) is a key vegetation parameter and ecological
indicator for tracking natural environmental change. High-quality Moderate Resolution Imaging
Spectroradiometer Net primary productivity (MODIS-NPP) products are critical for assuring the
scientific rigor of NPP analyses. However, obtaining high-quality MODIS-NPP products consistently
is challenged by factors such as cloud contamination, heavy aerosol pollution, and atmospheric
variability. This paper proposes a method combining the discrete wavelet transform (DWT) with an
extended Kalman filter (EKF) for generating high-quality MODIS-NPP data. In this method, the DWT
is used to remove noise in the original MODIS-NPP data, and the EKF is applied to the de-noised
images. The de-noised images are modeled as a triply modulated cosine function that predicts the
NPP data values when excessive cloudiness is present. This study was conducted in South China. By
comparing measured NPP data to original MODIS-NPP and NPP estimates derived from combining
the DWT and EKF, we found that the accuracy of the NPP estimates was significantly improved.
The MODIS-NPP estimates had a mean relative error (RE) of 13.96% and relative root mean square
error (rRMSE) of 15.67%, while the original MODIS-NPP had a mean RE of 23.58% and an rRMSE
of 24.98%. The method combining DWT and EKF provides a feasible approach for generating new,
high-quality NPP data in the absence of high-quality original MODIS-NPP data.

Keywords: high-quality MODIS-NPP; EKF; discrete wavelet transform

1. Introduction

Net primary productivity (NPP) is a key variable in the carbon exchange between the biosphere
and the atmosphere [1]. NPP is defined as the amount of above- and below-ground organic matter
accumulated in vegetation per unit of area during a certain time period (usually a year), representing
the productivity of an ecosystem [2]. NPP with 1 km spatial resolution and an 8 day interval has
been produced operationally with the Moderate Resolution Imaging Spectroradiometer Net Primary
Productivity product (MOD17) algorithm based on observations from the MODIS sensor (National
Aeronautics and Space Administration, America) [3]. These MODIS-NPP data provide consistent spatial
and temporal measures of crop yield, range forage, forest production, and other socio-economically
significant products related to vegetation growth [4,5]. Thus, accurate NPP estimation is critical.
The MOD17 algorithm was developed as a result of past achievements and lessons learned from
a general ecosystem model, Biome-BGC [5]. A detailed description of the algorithm can be found
elsewhere [6,7]. Although the MOD17 algorithm has undergone several improvements, MODIS-NPP
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satellite data still include various sources of noise, such as clouds, atmospheric variability, and
bidirectional reflectance distribution factors [8,9]. These distribution factors can affect the monitoring
of crop yield, range forage, and forests. Therefore, it is crucial to reduce noise in images and obtain
high-quality NPP data.

Several methods for reducing noise and constructing high-quality MODIS datasets have been
proposed, applied, and evaluated in recent years [10–16]. Fast Fourier transform (FFT) and wavelet
transform (WT) approaches are often used when evaluating MODIS time-series data [17–20]. Several
mathematical filters have been applied to reduce noise and obtain high-quality time-series of remote
sensing datasets [21,22]. Recently, data assimilation methods have also been used to reconstruct
remote-sensing data dynamically. Gu et al. [23] adopted an optimal interpolation method to generate
appropriate Moderate Resolution Imaging Spectroradiometer leaf area index (MODIS-LAI) data.
Gu et al. [24] developed a simplified data assimilation method based on Normalized Difference
Vegetation Index (NDVI) quality assurance (QA) datasets to reconstruct high-quality, spatially, and
temporally continuous MODIS NDVI products. However, these methods also suffer from drawbacks.
For example, they can only produce a high-quality output when the data contain little noise, so they
are challenged when used with very cloudy images.

The objective of this study was to generate high-quality MODIS-NPP data by combining discrete
wavelet transform (DWT) with an extended Kalman filter (EKF). Taking an area in South China as an
example, we used the DWT to reduce cloud and atmospheric variability contamination in MODIS-NPP
data. Then, the EKF was applied to the de-noised MODIS-NPP data to predict NPP data when the
original data was not valid.

2. Materials

The study area was located in South China, and covered approximately 65,536 km2 (256 km
× 256 km) within N22◦36’30”–N24◦44’0” and E112◦53’21.25"–E113◦22’13.28” (Figure 1). The area
has a humid, subtropical, monsoon climate characterized by warm winters, hot summers, little frost
and snow, and sufficient rain and sunshine, with an annual mean temperature of 22 ◦C. The annual
average precipitation is 1400–2000 mm. The main vegetation types in the area are subtropical evergreen
broadleaf forests, evergreen needleleaf forests, savannas, and common crops such as rice, peanut, and
rape (Figure 1).
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NPP measurements were taken from a total of 20 sample plots located in evergreen broadleaf and
evergreen needle leaf forests within the study area in October 2013 (Figure 1). Each of the sample plots
had an area of 1 km× 1 km, matching the spatial resolution of the MODIS products. Within each sample
plot, the tree species, height, and diameter at breast height (DBH), with breast height being 130 cm, and
age class (young, middle age, and mature) were measured. Estimates of above-ground tree biomass
(AGB) were predicted with empirical regression models using given the following general formula:

AGB = a×DBHb, (1)

where a and b are empirical coefficients that vary by tree species [25–28]. Estimates of tree biomass were
calculated using the ratio of AGB to the below-ground tree biomass [29]. Estimates of tree biomass in
the sample plots were obtained by adding the tree biomass values within each plot. The value of NPP
for each sample plot was estimated using the plot biomass estimate divided by the average age, in
years, of the trees within each plot [30]. The NPP within 1 km was an average of five sample NPPs.
The average age of trees for each plot was estimated by calculating a weighted mean of the average
age classes and the number of trees within each age class. According to previous studies [31], the six
representative sample plots, including Schima, Pinus massoniana, Acacia confusa, Camphora, Ficus, and
Eucalyptus, were selected to collect the measured NPP data, from 18 October 2013 to 27 December 2015,
as shown in Figure 1.

To evaluate the performance of the method proposed here, we used 8 day composites of MOD17
data with a spatial resolution of 1 km from 9 January 2013 to 18 December 2015. The original
MODIS-NPP data composites with heavy cloud cover do not provide useful data for predicting
high-quality MODIS-NPP data during periods of active phenological change. Thus, the time-distance
weight function was used to obtain these NPP data using NPP composites with no heavy clouds at
adjoining time periods. The time-distance weight function can be expressed as

NPPi= c×NPPk+d×NPP j, (2)

where NPPi is the ith day NPP, NPPk represents the original MODIS-NPP value with no heavy clouds
on the closest kth day preceding the ith day, and NPP j represents the original MODIS-NPP value
with no heavy clouds on the closest jth day after the ith day. The time distance weight, equal to
(i− k)/( j− k) is c, and d is the time distance weight, equal to ( j− i)/( j− k).

3. Methods

3.1. The Discrete Wavelet Transform for De-Noising MODIS-NPP Images

The purpose of de-noising original MODIS-NPP data is to reduce the noise in the DWT domain
while preserving the NPP characteristics. The N NPP values of a noisy image are represented as a
two-dimensional matrix: [

yi j
]
, i = 1 · · ·N, j = 1 · · ·M, (3)

where N and M denote the number of rows and columns in the MODIS-NPP image. The noisy version
of the image is modelled as [32]

yi j= xi j+ni j i = 1 · · ·N, j = 1 · · ·M, (4)

where
[
ni j

]
are iid as N

(
0, σ2

)
and xi j denotes the de-noised data value.

Wavelet de-noising involved three main steps: calculation of the DWT of the image, completion
of a nonlinear thresholding step, and completion of a linear inverse DWT to get the de-noised estimate.
One of the most important steps in the de-noising development process was finding the optimal
threshold. Encouraged by results in recent studies [33–37], we tested six thresholding functions
(Figure 2) to de-noise the original MODIS-NPP images in this study.
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threshold (HT); (c) half-soft threshold (HST); (d) improved semi-soft and half-soft threshold (ISHST);
(e) improved soft and hard threshold (ISHT); and (f) improved threshold based on the ST and the
ISHT (ISIT).

Taking a MODIS-NPP image from 9 January 2013 as an example, the signal-to-noise ratios (SNRs)
and root mean square difference (RMSDs) from de-noising the image using the six thresholds varied
from 9.02 to 17.20 Mg ha−1 a−1 and from 0.38 to 0.99, respectively (Table 1). The highest SNR and
lowest RMSE were obtained using the improved soft and hard threshold (ISHT) threshold function,
suggesting that this was the most suitable thresholding function for de-noising the images. Thus,
the ISHT threshold function was selected as the optimal threshold in this study.

Table 1. Signal-to-noise ratios (SNRs) and root mean square difference (RMSDs) for the different
threshold functions.

Threshold function SNR RMSD

ST 12.11 0.69
HT 9.02 0.99

HST 10.86 0.82
ISHST 9.95 0.89
ISHT 17.20 0.38
ISIT 11.38 0.75

3.2. The Extended Kalman Filter for Predicting High-Quality MODIS-NPP Data

The formula to predict MODIS-NPP time series in a given pixel is written as [38]

yk= µk+αk cos(ωk+Φk)+vk (5)

where the subindex k indicates the time step, yk represents the observed value of the predicted
MODIS-NPP time series, vk is the noise sample, ωk denotes the angular frequency, αk is the amplitude,
µk is the mean, and Φk is the phase. The angular frequency can be calculated as ωk= 2π f , where f is
determined by the annual vegetation growth cycle. Because MODIS-NPP images were calculated based
on the MODIS combined Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation
(FPAR) products (MOD15A2 products), f was set at 8/365. The values of µk, αk and Φk are functions of
time, and must be estimated given yk for k∈1,...,N. The estimation of these parameters is nontrivial and
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requires a non-linear estimator. Thus, the EKF was driven to estimate the three parameters for every
increment of k [38].

The EKF is considered the standard framework to solve estimation problems in navigation [39].
The EKF prediction formula can be obtained by linearizing the process model. The observation model
at time k + 1 is given by [39]

yk+1= H·xk+1+vk, (6)

where yk+1 is the estimated NPP and xk+1 denotes the a priori estimate, defined as xk+1 =

[µk+1 αk+1 Φk+1]
T. H is an observation operator used to relate model state variables to observations

(it does not need be linear), and vk is the zero-mean Gaussian observation noise vk∼ N(O, R). The
discrete-time prediction EKF algorithm has two main stages, namely a prediction and an update
(filtering) step as follows [39]:

Prediction equation
The predicted state estimate is defined as:

xk+1 = F·x̂k + wk. (7)

The predicted covariance estimate is defined as

Pk+1 = ∇Fx·P̂k∇FT
x + Qk, (8)

where F denotes the state transition matrix, Pk+1 is the a priori estimate error covariance matrix,
x̂k represents the a posteriori estimate, P̂k is the a posteriori error covariance matrix, wk is the zero-mean
Gaussian process noise wk∼ N(O, Qk), ∇Fx is the Jacobian of function F with respect to x evaluated at
x̂k, and Qk is the covariance matrix of the process noises.

Update equation
The updated state estimate is defined as

x̂k+1 = xk + Kg(k)(yk −Hkxk). (9)

The near-optimal Kalman gain is defined as

Kg(k)= Pk∇HT
k

[
∇Hk Pk∇HT

k +Rk
]−1

. (10)

The updated covariance estimate is defined as

P̂k+1 =
[
I −Kg(k)∇Hk

]
Pk, (11)

where Kg(k) is the Kalman gain matrix at instant k, ∇Hk is the Jacobian of function H evaluated at xk,
Rk is the covariance matrix of the measurement noises, and I is the identity matrix.

The values of µk, αk, and Φk are functions of time and must be estimated given yk for k∈1.
This study used 137 time-series images so that M = 137. The a priori initial state parameters (µ1 α1, Φ1)
in state vector (x1) were set as

µ1 =
∑N

i=1

NPPi
N

, (12)

a1 =
NPPmax−NPPmin

2
, (13)

where N is the number of remote-sensing pixels. NPPmax and NPPmin are the maximum and minimum
NPP values in the studied area, respectively. An a priori initial estimate Φ1= 0

◦

was chosen assuming
that the start date of 18 January 2013 represented a stage after vegetation was exchanged. Regarding
parameters R, P1, and Q1, their values were first taken from the literature [39] and then tested and
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adjusted using the EKF model and the layout of NPP samples. Thus, they were finally set as R = 0.01,
P1= diag[0.015, 0.015, 0.02963], Q1= diag[0.01,0.001,0.03441], and x1 = [4.5612,2.98425, 0].

3.3. Evaluation of the NPP Accuracy

The accuracy of the original MODIS-NPP data, de-noised MODIS-NPP data, and predicted
MODIS-NPP data was evaluated by comparing the NPP in the 20 sample plots (Section 2) with the
NPP in the pixels where the plots were located. The relative error (RE) was calculated as follows for
each of the 20 plots in the dates when the ground measurements were performed:

RE = 100×

∣∣∣ŷ− y
∣∣∣

y
, (14)

where ŷ is the MODIS-NPP and y is the plot NPP. For the six representative plots, the RE was also
analyzed across time. Then, the relative root mean square error (rRMSE) for the 20 plots as a whole
was also calculated:

rRMSE = 100×

√∑n
i=1(ŷi−yi)

2

n

y
, (15)

where ŷi is the MODIS-NPP, yi is the plot NPP, y is mean value of the plot NPP and i indicates the plot.
The NPP products elaborated in this study (de-noised MODIS-NPP data and predicted

MODIS-NPP data) were also compared to the original MODIS-NPP data by means of the root
mean square difference (RMSD) and, for the specific case of the de-noised MODIS-NPP data, through
the signal-to-noise ratio (SNR):

RMSD =

√∑n
i=1(ŷi − yi)

2

n
, (16)

where ŷi is the NPP product elaborated in this study, and yi is the original MODIS-NPP.

SNR = 10 ∗ log10


∑M

i=1
∑N

j=1 g(i, j)2∑M
i=1

∑N
j=1[g(i, j)− f (i, j)]2

, (17)

where, g(i, j) represents original MODIS-NPP, f (i, j) is de-noised MODIS-NPP.

4. Results

4.1. Image De-Noising

In this study, we used the DWT algorithm to reduce the noise in the MODIS-NPP images and
improve the data quality of MODIS imagery. The wavelet decomposition of an image by DWT is
shown in Figure 3.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 13 

 

NPP in the pixels where the plots were located. The relative error (RE) was calculated as follows for 
each of the 20 plots in the dates when the ground measurements were performed: 

RE=100×
หyො-yห

y , (14) 

where yො is the MODIS-NPP and y is the plot NPP. For the six representative plots, the RE was also 
analyzed across time. Then, the relative root mean square error (rRMSE) for the 20 plots as a whole 
was also calculated: 

rRMSE=100×

ඨ∑ ൫yොi-yi൯2n
i=1

n
yത  (15) 

where yොi is the MODIS-NPP, yi is the plot NPP, yത is mean value of the plot NPP and i indicates the 

plot. 
The NPP products elaborated in this study (de-noised MODIS-NPP data and predicted MODIS-

NPP data) were also compared to the original MODIS-NPP data by means of the root mean square 
difference (RMSD) and, for the specific case of the de-noised MODIS-NPP data, through the signal-
to-noise ratio (SNR): 

RMSD=ඨ∑ ൫yොi-yi൯2n
i=1

n , (16) 

where yොi is the NPP product elaborated in this study, and yi is the original MODIS-NPP. 

SNR=10*log10 ቎ ∑ ∑ g(i,j)2N
j=1

M
i=1∑ ∑ ൣg൫i,j൯-f(i,j)൧2N
j=1

M
i=1

቏ , (17) 

where, g(i,j) represents original MODIS-NPP, f(i,j) is de-noised MODIS-NPP. 

4. Results 

4.1. Image De-Noising  

In this study, we used the DWT algorithm to reduce the noise in the MODIS-NPP images and 
improve the data quality of MODIS imagery. The wavelet decomposition of an image by DWT is 
shown in Figure 3.  

 
Figure 3. Wavelet decomposition of the MODIS image from 1 January 2014: (a) one-scale wavelet 
decomposition, (b) two-scale wavelet decomposition, and (c) three-scale wavelet decomposition. 

The wavelet decomposition of a MODIS image using DWT (Figure 3) was completed as follows 
[31]: At the first level of decomposition, the image was divided into four sub-bands, 𝐻𝐻௞, 𝐻𝐿௞, 𝐿𝐻௞, 
and 𝐿𝐿௞, 𝑘 = 1 ∙∙∙ 𝐽 , where  𝑘 is the scale, with 𝐽  being the largest (or coarsest) scale in the 
decomposition. The 𝐻𝐻௞ sub-band represented the diagonal structures of the image, the 𝐻𝐿௞ sub-

Figure 3. Wavelet decomposition of the MODIS image from 1 January 2014: (a) one-scale wavelet
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The wavelet decomposition of a MODIS image using DWT (Figure 3) was completed as follows [31]:
At the first level of decomposition, the image was divided into four sub-bands, HHk, HLk, LHk, and
LLk,k = 1 · · · J, where k is the scale, with J being the largest (or coarsest) scale in the decomposition.
The HHk sub-band represented the diagonal structures of the image, the HLk sub-band represented the
horizontal features, and the LHk sub-band gave the vertical details. The LLk sub-band was the coarser
resolution residual consisting of lower frequency components and was further split into higher levels
of decomposition. According to the ISHT threshold function, the DWT was driven to acquire de-noised
MODIS-NPP images. For visual comparison, we selected two MODIS-NPP images from 1 January
2014 and 27 December 2015 (Figure 4) with different amounts of noise. The 27 December 2015 image
was heavily contaminated by clouds, while the 1 January 2014 image only contained a little noise.
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The white speckles in the original image from MOD17 on 1 January 2014 were notably suppressed
in the de-noised results, suggesting that the DWT could reduce noise effectively. While comparing the
original image with heavy cloud noise from 27 December 2015, the results of removing noise from the
original image had little change, which indicated the de-noised (post DWT) results could not remove
heavy clouds. To quantify the de-noising performance, RMSD and SNR were calculated between
original the MODIS-NPP images and the de-noised ones. For 1 January 2014 and 27 December 2015,
the respective measures were as follows: RMSD 0.36 Mg ha−1 a−1 and SNR 17.42, and RMSD 0 Mg ha−1

a−1 and SNR∞. Thus, the ISHT thresholding method achieved good speckle suppression along with
improving the 1 January 2014 NPP image quality, while the values of SNR and RMSD were ineffective
for MODIS-NPP images from 27 December 2015 with heavy cloud contamination.

4.2. Extended Kalman Filter Prediction

De-noised MODIS-NPP data were provided as input to the EKF model, and the resulting NPP data
for the representative sample plots in the study area were plotted along with the original MODIS-NPP
data, de-noised MODIS-NPP data, and measured NPP data (Figure 5).

Figure 5a shows that the predicted data (in blue) were close to the measured data (in green), while
the original data (in black) were generally much lower than the others. Figure 5b shows that REs
between predicted MODIS-NPP data and measured NPP data were smaller than REs between the
original MODIS-NPP data and measured NPP data and between the de-noised MODIS-NPP data and
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measured NPP data. These lower REs between the predicted MODIS-NPP data and measured NPP
data suggest that the proposed method has a greater potential to estimate NPP data with high accuracy
compared to the results of DWT alone.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 13 
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Figure 5. (a) Time series of the original MODIS-NPP data from MOD17, de-noised MODIS-NPP data,
predicted MODIS-NPP data, and the measured NPP data from 2013 to 2015; (b) RE between the original
MODIS-NPP data and the measured NPP data, RE between the de-noised MODIS-NPP data and the
measured NPP data, and RE between the predicted MODIS-NPP data and measured NPP data based
on the six representative sample plots.

Comparing the predicted MODIS-NPP data on the 361st day in 2015 with the de-noised
MODIS-NPP data obtained from the DWT algorithm with the original MODIS-NPP data for the same
date, the predicted NPP estimates showed better quality than the de-noised MODIS-NPP (Figure 6),
indicating that the data quality of the de-noised data alone was too low in the presence of heavy clouds
and heavy aerosols.
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The results of comparing the different NPP products with the NPP in the 20 sample plots are
shown in Table 2. The average NPP of the sample plots was 4.19 Mg ha−1 a−1. The average NPP was
3.59 Mg ha−1 a−1 for the predicted NPP, 3.45 Mg ha−1 a−1 for the de-noised NPP, and 3.19 Mg ha−1

a−1 for the original MODIS-NPP data. The RE relative to plot NPP estimates varied from 2.84% to
28.02% for the predicted MODIS-NPP data and from 6.06% to 37.23% for the original MODIS-NPP data.
The rRMSE was 15.67% for the predicted MODIS-NPP data, 19.5% for the de-noised MODIS-NPP data,
and 24.98% for the original MODIS-NPP data, indicating that the method combining the DWT and
the EKF notably increases the estimation accuracy of NPP in the study area. The increase in accuracy
could be attributed to de-noised data from the DWT and effective prediction of the EKF. The results
indicate that the predicted MODIS-NPP using the proposed method is more precise than the original
MODIS-NPP and the de-noised MODIS-NPP when monitoring above- and below-ground organic
accumulated vegetation matter.

Table 2. Comparison of NPP data between the predicted MODIS-NPP, de-noised MODIS-NPP, original
MODIS-NPP, and measured NPP based on field observations of sample plots (NPP units: Mg ha−1 a−1).

Plot# Species Measured
NPP

Original
NPP

RE
(%)

De-Noised
NPP RE (%) Predicted

NPP RE (%)

1 Pinus massoniana 3.72 2.78 25.27 2.89 22.31 3.49 6.18
2 Bamboo 3.65 3.34 8.60 3.64 0.39 3.39 7.23
3 Eucalyptus 3.92 3.10 20.92 3.24 17.35 3.33 15.05
4 Acacia confusa 3.90 2.80 28.21 3.30 15.39 3.15 19.23
5 Ficus 3.88 2.90 25.31 3.31 14.75 3.27 15.78
6 Pinus massoniana 4.17 3.20 23.26 3.36 19.42 3.39 18.71
7 Mucuna Birdwoodiana 4.62 2.90 32.90 3.2 26.41 4.26 7.79
8 Mulberry 4.58 3.40 25.69 3.40 25.69 3.66 20.01
9 Pinus massoniana 4.64 3.37 27.37 3.45 25.65 3.34 28.02

10 Schima 4.07 3.12 28.10 3.57 12.39 3.18 21.96
11 Cheery blossom 3.70 2.92 21.13 3.68 0.60 3.40 8.16
12 Ficus 4.01 3.30 17.80 3.76 6.35 3.37 16.06
13 Camphor 4.70 3.25 30.85 3.18 32.34 3.76 20.00
14 Pinus massoniana 3.96 3.72 6.06 3.24 18.18 3.57 9.85
15 Camphor 4.04 3.30 18.29 3.30 18.29 3.35 17.05
16 Lychee 4.05 3.05 24.71 3.34 17.55 3.87 4.46
17 Camphor 4.50 3.17 29.56 3.50 22.22 3.85 14.44
18 Delonix regia 4.23 3.20 24.35 3.72 12.06 4.11 2.84
19 Tea tree 4.44 3.30 25.60 3.74 15.68 3.95 10.95
20 Alsophila spinulosa 4.96 3.80 23.38 4.02 18.94 4.19 15.52

Mean 4.19 3.19 23.58 3.45 17.10 3.59 13.96
SD 0.38 0.28 0.26 0.34

rRMSE (%) 24.98 19.50 15.67

5. Discussion

5.1. Comparison with Other Similar Studies

Previous research approaches for removing noise from images to construct high-quality MODIS
NDVI and LAI time-series datasets [10,13,14,17,23,38] while providing valuable information have
some limitations.

Firstly, these methods do not perform well under conditions of heavy cloud contamination, heavy
aerosols, and atmospheric variability, among other factors. Figure 6 shows that the vegetation in the
west of study area cannot be found due to heavy cloudiness, while the NPP estimates using the novel
method presented in this study can be displayed clearly. To quantify the de-noising performance,
we computed the REs between the original and predicted data, and the REs between the de-noised and
measured data (Figure 5b). The results showed that big REs occurred during the rainy season (from
April to September), which further indicates that de-noised results cannot improve the NPP quality
under conditions of heavy cloud contamination, heavy aerosols, and atmospheric variability.
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Secondly, these methods aim at constructing high-quality MODIS time-series datasets for existing
MODIS data and do not predict the data for the next time period. The method proposed in this paper
leverages an effective wavelet de-noising function and a robust EKF predicting technique, where the
wavelet transform is used to remove noise in MODIS-NPP images, and the EKF is applied to deal with
de-noised images modeled as a triply modulated cosine function to predict MODIS-NPP data for the
next time period. Figure 7 shows that the high-quality MODIS-NPP data (the last blue point) was
predicted using the novel method on the 361th day in 2015, which implies that the novel method can
be used to predict the next eight-day NPP data in the future.
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Thus, this novel method can also produce high-quality MODIS data in cases of heavy cloud
contamination, heavy aerosol, and atmospheric variability, and can also predict MODIS-NPP values
in a time series. Compared to original and de-noised NPP, the predicted values in the study area
increased the estimation accuracy of forest NPP, reducing the rRMSE by 9.31% and 3.83%, respectively,
which supports the novel method.

5.2. Prospects for Future Studies

In our research, a large amount of NPP data was needed to meet the high accuracy prediction
requirements of the EKF algorithm. Some original MODIS-NPP data were invalid due to rain, heavy
clouds, and heavy aerosol. Thus, we used the time-distance weighting approach to generate baseline
NPP data before predicting the NPP data. However, this approach is not suitable for generating
MODIS-NPP data during periods of rapid vegetation change, which may limit the generation of
high-precision NPP products. Thus, the approach presented in this study should be used with
caution. In addition, future work should include additional test sites to confirm the robustness of our
proposed method.

6. Conclusions

In this study, we proposed a novel method combining the DWT with the EKF to accurately predict
MODIS-NPP data when the original product is heavily contaminated by factors such as clouds or
aerosols. For this purpose, the DWT algorithm of the wavelet transform successfully suppressed
white speckles in the original MODIS-NPP data. The mean amplitude phase derived from EKF
appeared to predict highly accurate NPP estimates based on the de-noised results. The results showed
that compared to the original MODIS-NPP data, the method significantly decreased the mean RE
and rRMSE values of the predicted MODIS-NPP data of the study area by about 9.62% and 9.31%,
respectively, which indicates that this method has great potential for generating new high-quality
MODIS-NPP data under conditions of invalid original MODIS-NPP values.

Even though the proposed method improved the accuracy effectively, some limitations still exist.
One deficiency is that this method is not suitable for periods of rapid vegetation change, affecting the
prediction accuracy of this period, and therefore the approach should be applied with caution.
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