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Abstract: Forest biomass is an important descriptor for studying carbon storage, carbon cycles,
and global change science. The full-waveform spaceborne Light Detection And Ranging (LiDAR)
Geoscience Laser Altimeter System (GLAS) provides great possibilities for large-scale and long-term
biomass estimation. To the best of our knowledge, most of the existing research has utilized
average tree height (or height metrics) within a GLAS footprint as the key parameter for biomass
estimation. However, the vertical distribution of tree height is usually not as homogeneous as we
would expect within such a large footprint of more than 2000 m2, which would limit the biomass
estimation accuracy vastly. Therefore, we aim to develop a novel canopy height layering biomass
estimation model (CHL-BEM) with GLAS data in this study. First, all the trees with similar height
were regarded as one canopy layer within each GLAS footprint. Second, the canopy height and
canopy cover of each layer were derived from GLAS waveform parameters. These parameters were
extracted using a waveform decomposition algorithm (refined Levenberg–Marquardt—RLM), which
assumed that each decomposed vegetation signal corresponded to a particular canopy height layer.
Third, the biomass estimation model (CHL-BEM) was established by using the canopy height and
canopy cover of each height layer. Finally, the CHL-BEM was compared with two typical biomass
estimation models of GLAS in the study site located in Ejina, China, where the dominant species was
Populus euphratica. The results showed that the CHL-BEM presented good agreement with the field
measurement biomass (R2 = 0.741, RMSE = 0.487, %RMSE = 24.192) and achieved a significantly
higher accuracy than the other two models. As a whole, we expect our method to advance all the
full-waveform LiDAR development and applications, e.g., the newly launched Global Ecosystem
Dynamics Investigation (GEDI).

Keywords: biomass; full-waveform LiDAR; GLAS; GEDI; UAV LiDAR

1. Introduction

Forest biomass, commonly defined as the total amount of organic matter (dry weight) per unit
ground surface area [1,2], includes both aboveground biomass and underground biomass. It should be
noted that biomass refers to aboveground biomass in this study. Accurate forest biomass information
plays vital roles in evaluating carbon sequestration capacity and carbon storage, as well as studying
carbon cycle processes and global change science [2–5].
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Remote sensing technology provides a convenient and cost-effective way to estimate forest
biomass [6,7], especially Light Detection And Ranging (LiDAR) [8,9]. The successful estimation of
the biomass in forests with both airborne and spaceborne platforms has been reported in several
studies [10–18]. However, it is logistically difficult to employ airborne LiDAR when large-scale
forest biomass needs to be monitored [12,19–22]. Fortunately, Ice, Cloud and land Elevation Satellite
(ICESat)/Geoscience Laser Altimeter System (GLAS), as the first full-waveform spaceborne LiDAR
system, has demonstrated its advantage in collecting extensive and repetitive forest biomass information,
as GLAS data is free, has global coverage, and has repeatable observations [23–30].

Almost all of the GLAS-based forest biomass estimation methods are statistical methods of
waveform parameters, which can be grouped into two categories: Direct statistical methods and
indirect statistical methods. The direct statistical methods estimate the biomass by building a regression
model directly between GLAS waveform parameters and field measured (or airborne LiDAR-derived)
biomass [19,21,31]. For example, Zhang et al. [21] acquired as many GLAS metrics as possible,
according to the existing research. Then, support vector regression (SVR) was implemented to build
the relationship between GLAS metrics, Moderate Resolution Imaging Spectroradiometer (MODIS)
vegetation indices, and field biomass data. It should be noted that, with the direct statistical method,
it is normally difficult to find a universally applied statistical model that fits different study sites with
complex terrain and various vegetation.

The second group of methods for estimating forest biomass is that of the indirect statistical
methods, which currently encompass the mainstream approach. Indirect statistical methods estimate
the biomass by first utilizing GLAS waveform parameters to obtain the average or maximum forest
height within a GLAS footprint, and then they develop a regression relationship between forest
height and field measured (or airborne LiDAR-derived) biomass [2,3,18,20,21,32–34]. For example,
Lefsky et al. [33] employed LEE (the leading edge extent), GE (ground extent, i.e., the terrain index)
and WE (the waveform extent) from GLAS waveform and Shuttle Radar Topographic Mission (SRTM)
data to calculate the maximum forest height within a GLAS footprint. Results showed that the
ICESat-derived forest heights achieved a high correlation with field-estimates of biomass (R2 = 73%,
RMSE = 58.3 Mg·ha−1). Though the indirect statistical methods tend to overestimate biomass over
complex terrain [35], they are easier to understand in principle and more applicable than the direct
statistical methods. Nevertheless, we should note that both the indirect and direct statistical methods
attempt to acquire average or maximum forest height or height metrics within a GLAS footprint.
However, the tree height is usually not homogeneous within such a large footprint (>2000 m2),
which greatly limits biomass estimation accuracy.

This study aims to develop a novel canopy height layering biomass estimation model (CHL-BEM)
with GLAS data, one which belongs to the indirect statistical method category. The objectives of this
study are three-fold: (1) To acquire the canopy height and canopy cover of each height layer from
GLAS waveform decomposition parameters; (2) to establish a novel biomass estimation model with
the canopy height and canopy cover of multiple height layers within a GLAS footprint; (3) to compare
and assess the benefits and disadvantages of the CHL-BEM and two typical GLAS biomass estimation
models. Compared to the existing biomass estimation methods with the GLAS, our innovation
mainly lays in that we employed multiple canopy height layers instead of one canopy height layer.
Ultimately, we expect that the CHL-BEM will improve the biomass estimation accuracy and advance
all full-waveform LiDAR development and applications, e.g., estimating biomass from the newly
launched Global Ecosystem Dynamics Investigation (GEDI).

2. Materials

2.1. Study Site

The study site is located in the Ejina Banner in the northwest area of Inner Mongolia,
China (39◦52′N–42◦47′N and 97◦10′–103◦7′E), which covers an overall area of 1300 km2 (Figure 1).
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Ejina has a north temperate continental arid climate characterized by drought, less rain,
large evaporati ithin each year [36]. The terrain of the study area is quite flat (the average slope
is less than 3◦), with the elevation ranging from 820 to 1127 m above sea level. The study site is
dominated by three vegetation species: Populus euphratica, Tamarix ramosissima, and Sophora alopecuroides,
which function as the first barriers protecting northwest China from sandstorms. The top height of
Populus euphratica in this study site ranges from 5 to 16 m [37]. The vertical structure of most of these
trees is regular, despite a few exceptions due to artificial or natural factors.
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Figure 1. The study site and its geographical location. The zoomed-in figure of Ejina Oasis is a
screenshot image.

2.2. GLAS Data

In total, 79 GLAS waveform data, randomly sampled, were acquired and preprocessed to test
the new biomass estimation model proposed in this study (CHL-BEM). In this study site, each GLAS
footprint can be considered as a circle with a diameter of 53 m. The data and related processing software
were provided by NASA (http://nsidc.org/data/icesat). The raw GLAS waveform data were gleaned
by combining the GLA-01 and GLA-14 products. Detailed processing steps of the GLAS data can be
found in [37,38]. These 79 GLAS waveform data were collected in March 2004, 2005, and 2007 and in
November 2003, 2005, and 2006, respectively. It should be noted that there exists a large difference
between GLAS data acquisition time and field measurement time. Fortunately, the growth rate of
Populus euphratica is slow because (1) most of them are trees that are a few hundred years old; (2) the
growth rate of Populus euphratica has a strong positive correlation with soil water content [39], and our
study site is located in an extremely arid desert area. Moreover, the spatial distribution of Populus
euphratica changes marginally because this study site was the National Populus euphratica natural
reserves, which are well protected. In this study, we separated the 79 GLAS waveform data into two
parts: 30 GLAS waveform data were used to calculate the parameters in the biomass estimation models,

http://nsidc.org/data/icesat
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whereas the remaining 49 GLAS waveform data were utilized for validation. The GLAS footprints for
both training and testing were distributed as evenly as possible in the whole study area (Figure 2).
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Figure 2. QuickBird imagery of the study area with 79 Geoscience Laser Altimeter System
(GLAS) footprints.

2.3. Field Biomass

In order to test the performance of the proposed CHL-BEM, we collected 79 field-estimate biomass
data at the GLAS footprint level. The precise extent of each GLAS footprint was located using a
hand-held high-precision GPS (Global Positioning System) (precision: 1 m) and a QuickBird image
(spatial resolution: 0.6 m). Dong et al. [40] obtained the dry weight of Populus euphratica by the whole
harvest method and established an empirical model among tree height, breast diameter (diameter of
the trunk at 1.3 m above the ground), canopy cover, and biomass at the individual tree level. Because
we could not acquire the biomass of Populus euphratica by means of felling and weighing in this study
site, the empirical model by Dong et al. [40] was utilized to calculate the biomass at the individual tree
level. Therefore, the field-estimate biomass at the GLAS footprint level can be described according
to the following Equations (1)–(4). Equations (1)–(3) were used to calculate the biomass for each
individual tree, and the biomass at the GLAS footprint level was calculated using Equation (4)

MTrunk = 125.546×
(
D2
×H

)0.654
(1)

MCrown = 0.016×A2 + 2.291×A+11.084 (2)
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MIndividual = MTrunk + MCrown (3)

BGLAS =

∑n
i=1 Mi

Individual
SGLAS

(4)

where i is the ith individual tree; n is the total number of trees within a GLAS footprint; MTrunk, MCrown,
and MIndividual are the dry weight of tree trunk, tree crown, and individual tree, respectively; H, D,
and A are the maximum tree height, breast diameter, and canopy cover, respectively; and SGLAS and
BGLAS are the area and biomass of each GLAS footprint.

According to the empirical model mentioned above, we should acquire field measurements of
parameters including tree height, breast diameter, and canopy cover. From 2013 to 2015, field survey
methods were employed to measure these three parameters. Recently, unmanned aerial vehicle (UAV)
remote sensing has opened the door to new sources of data to effectively characterize vegetation
metrics at very high spatial resolutions [41,42] and with very high accuracy [43]. LiDAR data were
used to test tree height and canopy cover measured from a field survey (in only three GLAS footprints).
Results showed that the tree height and canopy cover from field survey matched that of UAV LiDAR.
In addition, the breast diameter was measured with a tape. As a whole, the tree height, breast diameter,
and canopy cover of 1430 individual trees were collected within the 79 GLAS footprints. Details about
field survey methods can be seen in our previous work [37]. For each GLAS footprint, the biomass was
calculated according to Equations (1)–(4) (see Figure 3).
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Figure 3. Field measurements of biomass at the GLAS footprint level.

3. Methods

Three key steps were engaged in our developed method for biomass estimation at the GLAS
footprint level: GLAS preprocessing, refined Levenberg–Marquardt (RLM) Gaussian decomposition,
and biomass estimation with canopy height and canopy cover from different height layers. The overall
flowchart iss shown in Figure 4.
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3.1. GLAS Preprocessing

To suppress the influence of system noise and background noise, a waveform filtering algorithm
was essential for acquiring reliable GLAS waveform data. In this study, the Savitzky–Golay
filtering algorithm was employed, as it had been successfully applied to GLAS waveform data
processing [37,44,45]. Besides waveform filtering, detecting the signal start, end, and peak locations
was the other key step of GLAS preprocessing. Following the report by Sun et al. [38], we identified
the signal start and end locations according to the standard deviation of GLAS waveform return volts.
Moreover, a second-order derivative was employed to search for the peak location. Details about the
two specific GLAS preprocessing steps can be found in our previous works [37,44].

3.2. RLM Gaussian Decomposition Method

To obtain the canopy height and canopy cover of each height layer within a GLAS footprint,
we adopted a waveform decomposition algorithm [46–51], RLM, assuming that each canopy height
layer forms a vegetation Gaussian signal. RLM embodies the morphological characteristics of forest
vertical structures which serve as restrictions for the parameters’ initialization and criteria for iteration
termination. RLM not only injects physical meaning in the Gaussian decomposition method but also
overcomes the overfitting problem in traditional methods where only geometric characteristics were
considered. The waveform decomposition result of RLM is shown in Figure 5. Details about the RLM
Gaussian decomposition method can be found in our previous work [37].
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3.3. Canopy Height Layering Biomass Estimation Model (CHL-BEM)

Most of the existing research utilized average tree height within a GLAS footprint as the only
input parameter for biomass estimation. However, the tree height is usually not homogeneous because
each footprint is over 2000 m2, omitting which will lower the biomass estimation accuracy. To this end,
in this study, we proposed the CHL-BEM, which considers different canopy height layers. Two key
steps were engaged: (1) Obtaining the canopy height and canopy cover of each height layer from
the decomposed waveform data (see Section 3.3.1); (2) establishing a biomass estimation model with
canopy height and canopy cover from different height layers (see Section 3.3.2).

3.3.1. Canopy Height and Canopy Cover

As shown in Figure 5, RLM decomposed the GLAS waveform into three Gaussian signals which
corresponded to the ground and two canopy height layers. For each canopy layer, the canopy top
height (CTH) was determined by the signal start and the ground peak positions, which can be defined
as Equation (5):

CTHi =
TG − TS,i

2
× c (5)

where i represents the ith the canopy signal, TG is the ground peak position, TS is the canopy signal
start position; and c is the speed of light (3 × 108 m/s).

Besides CTH, canopy cover (CC) served as the other key parameter in the proposed biomass
estimation model. For each canopy layer, CC was defined as the ratio of each canopy layer return
energy to total waveform energy, which can be simplified as Equation (6):

CCi =
CEi∑N

i=1 CEi + GE
(6)

where CE represents the canopy echo energy, GE represents the ground echo energy, and N is the
number of canopy height layers.
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3.3.2. Biomass Estimation

To obtain the biomass of each GLAS footprint, the dry weights of each canopy layer were acquired
first according to Equation (7). Therefore, the biomass at a GLAS footprint level can be calculated
by Equation (8).

Mi = a× (CTHi)
b
× (CCi)

c + d (7)

BGLAS =

∑N
i=1 Mi

SGLAS
(8)

where M represents the dry weight of each layer; a, b, c, and d were the constant parameters to be
determined; and SGLAS was the area of a GLAS footprint.

3.4. Two Other Biomass Models for Comparison

In addition to the CHL-BEM, we also implemented the other two biomass estimation models to
use for comparison. They were: The canopy top height biomass estimation model (CTH-BEM) and
the canopy top height & canopy cover biomass estimation model (CTH&CC-BEM). The CTH-BEM
only employs CTH as the key input parameter for biomass estimation, whereas CC was added in
the CTH&CC-BEM in addition CTH. It should be noted that one CTH value and one CC value were
acquired within a GLAS footprint because these two models treated all trees as a whole without
stratification. Equations (9) and (10) for the CTH-BEM and CTH&CC-BEM were defined as:

BCTH−BEM
GLAS =

a1 × (CTH)b1 + c1

SGLAS
(9)

BCTH&CC−BEM
GLAS =

a2 × (CTH)b2 × (CC)c2 + d2

SGLAS
(10)

where a1, b1, c1, a2, b2, c2, and d2 were constants to be determined, and SGLAS was the area of a
GLAS footprint.

4. Results and Discussion

4.1. CHL-BEM Estimated Biomass

In Equation (7), four constant parameters were estimated with 30 of the 79 GLAS footprints by
using the optimization software package 1stOpt (a = 1983.916, b = 1.050, c = 1.237, d = 1444.028),
in which R2 was 0.767 and RMSE was 846.131. The remaining 49 GLAS footprints and field-estimated
biomass were used to validate the CHL-BEM estimated biomass.

Figure 6 shows that the CHL-BEM obtained a relatively high accuracy in the estimation of biomass
at the GLAS footprint level (R2 = 0.741, RMSE = 0.487, %RMSE = 24.192). Moreover, the fitted line is
very close to the 1:1 line. Though we acquired a satisfactory biomass estimation result at the GLAS
footprint level, it should be noted that some limitations still exist.

First, a limitation from the RLM Gaussian decomposition method. Though RLM has shown
success in addressing the challenging hypothesis that each vegetation Gaussian signal corresponds to
a particular canopy height layer, it failed in a few GLAS footprints where the tree height was evenly
distributed in the vertical direction. In addition, some GLAS waveform data were recorded in winter
when the shape of Populus euphratica was irregular, which caused the canopy layer to not form a
Gaussian signal. Therefore, the RLM Gaussian decomposition method still needs to be improved to
take the above two issues into account.
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Second, a limitation from the parameter fitting in the CHL-BEM. In Section 3.3.2, a, b, c, and d
were set the same across canopy height layers. Though this reduced the complexity and improved
the applicability of the model, there should exist some difference in those parameters for each canopy
layer. Therefore, an automated parameter setting method for different canopy height layers would
help to improve the biomass estimation accuracy.

Third, a limitation of the universality in fitting study sites with complex terrain and various
vegetation. Our study site was located in a very flat region where the only dominant species was
Populus euphratica, at least in the 79 GLAS footprints. It should be noted that the CHL-BEM needs
to be refined when the terrain becomes not as flat. On the other hand, the CHL-BEM should be
improved to accommodate more forest types, especially for mixed forests that consist of a variety of
vegetation species.

Finally, we have to admit that some errors were introduced due to the different data acquisition
times between the field survey and the GLAS waveform data. However, we could not avoid this
problem because (1) the latest GLAS data were available in 2009; (2) the spatial distribution of GLAS
footprints and Populus euphratica are sparse, and, therefore, very few GLAS data could be used to
validate our method. Though the biomass of Populus euphratica continued to grow during those years,
the impact of this growth on the accuracy assessment of the statistical biomass estimation models
would not be significant because all Populus euphratica trees were growing at the same time.
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Figure 6. The relationship between the canopy height layering biomass estimation model (CHL-BEM)
estimated biomass and field-estimated biomass.

4.2. CHL-BEM vs. Other Two Biomass Models

The comparison results of the three different biomass estimation models at the GLAS footprint level
are shown in Table 1, which indicates that the CHL-BEM (R2 = 0.741, RMSE = 0.487, %RMSE = 24.192)
obtained higher accuracy than both the CTH-BEM (a1 = 9.025 × 10−4, b1 = 2.670, c1 = 1.075, R2 = 0.210,
RMSE = 0.847, %RMSE = 40.025) and the CTH&CC-BEM (a2 = 2060.602, b2 = 0.844, c2 = 0.996,
d2 = 1508.274, R2 = 0.522, RMSE = 0.661, %RMSE = 32.829). Accordingly, three conclusions can
be drawn:
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(1). The CTH-BEM obtained the lowest accuracy among the three models. This was mainly caused
by the distribution characteristics of Populus euphratica in the horizontal and vertical directions.
In the vertical direction, the height of Populus euphratica ranges from 5 to 19 m within some GLAS
footprints. The CTH-BEM only utilizes the maximum height for biomass estimation, which leads
to poor accuracy. In the horizontal direction, the spatial distribution of Populus euphratica is quite
sparse and uneven. Canopy cover not being considered in the CTH-BEM also leads to a poor
biomass estimation accuracy. Therefore, the canopy height layering methods for both canopy
height and canopy cover must be considered to address the abovementioned issues.

(2). The CTH&CC-BEM obtained a relatively higher accuracy than the CTH-BEM, but it was still not
ideal. Results showed that the CTH&CC-BEM gained a higher accuracy than the CTH-BEM,
which was mainly because the canopy cover was considered as an additional key input parameter.
As we all know, breast diameter is a key indicator of biomass estimation, but we cannot acquire
this information from GLAS data. Some existing research has confirmed that a positive correlation
exists between canopy cover and breast diameter [17,52,53]. Therefore, considering the canopy
cover improved the biomass estimation results.

(3). The CHL-BEM obtained the highest accuracy among the three models. Though there still exist
some limitations, as mentioned in Section 4.1, it achieved a satisfactory accuracy in biomass
estimation. This was mainly because the CHL-BEM divided all trees within a GLAS footprint
into multiple height layers and used the layered canopy height and canopy cover for biomass
estimation. Therefore, we suggest that canopy height layering methods should be further explored
to improve forest biomass estimation accuracy in future work. The newly developed CHL-BEM
can be applied on other full-waveform LiDAR data such as GEDI.

Table 1. Comparison of three different GLAS biomass estimated models. In this table, x represents the
model-estimated biomass, and y represents the field-estimated biomass.

Models Input Fitting Equation R2 RMSE %RMSE

CTH-BEM Height y = 1.0475x − 0.0508 0.210 0.847 42.025
CTH&CC-BEM Height and CC y = 1.0584x − 0.0723 0.522 0.661 32.829

CHL-BEM Layered Height and CC y = 0.9691x + 0.105 0.741 0.487 24.192

5. Conclusions

This research developed a novel biomass estimation model (CHL-BEM) with full-waveform
LiDAR (ICESat/GLAS) that could utilize the metrics from multiple canopy height layers as key input
parameters. The CHL-BEM not only considered the vertical structure information of each canopy
height layer but also took the canopy cover at the horizontal direction into account. By comparison
with the CTH-BEM and CTH&CC-BEM models, we confirmed that the canopy height layering step
played vital roles in biomass estimation for large footprint full-waveform LiDAR data. As a whole,
we expect that our method will advance all full-waveform LiDAR development and applications, e.g.,
the newly launched GEDI.
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