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Abstract: Maintaining the high visual recognizability of traffic signs for traffic safety is a key matter
for road network management. Mobile Laser Scanning (MLS) systems provide efficient way of
3D measurement over large-scale traffic environment. This paper presents a quantitative visual
recognizability evaluation method for traffic signs in large-scale traffic environment based on traffic
recognition theory and MLS 3D point clouds. We first propose the Visibility Evaluation Model (VEM)
to quantitatively describe the visibility of traffic sign from any given viewpoint, then we proposed
the concept of visual recognizability field and Traffic Sign Visual Recognizability Evaluation Model
(TSVREM) to measure the visual recognizability of a traffic sign. Finally, we present an automatic
TSVREM calculation algorithm for MLS 3D point clouds. Experimental results on real MLS 3D point
clouds show that the proposed method is feasible and efficient.

Keywords: traffic sign; visibility; recognizability; mobile laser scanner; point clouds

1. Introduction

Traffic signs are an important kind of transportation facility that present traffic information,
such as speed and driver behavior restrictions, road changes ahead, and so forth. A driver’s timely
visual recognition of traffic signs is critical to ensure safe driving and to avoid accidents [1–3]. However,
traffic signs are often partially contaminated due to damage, occlusion, or installed in an unreasonable
position, thereby decreasing visual recognition. Figure 1 illustrates some examples of traffic signs
with low visibility caused by object/plants occlusion. Maintenance and optimization of the existing
infrastructure is a major work for road network management. The most difficult aspect for an engineer
is knowing which traffic signs should be repaired efficiently and when. How to accurately and
efficiently evaluate the visibility and recognizability of traffic signs in a large-scale traffic environment
is a challenging problem.

Visual recognizability of traffic signs is affected by: (1) traffic sign geometric factors, such as
placement of the sign, mounting height, tilt, aiming direction, depression angle, shape damage,
occlusion, road curvature, fluctuating road surfaces, and so forth; (2) vehicle movement factors, such
as vehicle speed, Geometric Field Of View (GFOV) [4], line of sight, and so forth; and (3) other factors,
such as weather conditions [5], lighting [6], the age of the drivers and their cognitive burden of
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traffic density [7], and so forth. This research focuses on geometric and vehicle movement factors of
traffic signs.

Existing research on the evaluation of traffic sign visibility and recognizability is based mainly
on simulator and image methods and naturalistic driving experimentation. Simulator based
methods [8–10] cannot evaluate the visibility and recognizability of real roads. Image based
methods [11–13] are limited by fixed viewpoints and cannot evaluate the visibility and recognizability
over the whole road surface. Naturalistic driving experimentation based methods [14,15] cannot
obtain recognizability at a given position on a road surface. So far, there is no solution available to
evaluate the recognizability distribution of traffic signs in a real traffic environment.

Figure 1. Examples of traffic signs with low visual recognizability.

Mobile Laser Scanning (MLS) systems scan large-scale road environments at normal driving
speeds and collect highly accurate 3D point clouds over the area of driving. All the traffic sign
geometric factors can be measured in the 3D point cloud and the vehicle movement factors can be
calculated in the same coordination. So, the MLS 3D point clouds are an ideal source of data for
evaluating the visibility and recognizability of traffic signs.
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The recognition of traffic signs depends on the visual judgment of humans. The visibility
and recognizability results of simulator based methods are obtained by the recruited volunteers.
The visibility and recognizability results of image based methods are obtained by camera view.
The underlying rule is that the scene people see is consistent with what the camera sees (in fact, they
may not be the same). Like simulator based methods and image based methods, our model is proposed
also based on traffic human visual recognition theory. We seek to solve the problem of evaluating
recognizability from the perspective of retinal imaging area, imaging location and occlusion.

We present a quantitative Traffic Sign Visual Recognizability Evaluation Model (TSVREM),
and propose an automatic TSVREM calculation approach based on MLS 3D point clouds. To the
best of our knowledge, this is the first solution for accurate traffic sign visual recognizability evaluation
over a large-scale traffic environment.

This paper is organized as follows: Section 2 reviews the previous work; Section 3 defines the
TSVREM model; Section 4 gives the automatic calculation of TSVREM on MLS point clouds; Section 5
describes the experiments; and Section 6 concludes the paper.

2. Related Work

2.1. Visibility and Recognizability Evaluation

Simulation-based methods. Sun et al. [16] recruited volunteers for visual cognition time in a
driving simulator. The UTDrive platform used in Reference [17] investigates driver behavior associated
with visual and cognitive distractions. Lyu et al. [8] evaluated traffic safety by analyzing the driving
behavior and performance of recruited drivers under a cognitive workload. Motamedi et al. [9]
used BIM enabled Virtual Reality (VR) environments to analyze traffic sign visibility. Some
researchers [10,18] used eye tracker equipment to determine the visual cognition of traffic signs
under simulated driving conditions.

Simulation-based methods are used to gather statistics regarding the visual or cognitive information
obtained by the recruited volunteers using a simulator platform. The methods pay attention to only
the time required for the recognition of traffic signs and whether or not they can be recognized.
The methods do not focus on the quantitative value of recognizability. Most important is that these
methods cannot obtain visual or cognitive information on real roads. Even if the methods include
wearable devices that can be used on a real road, because recognizability must be measured once at
each location, it is very difficult to measure the recognizability of every location on a road surface.
Therefore, these methods are not suitable for use in large-scale traffic environments.

Image-based methods. As part of nuisance-free driving safety support systems, Doman et al. [19]
proposed a visibility estimation method for traffic signs by using image information. To compute
visibility of a traffic sign, they used different contrast ratios and different numbers of pixels
in the occluded area of an image. They improved their method by considering temporal
environmental changes [20] and integrated both local and global features in a driving environment [12].
Belaroussi et al. [5] investigated the effects of reduced visibility due to fog in traffic sign detection.

Image-based methods, limited by viewpoint position, cannot continuously evaluate visibility
or recognizability over an entire road surface. Also, image-based methods are limited by lighting
conditions and do not consider the impact of traffic sign placement, road curvature, shape damage and
so forth.

Naturalistic driving experimentation-based methods. Naturalistic driving experimentation
allows us to recognize driving modes by observing a driver’s behavior behind the wheel in natural
conditions during long periods of observation. For a deeper understanding of driving behavior,
José et al. [14,15] proposed methods for mapping naturalistic driving data with Geographic Information
Systems (GIS). Because human cognition takes time, in naturalistic driving experimentation, a driver
must stop to obtain recognizability and occlusion results from a given viewpoint. This shortcoming
leads to the inability of this method to obtain the recognizability distribution of traffic signs.
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Point clouds-based methods. Katz et al. [21] proposed a Hidden Point Removal (HPR) operator
to obtain visible points from a given viewpoint, applied it to improving the visual comprehension of
point sets [22] and studied the transformation function of the HPR operator [23]. Huang et al. [24],
based on the HPR operator, studied traffic sign occlusion detection from a point cloud. They considered
occluded distribution and an occlusion gradient.

However, other important factors in the visibility and recognizability of traffic signs, including
proportion of the occluded area, influence of vehicle speed, road curvature, number of lanes, and so
forth, have not been considered. Besides, the HPR operator cannot detect all the occluding points
when the occluding point clouds are composed of multiple objects.

2.2. Traffic Sign Detection and Classification

Most existing traffic sign detection and classification methods are based on color and shape
information within images or videos. These methods use color information to segment the sign
candidate area, and then, to extract the traffic sign, use shape or edge features, including shape
matching [25,26], Hough transform [27], HOG feature and SVM classification [28], and deep
learning [29,30], and so forth. Lighting conditions and viewpoint position heavily effect the detection
performance of image or video based methods.

With the rapid development of Light Detection And Ranging (LiDAR) technology, especially the
application of MLS systems that can collect accurate and reliable 3D point clouds, it is now feasible to
survey an urban or roadway environment. Wen et al. [31] stated the attributes of the MLS system and
its data acquisition process. To extract urban objects from MLS point clouds, Yang et al. [32] proposed
a method based on supervoxels and semantic knowledge. Lehtomäki et al. [33] took spin images
and LDHs into account and used a machine learning method to recognize objects. Some researchers
segment the objects according to their topology in point clouds first and then classify them by the
constructed shape related features [34–37]. Photogrammetry allows, not only the obtaining of geometric
data, but also the recovery of some data related to texture and semantics [38]. Other researchers also
proposed methods to combine 3D point clouds and 2D images [39–42]. Those methods use the
geometric attribute to detect traffic signs in point clouds first and then recognize them or analysis their
retroreflectivity condition on their corresponding 2D images.

2.3. Road Marking Detection and Classification

Although we can obtain the position of the viewpoint by the trajectory of the MLS system,
the lane change of the vehicle and the unknown road width will make the position of the viewpoint we
calculated unreasonable, such as viewpoints not on the road, the horizontal viewpoints in a direction
perpendicular to the trajectory line on an inclined road surface, so we obtain the viewpoints based
on the road marking detection and classification. This has another advantage that it makes us can
calculate the visibility and recognizability of the traffic sign in each lane separately.

Most image-based road marking detections use a deep learning method [43,44]. Because we need
the 3D spatial information of the viewpoints on the roads, 2D image based road marking detection is
not suitable in this paper.

Point clouds-based detection has increased in recent years. Guan et al. [45] extract road surface by
curbs-based methods and generate a geo-referenced intensity image of the surface using an extended
inverse-distance-weighted (IDW) approach first and then segment the geo-referenced intensity image
into road-marking candidates with multiple thresholds. They further proposed 2D multi-scale
tensor voting (MSTV) framework and clustering analysis in Reference [46] based on Reference [45].
Soilán et al. [47] also project the point clouds into intensity image first and then extract and classify
the most common road markings, namely pedestrian crossings and arrows. The disadvantage of
using geo-referenced intensity image as a medium to extract road marking is that it may lead to
incomplete and incorrect in the process of feature extraction. In order to avoid this disadvantage,
Yu et al. [48] extract road markings directly from the 3D point clouds via multi-segment thresholding
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and Otsu binarization, classify them by Deep Boltzmann Machines (DBM) into seven classes, including
boundary line, center line, arrows, pedestrian warning, pedestrian crossings, stop lines and others.

In this paper, when the boundary lines and center lines of road marking can be detected [48],
we generate viewpoints in each lane by the extracted boundary lines and center lines, otherwise,
we generate viewpoints on the road by trajectory.

3. Definition of Models

Our model, as well as other models [8–10], also relies on human vision. The advantage of our
method is it calculates, from the 3D point cloud, an image area of the traffic sign on the retina. Thus,
we obtain a continuous, quantitative representation of the visibility and recognizability of traffic signs
within Sight Distance (SD) over a real road. In the context of traffic signs design, SD is defined as the
length of roadway ahead visible to the driver [49].

In the following section, in addition to defining the models, we also introduce the concepts of
visibility and recognizability fields, which are similar to magnetic fields. To more easily understand
the meaning of a symbol, except for natural exponential function, the superscript of the symbol is an
abbreviation of its meaning. The symbols used to define the model are listed in nomenclature.

3.1. Vem Model

We label a viewpoint at position (w, l) as p(w, l). w is the width from viewpoint to roadside in
vertical road direction. l is the length from viewpoint to traffic sign along road direction. The visibility
of a traffic sign from a viewpoint p(w, l), except for the occlusion factor, we express all the other factors
included in the geometric factors (mentioned in Section 1), as Egeo

w,l . Geometric factor Egeo
w,l , occlusion

factor Eocc
w,l and sight line deviation factor Esight

w,l are used to construct the VEM model. The viewpoint

visibility of a traffic sign, Evisibility
w,l , is defined as follows:

Evisibility
w,l = Egeo

w,l ∗ Eocc
w,l ∗ Esight

w,l (1)

The correlation between the geometric factors and sight line deviation is as follows: The evaluation
of geometric factors depends on the viewpoint and the geometric attributes of traffic sign itself.
The geometric attributes of traffic sign include orientation, height, position and so forth. The evaluation
of geometric factors is independent of the sight line of driver. Sight line deviation factor reflects the
different imaging positions on the retina that may lead to different visibilities and recognizabilities.
The angle between sight line and line from viewpoint to the center of a traffic sign affects the sight line
deviation factor. When the viewpoint and the geometric attributes of traffic sign is determined, as the
angle of the sight line deviation increases, the visibility and recognizability of the traffic sign decrease.

How to evaluate the geometric, occlusion and sight line deviation factors is described below.

• Geometric factor evaluation

We use the principle of retinal imaging to consider the impact of the geometric factor.
The evaluation of the geometric factor, Egeo

w,l , is given as follows:

Egeo
w,l = Aview

w,l /Aunit
type (2)

where Aview
w,l is the imaging area of retinal of a sign from viewpoint p(w, l); Aunit

type is the retinal
imaging area of a standard traffic sign viewed from the “unit viewpoint”.

The reason for introducing Aunit
type is to make the value of Egeo

w,l fall in intervals [0, 1]. The “unit
viewpoint” is a viewpoint that has a unit distance dunit to the panel and in the normal line passing
through the center of the panel. The dunit are illustrated in Figure 2a. To ensure Egeo

w,l ≤ 1, we set
the unit distance, dunit, at less than 3 m. It is unnecessary to compute the visibility of a traffic
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sign when the observation distance is less than three meters. Due to the vehicle almost passing
through the traffic sign, it is highly impractical (almost impossible) for the driver to turn around
90◦ to observe the traffic sign.

Egeo
w,l is inversely proportional to the following: (1) the angle between the line connecting the

viewpoint to the center of the traffic sign panel and the normal passing through the center
(orientation factor); (2) observation distance; and (3) the damage degree of the traffic sign panel.

viewpoint C
sign

d
unit

(a) Unit viewpoint

View point

csign

(b) Sight line deviation angle

Figure 2. Illustration of the unit viewpoint and the angle of sight line deviation.

• Occlusion factor evaluation

As K. Doman [12] did, we consider the ratio of occlusion into the model. The occlusion factor
Eocc

w,l is given as follows:

Eocc
w,l = e−λ∗Aocc

w,l /Aview
w,l (3)

where Aocc
w,l is the occluded imaging area of retinal of a sign from viewpoint p(w, l); λ is the

penalization weight.

when the ratio of occlusion, Aocc
w,l/Aview

w,l , is constant, Eocc
w,l decreases as λ increases; when λ is

constant, Eocc
w,l decreases as the ratio of occlusion increases. To ensure Eocc

w,l is nearly zero when
ratio of occlusion is nearly one and the traffic sign cannot be recognized under the situation of
half occlusion, λ must satisfy the condition: λ ≥ 6.

• Sight line deviation factor evaluation

Given Egeo
w,l and Eocc

w,l , the sight line deviation factor reflects the different imaging positions on the
retina that may lead to different visibilities. An object viewed from the line-of-sight in front of a
driver’s eye is seen more clearly than an object viewed from the periphery. When a traffic sign is
fall in GFOV, it can be recognized; otherwise, it is unrecognizable. The evaluation of the driver’s
sight line deviation factor, Esight

w,l , is established as follows:

Esight
w,l =


1, vw,l ≤ G/2 and vw,l < V

e−η∗
vw,l−G/2

V−G/2 , G/2 < vw,l < V
0, vw,l ≥ V

(4)

where vw,l is the angle between sight line and line from viewpoint to the center of traffic sign; G is
the GFOV angle; V is the maximum angle between sight line and the line from viewpoint to the
“A” pillar of the vehicle far from the driver; η is the punishment weight. The vw,l are illustrated in
Figure 2b.
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The GFOV decreases progressively with increasing vehicle speed [4,6]. G depends on the actual
85th percentile driving speed [50,51]. The actual 85th percentile driving speed on a road can be
obtained by traffic big data.

The line-of-sight, the middle line of GFOV, is along the driving direction. If G/2 ≤ vw,l ≤ V,
a driver must turn his head to see traffic signs, thereby reducing the visibility of the traffic signs.
If vw,l > V, then Esight

w,l = 0, because V is the maximum viewing angle for a driver.

In summary, for a given traffic sign, the visibility, Evisibility
w,l , of viewpoint p(w, l) equals the following:

Evisibility
w,l =

Aview
w,l

Aunit
type
∗ e−λ∗Aocc

w,l /Aview
w,l ∗ Esight

w,l (5)

To better understand the TSVREM model, we propose a visibility field concept as follows:
Visibility field: For a given surrounding around a target object, the visibility distribution of

viewpoints in a 3D space constitutes a visibility field.
The visibility field reflects the visible distribution around a target object in 3D space. Take a traffic

sign as an example. The visibility field of its hemispherical space is shown in Figure 3. The traffic
sign (yellow) and distribution of its viewpoints (white points) are shown in Figure 3a. In Figure 3b,c,
the color of the pixels changing from black to white, means that, the value of viewpoint visibility
change from small to big. Figure 3b shows the visibility field of the traffic sign with occlusion. Figure 3c
shows the visibility field of the traffic sign without occlusion.

(a) viewpoints (b) Visibility field I (c) Visibility field II

Figure 3. Hemispherical visibility field of a traffic sign.

3.2. Tsvrem Model

In this section, we first introduce how to evaluate the recognizability of a traffic sign from a
viewpoint (viewpoint recognizability) and propose the definition of a visual recognizability field. Then,
we present how to evaluate the recognizability of a traffic sign (traffic sign recognizability).

3.2.1. Viewpoint Recognizability and Definition of Visual Recognizability Field

Due to differences in language, symbols, habits and so forth, different countries have different
design standards [50,52,53] for the location, size and content of signs. This leads to that two viewpoints
having the same visibility; the recognition of their representatives in different countries may be
different. However, the traffic standards in all countries have a common point at which a human
must recognize a traffic sign within the SD distance. Based on this common point, we introduce a
concept of standard visibility of a viewpoint to fill the gap between the visibility and recognizabiltiy of
a sign and use the normalized visibility result as the recognizability. The advantage of introducing the



Remote Sens. 2019, 11, 1453 8 of 25

standard visibility of a viewpoint is that such an introduction, not only normalizes the visibility to
interval [0, 1], but also evaluates the degree of difference between actual traffic sign installation and
installation specifications requirements.

Standard traffic surrounding: the surrounding in which a standard traffic sign is installed along
a straight road, according to traffic sign specifications and free of occlusion at any viewpoint.

In actual traffic surrounding, the definition of viewpoint visibility includes three parts: geometric
factor, occlusion factor, sight line deviation factor. In a standard traffic surrounding, there is no
occlusion, therefore, the viewpoint visibility degenerates into the product of the standard geometric
factors, EgeoS

w,l and standard sight line deviation factors, EsightS
w,l . The standard visibility of a viewpoint

EvisibilityS
w,l is defined as follows:

EvisibilityS
w,l = EgeoS

w,l ∗ EsightS
w,l (6)

To define the viewpoint recognizability, for a viewpoint in an actual surrounding, we need to find
out its corresponding viewpoint in the standard traffic surrounding. The corresponding viewpoint
in a standard traffic surrounding is the viewpoint that has the same length along the road from the
viewpoint to the traffic sign and the same width in the vertical road direction from the viewpoint to
the roadside. Considering the other factors, Eother, mentioned in Section I, the visual recognizability,
Erecognizability

w,l , of a viewpoint p(w, l) is given as follows:

Erecognizability
w,l = γ ∗

Evisibility
w,l

EvisibilityS
w,l

+ (1− γ) ∗ Eother (7)

where γ = 1 because we don’t consider Eother in this paper. Under normal circumstances,
Erecognizability

w,l ≤ 1, but due to road curvature, the incorrect installation of the traffic sign may cause,

at some viewpoints, Erecognizability
w,l > 1. The traffic sign must be recognized by the driver when the

actual visibility is greater than its standard visibility.Thus, in this case, we set Erecognizability
w,l = 1.

Visual recognizability field: for a given surrounding around an object, the visual recognizability
distribution of viewpoints in a 3D space constitutes a visual recognizability field.

3.2.2. Traffic Sign Visual Recognizability

The visual recognizability of a traffic sign is equal to the evaluation value of its visual recognizability
field. The visual recognizability field of a traffic sign is a surface that is parallel and higher than the
road surface with a observation height and included in the driving area in front of the traffic sign
within the sight distance. We use the integral average value to evaluate the visual recognizability field
of a traffic sign. The visual recognizability of a traffic sign Esign is given as follows:

Esign =
1

AD

∫∫
D

Erecognizability
w,l dwdl (8)

where the integral area D is expressed by inequality as follows: D = {(w, l) |
0 ≤ w ≤ wdriving, 0 ≤ l ≤ lSD}. AD is the area of D. wdriving is the width of driving area in vertical
road direction. lSD is the length of sight distance.

4. Tsvrem Model Implementation

The inputs of the TSVREM Model are the road point clouds and the trajectory of MLS. The outputs
are visibility field, recognizability field and traffic sign visual recognizability. First, we detect and
classify the traffic signs and road markings using References [31,48], respectively. The thresholds
or parameters used to extract traffic signs and road markings are consistent with the original paper.
For example, when extracting traffic signs, the threshold of reflectance intensity is greater than 60,000
and the eigenvalues satisfy the following condition: λ1 � λ2 ≈ λ3 and λ1/λ2 > 10. Second,
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we segment the traffic sign surrounding point clouds and remove the outliers points [54]. The traffic
sign surrounding point clouds are the point clouds on the right (or left) side above the roadway in
front of a traffic sign within the SD distance. Then, we select viewpoints from road marking point
clouds. Finally, using the traffic sign panel point cloud, the traffic sign surrounding point clouds
and the viewpoint together, we compute viewpoint visibility , viewpoint recognizability, traffic sign
recognizability and output occluding points. The algorithm is summarized in Algorithm 1.

Algorithm 1 TSVREM Model Implementation

Input: MLS point clouds, trajectory
Output: visibility field, visual recognizability field,

traffic sign visual recognizability, occluding points
1: Detect traffic signs [31], road markings [48]
2: Select viewpoints from road markings Section 4.1.1
3: Segment traffic sign surrounding point clouds Section 4.1.2
4: for each viewpoint p(w, l)
5: Translate and rotate [55] a group input data to human view
6: Compute traffic sign retina imaging area Section 4.2.1
7: Compute occlusion point clouds retina imaging area Section 4.2.2
8: Compute sight line deviation degree Section 4.2.3
9: Compute visibility in actual traffic surrounding Equation (5)
10: Compute visibility in standard traffic surrounding Section 4.2.4 Equation (6)
11: Compute recognizability Equation (7)
12: end for
13: Compute traffic sign visual recognizability according to Equation (8)

4.1. Viewpoints Selection and Segment Traffic Sign Surrounding Point Clouds

4.1.1. Viewpoints Selection

After detecting road markings, we obtain the left and right solid road marking lines in driving
area for a traffic sign. In paper Yu et al. [48], the correctness of detection road marking reaches 92%.
If a solid line is not continuous, or is partially missing because of low reflectivity, to complete it, we use
its attribute that it approximately parallels the trajectory line. If road markings are totally mis-detected,
we first subtract the height of the MLS device from the trajectory to obtain a trajectory on the road.
Then, the right solid road marking line, is obtained, by moving the trajectory on the road to the right
edge of the road according to the traffic sign position in standard road design; the left solid road
marking line, is obtained, by moving the trajectory on the road to the left according the default number
of lanes.

We segment the left and right solid lines along the trajectory at appropriate intervals [45]. store
the intersections in left edge and right edge, respectively. As shown in Figure 4 left, the rectangle
(m1, m2, m3, m4) is a an segmented area. The center of the segmented area in left solid road marking
cloud is stored into left edge. The center of the segmented area in left solid road marking point cloud
(roadside) is stored into right edge.

For two adjacent points in each edge, we use interpolation or sampling method to insert or sample
any number of points at will, meanwhile, ensure that the number of points in left and right edges is
equal for the convenience fo calculation. Observation height is added to each point in the two edges.
For each pair points, coming from the left and edges separately and have the same index in each edge,
we use interpolation method to insert any number of points at will. The observation height is usually
set at 1.2 m above the road surface [56]. Shown in Figure 5 are the results of the calculated viewpoints.

4.1.2. Segment Traffic Sign Surrounding Point Clouds

We segment the traffic sign surrounding point clouds along the trajectory using octree searching
method. As shown in Figure 4 left, the rectangle (r1, r2, r3, r4) is a slice of segmented area. The points
that are impossible to occlude traffic sign are discarded. Those discarded points include the points too
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far from the roadside (buildings along the road in the distance), too close to the ground (plants used to
green roads under traffic signs), too high from the ground (tree crown above traffic signs).

roadside

driving area 

left edge

trajectory

r3

r4

r1

r2

m3

m2

m1

m4

road shoulder

 width

l

lS
D

h
ei

g
h

t

wdriving

origin

p(w,l)
w

l)

roadside
driving area

 left edge

Boundary line

Center line

Trajectory

Viewpoints

Figure 4. Illustration of the symbols in the TSVREM model. The left figure illustrate the actual traffic
surrounding. The right figure illustrate the standard traffic surrounding

(a) Top view (b) Side view

Figure 5. Viewpoints computation result.
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4.2. Traffic Sign Visual Recognizability Computing

This Section includes the following procedures: computing the retinal imaging area of a point
cloud from a given viewpoint; obtaining the occluding point cloud; obtaining the sight line deviation;
and establishing the standard traffic environment.

4.2.1. Traffic Sign Retina Imaging Area Computing

The first step in computing the retinal imaging area is to rotate the coordinates of the input point
clouds and viewpoints to the human view. For a group of input data: traffic sign panel point cloud,
traffic sign surrounding point clouds, viewpoints, we first translate the origin of coordinate system
to traffic sign panel center, by subtracting the coordinate of the panel center; and then rotating their
z-axis coordinates to the translated line from the traffic sign panel point cloud center to the viewpoint
using the quaternions rotation method [55]. The rotary axis is the vector of the cross product result
between the z-axis and the translated line from the traffic sign panel point cloud center to the viewpoint.
The rotary angle is the angle between the z-axis and translated the translated line from the traffic sign
panel point cloud center to the viewpoint. The following operating about the a group input data in the
paper are based on the coordinate-transformed point clouds.

Traffic sign panel point cloud is projected onto XOY plane, then, we get the projected traffic sign
point cloud. The outer boundary of the projected traffic sign point cloud is computed by the alpha
shape algorithm [57]. The alpha parameter in Reference [57] is set to about twice the interval between
points. We use the polygon area formula to compute the area of the projected traffic sign point cloud.
Finally, the area is mapped to the retinal imaging area using the human retinal imaging principle [58].
The distance from the center of the entrance pupil of an eye to the retina is set at seventeen millimeters.

4.2.2. Occlusion Point Clouds Retina Imaging Area Computing

From the vertexes of boundary of the projected traffic sign panel point cloud, we select a vertex
which has the maximum distance from its center (origin) to the vertexes. Rotating the line segment
from viewpoint to the selected vertex around the axis form viewpoint to origin, we get a vertebral
body. The points which possible occlude the traffic sign are included in the vertebral body. We segment
points in the vertebral body from traffic sign surrounding point clouds by two conditions: (1) the angle
between the vector from viewpoint to the point and the vector form viewpoint to origin, is less than,
the angle between the vector from viewpoint to the selected vertex and the vector from viewpoint to
origin; (2) the distance from viewpoint to the point, is less than, the distance from viewpoint to the
selected vertex.

For each point inside in the vertebral body, there is a ray from viewpoint to the point. We compute
the intersection of ray to the XOY plane. If the intersection is inside the boundary of the projected
traffic sign panel point cloud, then, the point is the occlusion point. All the occlusion points form
occlusion point clouds. All intersections of the occluding points form block point clouds. The occlusion
point clouds and block point clouds have the same retina imaging area. The retina imaging area of
block point clouds is computed by the alpha shape algorithm and human retinal imaging principle.
We call the method which obtain occlusion point clouds described above the“Ray Method’.’ Figure 6
shows an example of the “Ray Method” for computing occluded area of a traffic sign. In Figure 6a,b,
the blue line segments are used to illustrate the spatial relationship among viewpoint, occluding
object, traffic sign. The blue lines segments start at the viewpoint, pass through the occluding point
and intersect the traffic sign (yellow) at the occluded point (red). In Figure 6c, the closed edges of the
traffic sign (yellow points) is the obtained polygon for computing the area of the traffic sign. The close
edges of the red points are the obtained polygon used for computing occluded area.
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4.2.3. Sight Line Deviation Computing

The sight line of a driver is parallel with road direction (Figure 2b). It is a vector and equals the
result of the coordinate of viewpoint p(w, l − 1) minus the coordinate of viewpoint p(w, l). The angle
of sight line deviation equals the angle between sight line and the line from viewpoint to the center of
traffic sign panel.

(a) Top view (b) Side view (c) Occlusion area

Figure 6. Traffic sign occluded point cloud computing result.

4.2.4. Standard Traffic Surrounding Setting

For all types of traffic signs, we built a traffic sign panel point cloud library, which contains one of
each class of traffic sign panel point clouds. Every traffic sign panel point cloud in the library meets
the conditions that their normal vector parallels the y-axis and the center is the origin.

According to a traffic sign design manual, such as the Manual on Uniform Traffic Control Devices
(MUTCD in the United States) [50] and Road Traffic Signs and Markings (GB 5768-1999 in China) [53],
the height, depression angle, road shoulder width, and the orientation angle are specified. Using the Y
axis as roadside and origin as the traffic sign at roadside location. We first translated the traffic sign
panel point cloud based on height and road shoulder width. Then we rotated the traffic sign panel
point cloud [55] based on depression angle and orientation angle. For a viewpoint p(w, l) in actual
traffic surroundings, the coordinate of its corresponding viewpoint in standard traffic surrounding is
(−w, l, 0). The setting of standard traffic surroundings is shown in Figure 4 on the right.

5. Experiments And Discussion

5.1. Parameter Sensitivity Analysis

Parameter in Egeo
w,l . Given a viewpoint, a traffic sign, Eocc

w,l and Esight
w,l are ascertained. Evisibility

w,l
is inversely proportional to the size of the parameter dunit. Egeo

w,l equals “1” when a driver observes
a complete traffic sign at the unit viewpoint; equals “0” when the normal of traffic sign plane is
perpendicular to the line from viewpoint to the center of traffic sign panel.

Parameters in Eocc
w,l . Eocc

w,l must meet the real situation where Eocc
w,l = 1 under the circumstances of

no occlusion and Eocc
w,l is nearly equal to zero under the circumstances of half occlusion. We depict

the value of Eocc
w,l in Figure 7a under different occlusion ratios and λ. From the figure, we can see Eocc

w,l
meet the real situation when λ ≥ 6. When traffic sign is not be occluded, Aocc

w,l = 0, Eocc
w,l = e0 = 1.

When traffic sign is completely be occluded, Aocc
w,l = Aview

w,l , Eocc
w,l = e−6 = 0.0025 ≈ 0.

Parameters in Esight
w,l . Some research [4,51,59] shows that most traffic signs (fall in the GFOV equal

to 100◦) are recognized accurately at a speed of 60 km/h; and most of traffic signs (falling in the GFOV
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equal to 22◦) are recognized accurately at a speed of 120 km/h. Linear interpolation is used to calculate
the G at different speeds. It is easily proven that Equation (4) is continuous at G/2.

Usually for a car about two meters wide, the angle between the driver’s viewpoint to the “A”
pillar of vehicle and the sight line is generally less than 80 degrees. In this paper, we set V equals
80 degrees.

Esight
w,l is shown in Figure 7b under different vw,l , V and η in Equation (4). This figure shows that

Esight
w,l equals 1 when traffic signs fall in GFOV (vw,l ≤ G/2 and vw,l < V) and decreases when viewing

angle beyond GFOV (G/2 < vw,l < V). Esight
w,l equals 0 When traffic signs fall behind the line from

viewpoint to the “A” pillar of vehicle (vw,l ≥ V). η as the punishment weight should meet the above
demand, like λ in Equation (3), η ≥ 6.
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(b) Sight line deviation change

Figure 7. Occlusion change and sight line deviation change under different parameters.

5.2. Datasets Acquisition

To prove the practicality of our models and algorithm in urban roads, mountain roads and highways,
using a RIEGL VMX-450 MLS system (Figure 8a), we scanned the following three datasets as shown in
Figure 9: Huizhanzhongxin Block (HB), Longhu Mountain Road (LMR), Shenyang-Haikou Highway
(SHH) in Xiamen Island, China. Once projected on the horizontal plane, the density of the point clouds
among the three datasets is about 4000∼8000 points per square meter. The density decreases with
increasing vehicle speed. The box-shaped legend is the area of a grid in the figure.

Using devices (including Leica Viva GNSS CS15 receiver, Huawei Honor V8 phone, bluetooth
camera remote controller and a car), we created another dataset about photos and their GPS positions
in street scenes. To improve the accuracy of the GPS positions, before taking a photo and recording its
GPS position by CS15, we stopped the car and waited for the GPS signal to stabilize. GPS position
accuracy, based on Realtime kinematic (RTK) technology, reached the centimeter level in open areas.
Finally, 144 photos, with each photo (3968 × 2976 pixels) containing a GPS position, were obtained
along the Longhu Mountain Road. Photo validation devices installed on the car are shown in Figure 8b.
In this figure, the yellow points are traffic signs and the red points are the points occluding the view
of the traffic sign. The contrast between the phone (upper left corner) and its corresponding image
(upper right corner) shows they contain the same scenario. The traffic sign in the photo cannot be
recognized by a human. After computation by our model, the occlusion ratio of the traffic sign is
87.37%; its recognizability is 0.59%; also, it is non-recognizable. Figure 8c shows the consistency
between the trajectory collected by the VMX-450 and the photo positions collected by the GNSS CS15
receiver. The red points in Figure 8c are photo positions. In this experiment, the cellphone is fixed on
the top of the car together with Leica Viva GNSS CS15 receiver. Different from the actual visibility or
recognizability computing on a real road, the height of the viewpoints are the cellphone GPS positions,
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not 1.2 m above the road. This is to ensure that the recognizability computed in point clouds is
consistent with the image.

(a) VMX-450 MLS system (b) Photo obtain devices (c) Photo positions

Figure 8. Datasets acquisition device and result.

(a) HB (b) LMR (c) SHH

Figure 9. The three datasets used in experiments.

5.3. Verification Experiment and Discussion

We designed a verification experiment to verify that the recognizable result of our algorithm
is in accordance with a real street scene. In this experiment, we calibrated the V8 phone to obtain
the intrinsic parameters matrix. The extrinsic parameters matrix of V8 phone is computed by its
position and drive direction in the point clouds. Then, we obtained an image of the camera in the
point cloud scenes from the position of photo. This image contain the same scenario with the photo
at same position. One photo has a corresponding image. The comparative result of them is shown
in Figure 10. This figure shows that the recognizable result of our model consistent with the image.
Additionally, in this example, we see the advantage of computing visibility and recognizability based
on point clouds. Because the traffic sign is almost completely occluded, it is impossible to detect a
traffic sign using image based methods. More results are shown in Figure 11. In this figure, The first
row: photos taken at each viewpoint. The second row: the point cloud at the same viewing angle with
each photo. It includes traffic sign (yellow) and traffic sign surrounding point cloud(green). The third
row: occlusion detection result. the red points are occlusion points. O means occlusion area ratio
and R means recognizability. From this figure, we can see the visual recognizability of traffic sign is
inversely proportional to the occlusion ratio. This value is basically in line with human cognition.
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(a) (b)

(c)

(d)

Figure 10. Comparison of results between camera photo and point clouds image and between our
method and the HPR method at the same viewpoint with camera. (a) Camera photo; (b) Point clouds
image; (c) Occlusion detection by our method; (d) Occlusion detection by the HPR method [24].

We compared our method with the recent work of Huang et al. [24] on occlusion detection in this
example. They use the HPR method to detect occlusion of traffic signs. Their last step is to obtain
the visible point cloud by computing the convex hull of point clouds. Due to using this step, some
occluded points are lost. The results of comparing our method with theirs are shown in Figure 10c,d.
Our results extract all the occluding points. Thus the HPR method lost most of the occluding points.
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O: 98.65% O: 58.60% O: 39.36% O: 35.20% O: 01.74%
R: 00.34% R: 03.45% R: 12.14% R: 12.50% R: 84.96%

Figure 11. The visual recognizability results of traffic signs under occlustion.

5.4. Accuracy Analysis and Reliability Analysis

Does different point density and noise of point clouds impact the accuracy of the retinal imaging area
in our model? Do challenging data, such as crossroads, street corners, roundabouts and mountain
road impact the reliability of our algorithm? We analysis accuracy and reliability in the following
two Sections:

5.4.1. Accuracy Analysis

In LiDAR, some studies [60–62] rely on accuracy problem, because scan patterns produce different
footprints, which, depending on the area, leads to different accuracies. MLS has a small footprint,
which provides high point cloud density on the road [63]. The accuracy analysis consists three parts.
The first part is occlusion accuracy analysis based on image verification experiment. The second part is
a experiment which compare our method with Huang et al. [24]. The last part is alpha shape algorithm
experiment to analyze the influence by its parameter on accuracy.

Two metrics are used in accuracy analysis: accuracy and occlusion detection rate. The accuracy
equals to the occlusion area ratio of a traffic sign obtained by the algorithm divided by its ground truth
occlusion area ratio. It is closely related to the accuracy of visibility and recognizability calculations.
The occlusion detection rate is the number of detected occlusion points in surrounding point clouds
divided by the ground truth number of those points. It reflects the completeness of the detected
occlusion points. Complete detection of the occlusion points helps to manual maintain traffic signs.

The accuracy analysis based on image verification experiment. We use the ratio of occlusion
area in the image as the ground truth to evaluate the accuracy of the corresponding ratio of occlusion
area computed in point clouds. Based on image verification data, we manually segment the traffic
signs and occluded areas of the sign in the photo and count their number of pixels first. Then the
ratio of occlusion area of traffic signs are computed by their number of pixels as the ground truth of
the accuracy metric. An example of our method to evaluate accuracy is shown in Figure 12. In this
figure, there are some images inside in some boxes. The image in middle box is the side view of a point
clouds environment. The images inside the box in the upper left corner are the front and top views of
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the point clouds environment. The images inside the boxes in other three corners are the observed
traffic sign images at three viewpoints. The observed traffic sign images include the original image,
the segmented image, the image generated by the point clouds and the image of boundaries calculated
in point clouds. From Figure 12, we can see the computed boundaries of the sign and occlusion area
are basically in line with the boundaries in original image. The detailed computed results of the three
viewpoints are shown in Table 1. The sign area and occlusion area computed in point clouds are the
retina imaging area. Their units are 10−4 square meters. From this table, we can see that our algorithm
can achieve about 95% accuracy in computing occlusion ratio. For all 144 photos in the verification
experiment, the accuracy of our algorithm is 94.89%. This experiment proves that the accuracy of our
algorithm is in line with the actual situation.

Traffic sign points 
Occlusion points

Viewpoints
Surrounding points

Traffic sign boundary
Occlusion boundary

ID: 3 ID: 2 ID: 1

Figure 12. The example of evaluating the occlusion ratio accuracy in a real environment.

Table 1. The occlusion ratio accuracy calculation result of viewpoints in Figure 12.

Viewpoint Image Point Clouds Accuracy
ID Sign Pixels Occlusion Pixels Ratio (%) Sign Area Occlusion Area Ratio (%) (%)

1 6917 3971 57.41 2.76 1.50 54.48 94.89
2 9738 4285 44.00 3.44 1.42 41.39 94.06
3 18,477 3170 17.16 7.70 1.27 16.48 96.04

The comparison experiment. A comparison of the accuracy of computing a retinal imaging area
with our method and the HPR method used in Reference [24] is shown in Figure 13. The point clouds
used in the experiment were generated by uniform distribution according to Figure 13a. Shown in
this figure are side views of the traffic sign (yellow) and occluding objects (red). The traffic sign center,
occluding object centers and the viewpoint, are collinear. The traffic sign and three occlusion objects
are square and parallel with each other. We generated experimental data at different densities changed
from 101× 101 to 11× 11 points per square meter. According to normal distribution, noise points were
added to the bounding box of the traffic sign point cloud and viewpoint. Before calculating, radius
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filtering was applied to all point clouds. In Figure 13b,c the HPR parameter is set to five. The density
of the point clouds in Figure 13c,d is set to 51× 51 points per square meter.
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Figure 13. Comparison of data setting and accuracy results for different conditions for both our
method and the HPR method. In (b), the density of points is expressed by the distance (cm) of the
neighbor points.

Figure 13b shows our method is stable to the density of point clouds. Our method achieves an
accuracy of at least 92.4% (average 98.68%) when density changes from 101× 101 (points’ interval 1 cm)
to 11× 11 (points’ interval 10 cm) points per square meter. When the density changes, the fluctuation
in the accuracy is not large. Thus, the accuracy of the HPR methods decreases with decreasing density,
is unstable. For occlusion detection rate, our method detects all the occluded points and is not affected
by the density; the HPR method lost most occluded points and is affected by the density. Figure 13c
shows that the effect of noise on the two methods when noise points less than ten thousand (500 noise
points per cubic meter). In the data preprocessing of our method, a filtering operation is included.
The filtering condition is there must be six points within the sphere with a radius of ten cm. To be
fair, we used the same filtering operation before using HPR calculations. From the figure, we can see,
when the number of noise points increases, our method is stable and has high accuracy and occlusion
detection rate. HPR method is unstable. Therefore the discrete points floating in the air will affect the
evaluation results in the practical application. Figure 13d shows that the retinal imaging area changes
as the HPR parameter changes. The HPR parameter seriously affects the result. Thus, the HPR method
is unsuitable for calculating the retinal imaging area.
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The alpha shape algorithm parameter experiment. In the area calculation of a traffic sign or the
occlusion region, the outer boundary is firstly derived using the alpha shape algorithm. However,
the different choices of the parameters of the algorithm will have a certain impact on the calculation
of the boundary, especially when the object is of non-convex characteristic. Therefore, we designed
another experiment for evaluating its influence on accuracy metric. In this experiment, we replace the
occlusion objects in Figure 13a with square concave point clouds and half circular concave point clouds.
The other setting includes: the side of the square is 0.2 m long, the radius of the circle is 0.15 m and the
interval between points is 1 cm. The result of this experiment is shown in Figure 14. From this figure,
we can see the accuracy decreases as the parameter of alpha shape becomes larger. Both of concave
point clouds achieved almost best accuracy, 99.67%, when the value of the alpha shape parameter
equals to 2, that is, twice of point density. The parameter of alpha shape is set to two times the density
of point clouds in our practical applications, too. Images at the upper row in Figure 14b are shown the
boundary of square concave point clouds when alpha shape parameters from one to ten. Images at the
down row in Figure 14b are shown the boundary of half circular concave point clouds when alpha
shape parameters equal to two and eight, respectively.
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Square concave shape accuracy
Half circle concave shape accuracy

(a) Accuracy evaluation (b) Boundary results

Figure 14. The accuracy evaluation under different alpha shape parameters.

5.4.2. Reliability Analysis

In crossroads, street corners, roundabouts, and mountain roads, the traffic environments are
complicated. Road curvature change is large and no road markings in the middle of crossroads and
corners, thus increasing the difficulty of viewpoint selection. Besides, severe occlusion are most likely
to occur in these areas.

Figure 15 shows that our algorithm is still reliable in challenging data of crossroads, street corners,
roundabouts. In this figure, the color is expressed as follows: the detected traffic sign (yellow),
occluding point clouds (red), visibility field and recognizability field results (mesh planes). The box
marked with cross (“X”) means that the traffic sign is occluded in that area. The color of the mesh
planes, changing from green to red, means that the values of visibility or recognizability change from
big to small. The visual recognizability of this three traffic sign are 0.977, 0.547, 0.906, respectively.
From this figure, we can intuitively observe the visibility field and visual recognizability of traffic
sign. In visibility field, the visibility equals one only at “unit viewpoint”, the farther the viewpoint
is from the traffic sign, the smaller the visibility value. So the visibilities are shown mostly by red.
In the visual recognizability field, only positions with occlusion and positions with large sight line
deviation are shown by red. In addition, we have actual GPS coordinates in areas with low visual
recognizability. It is convenient for road management departments to discover and optimize traffic
signs with problems (with low visual recognizability).
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(a) Crossroad visibility field (b) Crossroad recognizability field

(c) Street corner visibility field (d) Street corner recognizability field

(e) Roundabout visibility field (f) Roundabout recognizability field

Figure 15. The TSVREM model applies on challenging data.

5.5. Large-Scale Application Experiment and Discussion

To verify its usability, we applied the TSVREM model to a large-scale traffic environment.
The proposed traffic sign visual recognizability model was implemented using C++ running on
an Intel (R) Core (TM) i5-4460 computer. The Figure 16 shows the large-scale application of our
algorithm on mountain road. The surrounding is shown by color point clouds. The meaning of color
representation of the traffic sign visual recognizability fields is the same with Figure 15. The computing
times for each processing step in the three datasets are given in Table 2, which shows that the computed
speed is fast enough to meet the engineering application demand of off line processing. The biggest
time cost is the viewpoints selection progress.
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0 1
Recognizability
Occlusion

Figure 16. The large-scale application of TSVERM model on mountain road.

Table 2. The time calculation cost of datasets.

Dataset Length Speed Steps (min) Average
(km) Limit (km/h) Sign Detection Viewpoints Selection Recognizability Evaluation Cost (m/min)

HB 24.12 30 188.67 477.62 8.63 35.74
LMR 9.49 40 96.25 133.63 5.73 40.29
SHH 62.48 120 177.18 215.00 19.75 151.68

The statistical results of TSVREM model implemented in three datasets are shown in Table 3.
In Table 3, “m/min” is the average length (meters) of the road calculated per minute. This table shows
that about three quarters of the traffic signs have occlusion in three datasets. The average values of
occlusion area ratio and recognizability about three datasets are about fifteen percent and seventy-five
percent, respectively. Xiamen city is located in the south of China, where plants perennially grow
densely. So far, there is no effective detection method that can accurately detect occlusion covering all
road surfaces within a sight distance range, leading to an increasingly serious occlusion of traffic signs,
especially the mountain road. This shows that our algorithm is of great significance in the visibility
and recognizability maintenance of traffic signs.

Table 3. The TSVREM model calculation result in three datasets.

Dataset Traffic Occlusion Average (%)

Signs’ Number Number Ratio (%) Occlusion Area Ratio Recognizability

HB 135 101 74.81 10.97 78.43
LMR 73 61 83.56 20.73 62.61
SHH 127 90 70.87 12.71 80.51

Total 335 252 75.22 14.80 73.85



Remote Sens. 2019, 11, 1453 22 of 25

6. Conclusions

This paper, based on human visual recognition theory and point clouds collected by an MLS
system, presented a new way to evaluate traffic sign visual recognizability in each lane. The proposed
model not only quantitatively expresses the visibility and recognizability of a traffic sign from a
viewpoint, but also continuously expresses visibility and recognizability, within sight distance, over the
entire road surface. Unlike the existing methods for studying visibility and recognizability limited by
position of viewpoint in 2D space or cannot be applied in the real road environment, we proposed a
new way to evaluate visibility and recognizability in 3D space conquered those problem. Based on
traffic sign detection method [31], our algorithm can automatically process more than 90% (92.61%
in [31]) traffic signs. The rest traffic signs can be manually detected and processed by our algorithm.
Our methods also can be used to detect occlusion and inspect spatial installation information of traffic
signs for inventory purposes. Moreover, our model, because it has a process similar to traffic signs,
can be easily expanded to other traffic devices, such as traffic lights.
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Abbreviations
η The punishment weight of sight line deviation
γ The weight of other factors
λ The penalization weight of occlusion
AD The area of driving area within sight distance of a traffic sign
Aunit

type The retinal imaging area of a standard traffic sign viewed from the “unit viewpoint”
Aocc

w,l The occluded imaging area of retinal of a sign from viewpoint p(w, l)
Aview

w,l The imaging area of retinal of a sign from viewpoint p(w, l)
D The driving area within sight distance of a traffic sign
Esign The visual recognizability of a traffic sign
EgeoS

w,l The estimated value of standard geometric factors
Egeo

w,l The estimated value of geometric factors
Eocc

w,l The estimated value of occlusion factors

EsightS
w,l The estimated value of standard sight line deviation factors

Esight
w,l The estimated value of sight line deviation factor

Evisibility
w,l The estimated value of viewpoint visibility

EvisibilityS
w,l The estimated value of standard viewpoint visibility

G The value of GFOV
l The length from viewpoint to traffic sign along road direction
p(w, l) A viewpoint
V The maximum angle between sight line and the line from viewpoint to the “A” pillar of the vehicle
vw,l The angle between sight line and line from viewpoint to the center of traffic sign
w The width from viewpoint to roadside in vertical road direction
wdriving The driving area width of the road
GFOV Geometric Field Of View
HPR Hidden Point Removal
MLS Mobile Laser Scanning]
SD Sight Distance
TSVREM Traffic Sign Visual Recognizability Evaluation Model
VEM Visibility Evaluation Model
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