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Abstract: Vegetation water content (VWC) is recognized as an important parameter in vegetation
growth studies, natural disasters such as forest fires, and drought prediction. Recently, the Global
Navigation Satellite System Interferometric Reflectometry (GNSS-IR) has emerged as an important
technique for monitoring vegetation information. The normalized microwave reflection index
(NMRI) was developed to reflect the change of VWC based on this fact. However, NMRI uses
local site-based data, and the sparse distribution hinders the application of NMRI. In this study, we
obtained a 500 m spatially continuous NMRI product by integrating GNSS-IR site data with other
VWC-related products using the point–surface fusion technique. The auxiliary data in the fusion
process include the normalized difference vegetation index (NDVI), gross primary productivity (GPP),
and precipitation. Meanwhile, the fusion performance of three machine learning methods, i.e., the
back-propagation neural network (BPNN), generalized regression neural network (GRNN), and
random forest (RF) are compared and analyzed. The machine learning methods achieve satisfactory
results, with cross-validation R values of 0.71–0.83 and RMSEs of 0.025–0.037. The results show a
clear improvement over the traditional multiple linear regression method, which achieves R (RMSE)
values of only about 0.4 (0.045). It indicates that the machine learning methods can better learn
the complex nonlinear relationship between NMRI and the input VWC-related index. Among the
machine learning methods, the RF model obtained the best results. Long time-series NMRI images
with a 500 m spatial resolution in the western part of the continental U.S. were then obtained. The
results show that the spatial distribution of the NMRI product is consistent with a drought situation
from 2012 to 2014 in the U.S., which verifies the feasibility of analyzing and predicting drought times
and distribution ranges by using the 500 m fusion product.
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1. Introduction

In recent years, with the development of imaging spectrometry, using remote sensing data to detect
the chemical characteristics of vegetation has become an important topic in the study of global change.
Vegetation water content (VWC) has been recognized as a key variable for assessing crop physiological
status, due to its close association with plant transpiration, photosynthesis, vegetation stress, and
biomass productivity [1]. The water deficit directly affects the physiological and biochemical processes
and morphological structures of plants, thus affecting growth. Knowledge of vegetation moisture can
guide accurate irrigation, forecast yield, evaluate natural droughts, and predict forest fires and other
natural disasters [2,3]. Therefore, the estimation of high-precision and long time-series VWC products,
especially during key phenological stages, is important for vegetation research. The conventional
field-based methods for VWC measurement are destructive and labor-intensive, especially in large
areas with great within-field variabilities in soil infiltration characteristics or microtopography [4]. As
an alternative, remote sensing techniques, with which it is easier to acquire long time-series VWC
spatial information over a wide range nondestructively, can overcome the above shortcomings [5].

There is a long history of using remote sensing data to estimate vegetation water information.
Commonly used remote sensing technologies include optical and microwave remote sensing. The
former refers to the remote sensing technology that detects the target surface objects by using the
reflection characteristics of the visible light band. The latter refers to the remote sensing technology of
microwave electromagnetic wave with a wavelength of 1~1000 mm and can be divided into active
remote sensing and passive remote sensing according to its working principles. For optical remote
sensing, some empirical methods exploit the obvious correlation between biophysical parameters, such
as the Normalized Difference Vegetation Index (NDVI) [6], land surface temperature (LST) [7], and other
variables, to assess VWC. Moreover, a reduction in VWC will cause variations in spectral reflectance.
Red, the near-infrared (NIR), and the short-wave infrared (SWIR) bands are sensitive to vegetation
water stress and are used to compose various water indices to indicate VWC [8]. Common indices
include the normalized difference water index (NDWI) [9], the normalized difference infrared index
(NDII) [10], the simple ratio water index (SRWI) [11], and the global vegetation water moisture index
(GVMI) [12]. Meanwhile, microwave remote sensing also has been used to estimate VWC, since the
dielectric constant of water and dry vegetation differs significantly, and thus the amount of water stored
in vegetation directly affects how microwave radiation interacts with vegetation canopies. For active
microwave remote sensing, studies have shown that the scattering coefficients and the polarization of
signals are sensitive to VWC [13]. Kim et al. [14] and Srivastava et al. [15] suggested that retrieving
VWC using the L-band radar vegetation index (RVI) and HV radar backscattering was feasible. For
passive microwave remote sensing, researchers have also illustrated the feasibility of detecting VWC
based on brightness temperature, owing to its effect on the emissivity of the canopy [16,17].

Although the spatial resolution of VWC obtained by optical remote sensing inversion is usually
high, the optical images are vulnerable to cloud and fog, resulting in missing information. In comparison,
owing to the long wavelength of microwave signals, they usually have strong penetrative abilities and
are not affected by cloud cover. However, microwave signals can not only penetrate clouds, but also
the thickest vegetation canopies, and, therefore, the measured vegetation information from microwave
signals is affected by the roughness of the ground, soil moisture, and other factors [18]. Furthermore,
compared with optical-based data, microwave data usually have a coarse spatial resolution, which
limits their potential in some fine-scale applications. In recent years, there have been some studies
combining these two kinds of data to retrieve VWC with a higher resolution [19,20]; however, the
huge spatial resolution difference between optical and microwave remote sensing products makes the
accuracy and spatial resolution of the fusion results poor in practical applications. Therefore, other
superior methods to retrieve VWC are needed.

Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) provides us with
a new mode to monitor the vegetation information in a long time series. It acts as a relatively new
L-band remote sensing technique with relevance for measuring vegetation state using reflected GNSS
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signals by recording the interference between a direct GNSS signal and a reflected GNSS signal [21].
Daily VWC information can be acquired in a network named EarthScope Plate Boundary Observatory
(PBO) H2O based on GNSS-IR technique [21]. Martin [22] first proposed to use reflected GPS signals
to measure sea level from space in 1993. It was subsequently expanded to a variety of ground, aircraft,
and space-based platforms for studies of soil moisture [23], ocean winds [24], sea ice [25], ocean
tides [26,27], snow [28], and vegetation. For vegetation, many researchers [29–31] have used GPS
reflections to retrieve vegetation parameters. Wan et al. [32] proposed a method of retrieving VWC
from the GPS signal-to-noise ratio (SNR) data. They also showed that there is an approximately linear
relationship between the amplitudes of the SNR data and VWC when the water content of vegetation
is less than 1 kg/m2. However, when the value exceeds this level, the relationship does not exist,
which limits the inversion accuracy. Larson and Small [21] illustrated that the amplitude of the direct
and reflected GNSS interferometric signal is related to the change of VWC, and an index termed the
normalized microwave reflection index (NMRI), which is positively related to the change of VWC,
was defined. The NMRI is calculated based on the observables of carrier phase and pseudorange on
which the soil moisture has a smaller effect than vegetation growth, which can reliably remove the
effects of soil moisture. Moreover, the NMRI was validated at four grassland sites in Montana, and the
results showed that NMRI is correlated strongly with VWC [33]. Furthermore, compared with other
methods of measuring VWC, the NMRI value of vegetation can be obtained each day in the PBO H2O
network database, with a higher temporal resolution. The previous studies show that GNSS-IR NMRI
data have better potential advantages in detecting the change of VWC than the traditional remote
sensing techniques. However, the above mentioned GNSS-IR data in the PBO H2O network database
are geodetic-quality ground-site-based observations with a footprint of only 1000 m2 and the GPS sites
are sparsely distributed. Therefore, observations of NMRI cannot be obtained in areas beyond the
site footprint or where GPS sites are not set, which restricts the application of NMRI products based
on GNSS-IR. Fortunately, the development of point–surface fusion techniques, which can generate
data from point scale to surface scale, has provided us with an efficient approach to obtain spatially
continuous NMRI map. Therefore, it is required to solve the problem of the wider application of NMRI
products based on GNSS-IR.

In this study, we propose the idea of fusing site-level NMRI products and optical remote sensing
VWC-related indices using machine learning methods to compensate for the spatial limitations of
GNSS-IR dataset. By means of correlation analysis, we selected the vegetative and meteorological
indices that are highly correlated with the GNSS-IR VWC-related index NMRI. The point–surface
fusion model was then established by using the indices and NMRI at the station, to realize the goal
to produce a spatially continuous NMRI map. Due to the spatial variation and complex nonlinear
relationship between the above indices and NMRI, it is difficult to map NMRI from satellite-based
vegetation index datasets using traditional linear statistical regression algorithms, especially over
regions with heterogeneous environments. Compared with the traditional algorithms, machine
learning techniques have been reported to be excellent in dealing with complex nonlinear problems,
and have advantages in exploring the hidden features and relationships within datasets. Therefore, we
analyzed the performance of three machine learning regression algorithms, i.e., the back-propagation
neural network (BPNN) [34], the general regression neural network (GRNN) [35], and random forest
(RF) [36], to construct nonlinear models.

The rest of this paper is organized as follows. Section 2 presents the study area, the data used
in this study, and the correlation analysis. Section 3 introduces the fusion models and the statistical
methods used for evaluation. Section 4 evaluates the experimental results and analysis. Finally, the
conclusions and future research are summarized in Section 5.
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2. Study Area and Materials

2.1. Study Area

The western part of the continental U.S. (CONUS) in the range of latitude and longitude between
32 ◦N–49 ◦N and 125 ◦W–102 ◦W was selected as the study area in this research (Figure 1), since nearly
all the PBO H2O sites used for NMRI monitoring are distributed in this region. In addition, to the best
of our knowledge, the PBO H2O network in the west of the CONUS is the only operational network
based on the GNSS-IR principle to produce archived and publicly available vegetation information
products. Meanwhile, serious drought events occurred in this region during 2012–2014, and VWC is
recognized as a key indicator for drought monitoring and prediction. This can provide a validation
method for us to evaluate the fusion results through the drought events.
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Figure 1. Study area in the western part of the CONUS. (a) Study area and PBO H2O sites (https:
//gnss-h2o.jpl.nasa.gov/index.php). (b) Land cover map in 2015 (http://maps.elie.ucl.ac.be/CCI/viewer/
index.php).

Large areas of land cover in the western part of the CONUS consist of low vegetation types, such
as shrubland, grassland, and cropland, except the regions in the western of Washington, Oregon along
the Pacific Ocean, and central and eastern part of Idaho, where the main topography is mountain
dominated by tree cover (Figure 1b). The land cover map is from the European Space Agency Climate
Change Initiative (ESACCI) project (http://maps.elie.ucl.ac.be/CCI/viewer/index.php) [37,38]. The
climate of the study area is known to be arid to semi-arid with three typical climate types: the temperate
oceanic climate, Mediterranean climate, and plateau mountain climate [39]. The oceanic climate along
the Pacific coast is warm in winter and cool in summer, with abundant rainfall. The dry climate of
the western plateau is an inland climate, and the annual temperature difference of the plateau area is
large. The Mediterranean climate is characterized as mild and wet in winter and warm and dry in
summer [40].

2.2. Data Resources

2.2.1. The Normalized Microwave Reflection Index (NMRI)

The NMRI was first proposed by Larson and Small [21]. NMRI is an index reflecting the change
of VWC estimated from data archived by GNSS instruments deployed for geodetic applications. GNSS
satellites transmit L-band microwave signals, and some of this energy is reflected by the surface
surrounding the antenna, which causes the multipath effect. Then, the GPS receivers receive the
interference signal of the direct signal and reflected signal. The VWC variation can be estimated by
the GNSS-IR system, since the multipath effect of GNSS satellites changes due to the existence of
vegetation cover on the ground, as the amplitude of the GPS interferometric signal varies with the
change of VWC. Based on this, the NMRI is defined, which increases as VWC increases. For the
principle of the GNSS-IR technique and the detailed calculation process of NMRI, we refer the readers

https://gnss-h2o.jpl.nasa.gov/index.php
https://gnss-h2o.jpl.nasa.gov/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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to the Appendix A. Furthermore, the NMRI was validated at four sites in Montana, and the results
showed that the NMRI is correlated strongly with VWC and NDVI [33]. Recently, the NMRI was also
used to evaluate the vegetation response to a recent drought in California, U.S., and was compared
with the optical-based remote sensing NDVI [40].

The NMRI data used in this study were obtained from the PBO H2O Data Portal (https://gnss-h2o.
jpl.nasa.gov/index.php) [41], which up to now is the only operational network based on the GNSS-IR
principle to produce archived and publicly available vegetation information products. There are
329 PBO H2O sites that meet the requirements within the study area, as shown in Figure 1a. At the
locations of these PBO H2O sites, the types of land cover include shrubland, cropland, grassland, and
savanna. The study period is from January 1, 2007, to December 31, 2016. The daily NMRI data can be
obtained for each site.

2.2.2. Indices Related to the VWC

In this paper, six indices related to VWC in biological and meteorological mechanisms, i.e., NDVI,
NDWI, NDII, gross primary productivity (GPP) [42], leaf area index (LAI) [43], and precipitation are
used to evaluate their potentiality as auxiliary datasets through correlation analysis [6,44,45].

NDVI, representing greenness, is computed from the Moderate Resolution Imaging
Spectroradiometer (MODIS) reflectance in the Red and NIR bands. GPP refers to the total organic
carbon fixed by photosynthesis in unit time and area, including autotrophic breathing and heterotrophic
breathing. LAI refers to the ratio of total leaf area to land area, representing the density of vegetation.
NDWI and NDII, representing water content, are calculated from the MODIS reflectance in the Red and
SWIR1 (SWIR2) bands. All the vegetation indices mentioned above can be downloaded from the NASA
Land Processes Distributed Active Archive Center (LP DAAC) (http://ladsweb.nascom.nasa.gov). The
specific products used in this study are listed in Table 1.

Table 1. Indices used in the study.

Index Resolution Product Period

NMRI [37] Daily/site-based PBO H2O 2007.01.01–2016.12.31
NDVI [6] 16 day/500 m MOD13A1 2007.01.01–2013.12.31
NDWI [9] 8 day/500 m MOD09A1 (bands 2,5) 2007.01.01–2013.12.31
NDII [10] 8 day/500 m MOD09A1 (bands 2,6) 2007.01.01–2013.12.31
GPP [42] 8 day/500 m MOD17A2H 2007.01.01–2013.12.31
LAI [43] 8 day/500 m MCD15A2H 2007.01.01–2013.12.31

Precipitation [46] Daily/25 km TRMM_3B42RT_Daily 2007.01.01–2013.12.31

Footnote: NMRI (Normalized Microwave Reflection Index), NDVI (Normalized Difference Vegetation Index),
NDWI (Normalized Difference Water Index), NDII (Normalized Difference Infrared Index), GPP (gross primary
productivity), LAI (leaf area index).

Precipitation is a very important meteorological parameter for the understanding of land surface
processes and global climate change and plays a key role in the growth of vegetation. Therefore, we
also added the precipitation variable into the experimental process. The TRMM_3B42RT_Daily product
produced by the NASA GES DISC was chosen for the analysis [46]. We analyzed these potential indices
related to VWC in Sections 3.1 and 4.1 in details to determine the model input.

3. Methodology

The objective of the proposed method is to obtain spatially continuous NMRI products by fusing
optical remote sensing VWC-related indices. Specific process of the point–surface fusion model used
in this study is described below, and a flowchart of the method is shown in Figure 2.

(1) Data processing and dataset selection. Firstly, we removed outliers from the dataset and
unified the temporal and spatial resolutions to 16 days and 500 m. Then, we analyzed the correlation
between the variables and select the best auxiliary dataset.

https://gnss-h2o.jpl.nasa.gov/index.php
https://gnss-h2o.jpl.nasa.gov/index.php
http://ladsweb.nascom.nasa.gov


Remote Sens. 2019, 11, 1440 6 of 23

(2) Dataset building. We identified all the NDVI, GPP, and precipitation data corresponding to
the longitude and latitude coordinates of NMRI at the PBO H2O sites, and the dataset was built with
NDVI, GPP, and precipitation, along with longitude, latitude, and date.

(3) Model construction. With the dataset constructed as input, the corresponding NMRI values
were used as targets. Machine learning models were built, and a 10-fold cross-validation method was
used to validate the effectiveness of the models.

(4) Prediction. VWC-related indices of the grids were used as the input to the models. A
spatially continuous 500 m NMRI product was obtained, and VWC information, where PBO H2O sites
are not located, could be acquired.
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Figure 2. Flowchart of the point–surface fusion model used in this study.

3.1. Data Processing and Dataset Selection

An NDVI less than 0 and GPP (LAI) greater than 30,000 (248) are removed to eliminate the
effects of ice- and snow-covered areas, water bodies, buildings, and other features. (The thresholds
are based on the Product User’s Guide provided by NDVI, GPP, and LAI data source website,
http://ladsweb.nascom.nasa.gov).

To uniformize the temporal resolution, all datasets are averaged to 16 days. Because the spatial
resolution of precipitation is different from other auxiliary data, the precipitation product with a spatial
resolution of 25 km is resampled to 500 m by the nearest neighbor interpolation method based on the
assumption that the precipitation is the same within a certain range. For each GPS site, the auxiliary
variable value corresponding to the longitude and latitude of NMRI is extracted from the image. The
data pairs of NMRI, and the auxiliary variables of 329 sites for 10 years, are obtained.

The approach of auxiliary datasets selection is based on correlation analysis. Firstly, for every
vegetation type, a long time series variation between NMRI and auxiliary variables over the ten years
from 2007 to 2016 are analyzed to verify the covariance between them. Then, for each site, the Pearson
correlation coefficient (R) between each auxiliary variable and NMRI is calculated. Meanwhile, the R

http://ladsweb.nascom.nasa.gov
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among the auxiliary variable for all the 329 sites is counted to eliminate the redundancy of datasets.
Finally, the dataset is selected based on the following main requirements: (1) physical and chemical
significance for the change of VWC. (2) a strong correlation with NMRI; (3) reduced data redundancy.
The detailed discussion of the correlation analysis can be found in Section 4.1.

3.2. Machine Learning Methods

3.2.1. Back-Propagation Neural Network (BPNN)

The BPNN is the most common neural network algorithm. It is simply a gradient descent method
designed to minimize the total error (or mean error) of the output computed by the network. It has the
advantage of good self-adaptation, self-learning, robustness, and generalization. Therefore, the BPNN
has been widely used in many fields, such as function approximation, regression, image processing,
pattern recognition, and so on [47]. There is always one input layer, one output layer, and at least one
hidden layer in the network. The regression model is trained with the use of forward propagation and
backward propagation. Finally, the prediction samples are input into the trained network, and the
final prediction results are obtained.

3.2.2. Generalized Regression Neural Network (GRNN)

The BPNN is a well-known neural network algorithm. However, it has the disadvantages of slow
convergence and easily convergence to local minima. Another neural network, the GRNN, which is
a special form of a radial basis function neural network, was proposed by Specht [40]. The GRNN
improves the local approximation ability and learning speed, because the hidden nodes of the GRNN
are often connected by a Gaussian function, which is locally distributed and attenuated to the center of
the radial symmetry [48]. Meanwhile, compared with the popular feedforward neural networks, the
GRNN has the advantages of a relatively simple structure, rapid training, low computational cost, and
global convergence. GRNN contains three layers, i.e., an input layer, a radial basis hidden layer, and a
special linear output layer. The input variables are transferred to the radial basis hidden layer from the
input layer through a transfer function, which is always a Gaussian function. The output of the radial
basis hidden layer is then not directly connected with the linear output layer but is first transmitted by
a dot function and then connected to the output layer by the linear transfer function to calculate the
network output. The structure of the GRNN algorithm is shown in Figure 3. In our study, the input
signals are date, latitude, longitude, NDVI, GPP, and Precipitation, and the output parameter is NMRI.
GRNN model is implemented by using the neural network toolbox of MATLAB.
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3.2.3. Random Forest (RF)

The RF model was first proposed by Breiman [36]. The RF model is a nonlinear statistical ensemble
bagging method that constructs and subsequently averages many randomized de-correlated decision
trees for classification and regression purposes [49]. For a regression problem, RF is a flexible and
practical method that has the following characteristics: (1) it is unexcelled in accuracy among the
current algorithms, and runs efficiently on large databases; (2) it can handle thousands of input
variables without variable deletion; (3) it generates an internal unbiased estimate of the generalization
error as the forest building progresses; and (4) it features an effective method of estimating missing
data and maintains accuracy when a large proportion of the data are missing. Based on the above
advantages, the RF model has been widely used in the establishment of regression relations, and good
prediction results have been obtained [50,51].

In regression, RF employs recursive partitioning to divide the data into many homogeneous
subsets, and multivariate regression trees are built using a deterministic algorithm. The results of all
the trees are then averaged. In each subset, each tree is independently grown to its maximum size
based on a bootstrap sample from the training dataset, without any pruning, and the ensemble predicts
the data that are not in the tree (the out-of-bag (OOB) data). The regression tree is built by selecting a
random set of predictors (the dataset) and response variables (the target) by a set of decision rules.
The rules are constructed based on recursively partitioning the input space into successively smaller
regions, which are determined by binary splits. By calculating the difference in the mean-square error
between the OOB data and the data used to grow the regression trees, the RF algorithm provides an
error for the prediction called the OOB error of the estimate for each variable. The binary splits in the
feature space are then selected by minimizing the difference in a cost function, between the response
variable and the predicted response that would result from a specific split. The final output is the
model in the form of a tree, with the branches corresponding to the splitting rules and terminal nodes
corresponding to the mean response for a particular set of decision rules [49]. In our study, the RF
model is implemented based on the package compiled with MATLAB and Visual C++ express edition,
downloaded from Google code (https://code.google.com/archive/p/randomforest-matlab/downloads).

3.3. Traditional Multiple Linear Regression (MLR) Method for Comparison

The MLR algorithm is a common regression method. In this study, the relationship between
NMRI and its corresponding NDVI, GPP, and precipitation was established by MLR:

NMRI = b0 + b1 × NDVI + b2 × GPP + b3 × Precip (1)

where b0 is the intercept for NMRI prediction and b1–b3 are regression coefficients for the predictor
variables, calculated by the least-squares method.

3.4. Validation Methods and Evaluation Indicators

In this paper, the 10-fold cross-validation method [52] is applied to verify the validity of the
five point–surface fusion methods. The basic idea is to divide the original datasets randomly into
10 equal-sized parts. Nine parts are then used as the training set for model fitting, and the remaining
part is used as the validation dataset for model testing. We then repeat the process 10 times so that
every part is tested. Finally, the 10 results can be averaged to produce the final estimation called the
“cross-validation results”, and the model with the maximum correlation coefficient is selected as the
best fitting model for the later prediction. To verify the effectiveness of each model, the training sets
and the test sets are quantitatively evaluated. The indicators are R and the RMSE.

https://code.google.com/archive/p/randomforest-matlab/downloads
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4. Experiment and Analysis

4.1. Dataset Selection

Figure 4 shows the long time-series variation diagrams of the seven indices over the four vegetation
types. For all four vegetation types, the general trend of NMRI is consistent with that of NDVI, and it
shows obvious annual cycle variability with one peak. GPP and LAI have similar variation trends
and are more consistent with NMRI. For NDWI and NDII, the annual variation cycle is obvious but
different from that of NMRI with two peaks in each cycle. Then, we analyzed the correlation between
NMRI and other VWC-related indices among the 329 sites during the 10 years, as shown in a statistical
bar chart featuring the number of sites in different ranges of correlation coefficients (R) in a 10 year
range and the statistical distribution box charts of the R among the 329 sites of each year (Figure 5).
The distribution of the R in each year is about the same. For NDVI, the R of most of the sites is between
0.2 and 0.6. For NDWI and NDII, their correlation with NMRI is much lower than that of NDVI, with
most of the sites concentrated in the range of 0 to 0.4. When it comes to GPP and LAI, the results are
clearly different. The correlation between GPP (LAI) and NMRI is very high with R of most of the sites
concentrated on 0.6–0.9 (0.5–0.8). However, R values between precipitation and NMRI are relatively
low, between −0.4 and 0.4, and the distribution of positive and negative values is symmetrical.
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Figure 4. The long time-series variation diagrams of the seven indices over the four vegetation types:
(a) Savannas; (b) cropland; (c) shrubland; (d) grassland.
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Based on the above analysis, the conclusion can be drawn that the overall correlation between
NMRI of GPP and LAI is the highest, NDVI is the second, NDWI and NDII are smaller still, and
precipitation is the lowest. Then, to reduce data redundancy, we analyzed the correlation between
the six VWC-related indices during the 10 years (Figure 6). It indicates that the correlation between
GPP and LAI is particularly high, in that the R can reach 0.9. Finally, the ultimate fusion input
datasets are formed by NDVI, GPP, and precipitation, along longitude, latitude, and date, considering
requirements in Section 3.1. The longitude, latitude, and date were added to introduce temporal and
spatial information. The NDWI and NDII were removed owing to their low correlation with NMRI.
The meteorological factor precipitation was retained for the change of precipitation directly causes the
change of soil moisture, which may have a lag effect on the growth of vegetation and the variation of VWC.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 23 
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4.2. Performance of the Models

4.2.1. Overall Performance of the Models

Figure 7 shows the quantitative evaluation results and scatter diagrams of the 10-fold
cross-validation performance of the three machine learning models compared with MLR. In model
fitting, R values range from 0.44 to 0.88, and RMSEs from 0.25 to 0.46. In the cross-validation results,
a similar trend appears with no obvious overfitting phenomenon, which proves the validity and
applicability of the trained models. Compared to traditional MLR, the RMSE values of the machine
learning methods are less than 0.037 and R values are greater than 0.7, but the R (RMSE) of MLR is only
about 0.4 (0.046). The machine learning methods show obvious superiority, as they are better to simulate
the complex nonlinear relationship and the hidden features within the datasets. When comparing the
three machine learning methods, we find that RF performs the best, with the R of RF greater than 0.80
and the RMSE less than 0.03, followed by GRNN and BPNN. From the scatter diagrams, the models
somewhat overestimate the NMRI when the NMRI values are low, and underestimate when the NMRI
values are at a higher degree; this phenomenon is particularly evident in MLR. Among all the methods,
the RF model obtains the best results, the point distribution is the densest near the fitting line, and
the maximum slope is obtained. This is followed by BPNN and GRNN with a more dispersed scatter
diagram. Similarly, the results of MLR are still the worst.
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random, makes the estimated results more robust. Comparing the two machine learning methods 
with relatively poor results, the sites where R values for BPNN are worse than those of GRNN are 
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4.2.2. Model Performance for Each Site

To further analyze the spatial performance of the models, the R and RMSE values between the
observed and estimated NMRI using these models over the 329 sites was calculated, and the results
are presented in Figure 8. MLR has a significantly poor performance, with the R values of most sites
lower than 0.7 and RMSE values higher than 0.03. The R values of 261 out of 329 sites for the RF model
are greater than 0.7, and only 226 (203) out of 329 sites for the GRNN (BPNN) model are greater than
0.7. Meanwhile, 95% of the total sites report an RMSE of less than 0.03 for the RF model, and only 67%
(55%) report an RMSE of less than 0.03 for BPNN (GRNN). This shows that, in terms of both R and
RMSE, the RF results are superior to those of BPNN and GRNN in most sites. The randomness of RF,
which is manifested in choosing observations at random and choosing features at random, makes the
estimated results more robust. Comparing the two machine learning methods with relatively poor
results, the sites where R values for BPNN are worse than those of GRNN are mainly concentrated in
the eastern area with sparse site distribution, while the sites where RMSE values for BPNN are better
than those of GRNN are mainly concentrated in the western coastal area, with dense site distribution.
This is mainly due to the fact that BPNN has a disadvantage of easily converging to local minima,
whereas GRNN improves the local approximation ability and has the advantage of global convergence.
Therefore, GRNN is more stable and less sensitive to the density of site distribution than the BPNN.

Based on the comparison and analysis of the overall accuracy and the performance for each site
with these models, we can summarize that the machine learning methods show an obvious superiority
over the traditional linear fitting methods, and among the three machine learning methods, RF shows
the best performance. BPNN and GRNN have slightly poor performance, and their overall performance
is comparable.
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4.3. Point–Surface Fusion Results of NMRI

Owing to the good prediction ability of the RF model, a spatially continuous 500 m spatial
resolution NMRI product was obtained. Figure 9 shows the fused NMRI map compared with the
NDVI and GPP in summer and winter. The blank area in the map is unable to be retrieved because the
auxiliary data has been removed for the effects of ice- and snow-covered areas, water bodies, buildings,
and other features. In general, the spatial distributions of the NMRI are consistent with that of NDVI
and GPP. That is, in summer, the three indices are reported to have higher values in the middle of the
northern region and the north-east corner, whereas the southern region and the central inland region
are lower. When it comes to the winter condition, the spatial distribution changes significantly, but the
consistency between the three indices retains. Most areas in the central inland and north-east regions
suffer a reduction of vegetation growth owing to the coming of winter. However, the vegetation in
the areas of the California experience a growth, shown as all the three indices increased obviously
in this region. This is mainly due to special climate of California, Mediterranean climate, which is
characterized as dry, hot in summer and mild and wet in winter. Therefore, in summer the dry and
hot climate will inhibit the vegetation growth, while in winter the suitable mild climate can bring a
growing season to the vegetation [40]. The consistency of NMRI spatial distribution with NDVI and
GPP further proves the accuracy of the point–surface fusion results.
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However, there is still some inconsistency in the NMRI map, such as the higher NDVI and GPP
values in the west of Washington and Oregon along the southern coastal alongside smaller NMRI
values. One of the reasons could be that the vegetation type in this area is mainly tree cover, as shown
in Figure 1b, while the PBO H2O network is always located in sites with low vegetation, like grassland,
cropland, and shrubland. When the NMRI measured by the PBO network directly extends to forests
with tree covers, the index may not be as applicable as before. Furthermore, although a small number
of PBO H2O sites are also distributed in the forest area, they are usually located in open spaces 10 m
away from the nearest trees in the forest. Because these GPS sites are originally designed for a position
needed to reduce multipath effects [40]. Therefore, the current PBO sites are mainly designed to
monitor the water content of nearby shrubs, herbs, mosses, and lichens, but NDVI and GPP products



Remote Sens. 2019, 11, 1440 15 of 23

have a lower spatial resolution and usually measure the vegetation growth condition of all the green
plants in the range, including trees, shrubs, and herbs. As a result, NMRI has some limitations in
higher vegetation areas, which is shown as an underestimation of VWC information.

Meanwhile, there are still some shortcomings in the RF-based NMRI map, e.g., the blocky effect
in Figure 9a,d, which affects the continuity of the whole picture. Such blocky effects have also been
found in other regression studies using RF models [53,54]. This phenomenon is mainly due to the
characteristics of the RF model. RF is a model based on a decision tree, which selects different features
to judge the bifurcation and direction of the decision tree to obtain the final regression result. Therefore,
when the range of the judgment conditions is broad and similar variables are input to the trained model,
multiple distinct input variables can easily correspond to the same output variable, thus producing
the blocky effect. In the point–surface fusion process, the grid data of latitude and longitude have the
same interval and a fixed range, so it is easier for input variables with the same latitude and longitude
to obtain the same prediction value, resulting in a blocky boundary similar to the distribution of the
longitude and latitude in the fusion results. By analyzing the importance of the model variables, we
find that, in the RF regression model, the importance of latitude and longitude ranks in the top three
among all the predictive variables (Figure 10), indicating that the model is too sensitive to the longitude
and latitude variables.
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To conclude, although the blocky effect exists in the fusion results, the overall accuracy and
the trends of spatial distribution of the results will not be affected. After fusing the site-level NMRI
product and optical remote sensing VWC-related indices using machine learning methods, the spatial
limitations of the original NMRI product can be compensated.

4.4. Long Time-Series Variation of NMRI and Drought Events

According to data released by the National Drought Mitigation Center (NDMC), two-thirds of the
U.S. experienced a severe drought in 2012. This drought was the worst drought since the 1950s, which
lasted three years and did not improve until 2015. The NDMC produces Vegetation Drought Index
(VegDRI), a product that indicates the effect of drought on vegetation, in collaboration with the U.S.
Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) and the High
Plains Regional Climate Center (HPRCC) (https://www.drought.gov). Figure 11 shows the distribution
of VegDRI in July for 2010–2016. The area marked by the red box is the research area of this paper.

We chose the worst drought year of 2012 to analyze the seasonal changes of VWC in the western
part of the CONUS according to the monthly average NMRI and NDVI long time-series variation
diagrams of four land cover types (Figure 12). Beginning in March, vegetation begins to grow with the
approach of spring. From April to July, the NDVI values grow to their maximum, and then decrease
with the arrival of autumn and winter. Compared with NDVI, the NMRI performs differently; it begins
to increase in March and reaches the peak value at May, then it experiences a sharp decline owing to
the severe drought in summer, since drought is especially severe in the summer because of the hot

https://www.drought.gov
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and dry climate in the western U.S. As a result, the NMRI index, which can reflect the VWC change
information, is more sensitive than the NDVI index that only reflects a change in the greenness of the
vegetation to the occurrence of a drought event. During the drought period from May to July, NMRI
values for cropland, shrubland, and grassland decreased by 50%, while NMRI values for tree cover
only reduced by 30%. This indicates that the high vegetation types are less affected by drought.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 23 
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Then, we selected July with the worst drought to analyze the inter-annual variation of VWC in
the western part of the CONUS over the decade from 2007 (Figure 13). When the severe drought
in 2012 occurred, the water content of all vegetation types experienced a dip with NMRI fallen by
22% to 50%. NDVI has also experienced a reduction, but not as severe as NMRI (only about 4% to
16%). NMRI and NDVI were recovered and gradually became stable after the drought conditions were
relieved. Similarly, the tree cover was least affected by drought, with NMRI decreasing by 30% and
NDVI decreasing by only 4%. Identical results can be obtained from the previous drought spatial
distribution map (Figure 11). In terms of drought spatial distribution, the regions with severe drought
are mainly concentrated in the central inland region, where the main vegetation types are shrubland
and grassland. Areas with higher vegetation suffer from a weaker drought. Therefore, we will focus
on low-vegetation areas that are more sensitive to drought events in the following analysis.

https://www.drought.gov
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Figure 12. NMRI and NDVI long time-series variation diagrams of four Land cover types in 2012: (a)
tree cover; (b) cropland; (c) shrubland; (d) grassland.
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Figure 13. NMRI and NDVI long time-series variation diagrams of the four land cover types in July
from 2007 to 2016: (a) tree cover; (b) cropland; (c) shrubland; (d) grassland.

Figure 14 selects the 500 m NMRI results in July from 2010 to 2016 as the basis for the analysis
of the changes in VWC during the summer drought. During the non-drought period from 2010 to
2011, the NMRI was normal and higher in the west, north, and central/eastern regions. However, it
is worth noting that there is a marked decrease for NMRI in 2012, especially in the southern part of
the western coastal state of California, the southern part of Idaho, Northeastern Colorado, Northeast
Utah, and Southwestern Wyoming. To analyze the NMRI variation more clearly, the enlarged NMRI
maps in the above-mentioned areas of the four frames from 2011 to 2014 in Figure 14 are shown in
Figure 15. In Figure 15a–d, the four sets of diagrams respectively represent the enlarged NMRI map in
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the four corresponding color boxes in Figure 12. When the severe drought occurred in 2012, most of
the areas in Figure 15a2–d2 were reported to suffer a significant reduction in NMRI compared with
the situation in 2011 with a relatively high level of NMRI. Possible reasons for the decline in NMRI
and the drought event are climate conditions and vegetation types in these regions. California is a
Mediterranean climate, which is dry and hot in summer; Wyoming is dry and always has little rain;
Southern Idaho is dominated by a continental climate with less precipitation; and Northeast Utah
has a slightly larger Salt Lake desert, with lower annual precipitation and a drier climate. These
dry climates lead to a significant reduction in NMRI. Moreover, as shown in the land cover map in
Figure 1b, the vegetation types where the most severe drought event occurred mainly consist of low
vegetation, such as shrublands, grasslands, and croplands, which were proven to be more vulnerable
to drought in Section 4.2. The situation was similar in 2013 and 2014, but not as severe as in 2012. By
2015, the drought was alleviated, and the NMRI rose, compared to the NMRI from 2012 to 2014, and
then returned to the normal situation, as in 2011.
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Based on the above experimental results, the consistency between the distribution map of NMRI
and that of the drought index indicates that the NMRI shows a significant response to drought events.
NMRI will, thus, be an effective measure to predict the location, occurrence, and duration of drought
events and allow corresponding precautions to be made using relatively high-resolution spatially
continuous NMRI products after point–surface fusion.
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5. Conclusions and Future Research

In this study, we first analyzed the correlation between six VWC-related indices and the NMRI
product, based on GNSS-IR. The three machine learning methods of BPNN, GRNN, and RF were
used to construct point–surface fusion models using data from 2007 to 2016. The results showed that
the machine learning methods outperformed the traditional methods of MLR in the cross-validation
results. Among the three machine learning methods, the results of RF were the best, followed by those
of GRNN and BPNN. Then, by using the RF model, we obtained an NMRI product with a spatial
resolution of 500 m, which compensate for the spatial limitations of the NMRI product in the PBO H2O
sites. Finally, maps of the 500 m spatial resolution NMRI product for the summer from 2010 to 2016
were obtained. The results showed that, during the period from 2012 to 2014, when drought occurred
in the western part of the CONUS, the NMRI value was also significantly reduced, which is consistent
with the drought distribution map. In conclusion, this paper proves the effectiveness of using machine
learning methods to acquire the spatially continuous NMRI product with a point–surface fusion
technique, and verifies the feasibility of analyzing and predicting drought events by using spatially
continuous products with a finer resolution.

In the future, NMRI products can be fused with other VWC-related microwave remote sensing
data to obtain an NMRI product with higher accuracy. Furthermore, other meteorological factors
related to vegetation growth, such as LST, will be added into the model. Statistical distance approaches,
such as the Jeffries Matusita distance [55–58], can be used to assess the statistical separability of
variables and dataset selection. Other machine learning models, or deeper neural networks, will be
used to study the relationship between NMRI and these vegetation indices, to further improve the
accuracy of the model. Due to the fusion with optical remote sensing data, the temporal resolution of
the final fusion result is limited by the optical remote sensing data. In our future work, we will consider
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the idea of combining point–surface fusion and spatial-temporal fusion to improve the temporal
resolution of the NMRI products for the monitoring and prediction of more unexpected disaster events.
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Appendix A. The Procedure to Calculate GNSS-IR Index NMRI

Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) provides us with
a new mode to monitor the vegetation information in a long time series. It acts as a relatively new
L-band remote sensing technique with relevance for measuring vegetation states using reflected GNSS
signals by recording the interference between a direct GNSS signal and a reflected GNSS signal [21].

L-band signals transmitted by GNSS satellites are reflected by the land surface and received by
geodetic-quality GPS antennas a few meters above the ground. It causes the multipath effect and
pseudorange multipath error (M) on the observations. It is found that the existence of vegetation has a
certain effect on the amplitude of the interference between a direct GNSS signal and a reflected GNSS
signal, as it decreases with the increase of vegetation water content. According to the definition and
formula derivation based on M [59], M increases with the increase of the amplitude of the interference.
This provides a possibility for the study of vegetation water content based on M.
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Figure A1. Schematic diagram of monitoring vegetation water content by GNSS-IR.

A database of daily mean MP1rms statistics for each site is routinely compiled by the operators of
the NSF EarthScope Plate Boundary Observatory (PBO), based on which pseudorange multipath error
(M) can be obtained. This original objective of this GPS network is to measure deformation across
active fault zones in the western USA, and the network can also be used to monitor vegetation water
content information according to the above theory. To eliminate the influence on topography and
get a positive-correlation index with the vegetation water content, the index NMRI was obtained by
normalization of MP1rms:

NMRI =
−(MP1rms−max(MP1rms))

max(MP1rms)
(A1)

The maximum MP1rms (shown by the dashed line) is based on the average of the largest 5%
daily MP1rms values. Finally, the index NMRI is defined, which increases as vegetation water content
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increases. The lowest NMRI values (bottom 5% of the observed values) are set to zero; the peak values
rarely exceed 0.35.

References

1. Zhang, C.; Pattey, E.; Liu, J.; Cai, H.; Shang, J.; Dong, T. Retrieving Leaf and Canopy Water Content of Winter
Wheat using Vegetation Water Indices. IEEE J. Stars 2017, 99, 1–15. [CrossRef]

2. Zhang, J.H.; Xu, Y.; Yao, F.M.; Wang, P.J.; Guo, W.J.; Li, L. Advances in estimation methods of vegetation water
content based on optical remote sensing techniques. Sci. China Technol. Sci. 2010, 53, 1159–1167. [CrossRef]

3. Holzman, M.E.; Carmona, F.; Rivas, R.; Niclòs, R. Early assessment of crop yield from remotely sensed water
stress and solar radiation data. ISPRS J. Photogramm. Remote Sens. 2018, 45, 297–308. [CrossRef]

4. Rud, R.; Cohen, Y.; Alchanatis, V.; Levi, A.; Brikman, R.; Shenderey, C. Crop water stress index derived from
multi-year ground and aerial thermal images as an indicator of potato water status. Precis. Agric. 2014, 15,
273–289. [CrossRef]

5. Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L.; Zhang, L. Evaluation and comparison of MODIS Collection
6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces.
Atmos. Environ. 2019, 200, 280–301. [CrossRef]

6. Chuvieco, E.; Riaño, D.; Aguado, I.; Cocero, D. Estimation of fuel moisture content from multitemporal
analysis of Landsat Thematic Mapper reflectance. Int. J. Remote Sens. 2002, 23, 2145–2162. [CrossRef]

7. Jackson, R.D. Remote sensing of biotic and abiotic plant stress. Annu. Rev. Phytopathol. 2003, 24, 265–287.
[CrossRef]

8. Zhang, J.; Guo, W. Quantitative retrieval of crop water content under different soil moistures levels. Proc.
SPIE 2006, 6411, 64110D.

9. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

10. Hardisky, M.A.; Lemas, V.; Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the
spectral radiance of spartina alterniflora canopies. Photogramm. Eng. Rem. Sens. 1983, 49, 77–84.

11. Zarco-Tejada, P.J.; Rueda, C.A.; Ustin, S.L. Water content estimation in vegetation with MODIS reflectance
data and model inversion methods. Remote Sens. Environ. 2003, 85, 109–124. [CrossRef]

12. Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation
water content from remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82,
188–197. [CrossRef]

13. Brakke, T.W.; Kanemasu, E.T.; Steiner, J.L.; Ulaby, F.T.; Wilson, E. Microwave radar response to canopy
moisture, leaf-area index, and dry weight of wheat, corn, and sorghum. Remote Sens. Environ. 1981, 11,
207–220. [CrossRef]

14. Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation
Water Content of Rice and Soybean. IEEE Geosci. Remote Sens Lett. 2012, 9, 564–568.

15. Srivastava, P.K.; O’Neill, P.; Cosh, M.; Lang, R.; Joseph, A. Evaluation of radar vegetation indices for
vegetation water content estimation using data from a ground-based SMAP simulator. In Proceedings of the
IEEE. Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 1296–1299.

16. Calvet, J.C.; Wigneron, J.P.; Walker, J.; Karbou, F.; Chanzy, A.; Albergel, C. Sensitivity of Passive Microwave
Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band. IEEE Trans. Geosci. Remote
Sens. 2011, 49, 1190–1199. [CrossRef]

17. Liu, Y.Y.; De Jeu, R.A.M.; McCabe, M.F.; Evans, J.P.; van Dijk, A. Global long-term passive microwave
satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 2011, 38, L18402. [CrossRef]

18. Entekhabi, D.; Njoku, E.; O‘Neill P., O.; Michael, S.; Jackson, T.; Entin, J.; Im, E.; Kellogg, K. The Soil Moisture
Active Passive (SMAP) Mission. Proc. IEEE 2009. [CrossRef]

19. Dasgupta, S.; Qu, J.J. Combining MODIS and AMSR-E-based vegetation moisture retrievals for improved
fire risk monitoring. Proc. SPIE 2006, 6298. [CrossRef]

20. Wang, Q.; Chai, L.; Zhao, S.; Zhang, Z. Gravimetric Vegetation Water Content Estimation for Corn Using
L-Band Bi-Angular, Dual-Polarized Brightness Temperatures and Leaf Area Index. Remote Sens. 2015, 7,
10543–10561. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2017.2773625
http://dx.doi.org/10.1007/s11431-010-0131-3
http://dx.doi.org/10.1016/j.isprsjprs.2018.03.014
http://dx.doi.org/10.1007/s11119-014-9351-z
http://dx.doi.org/10.1016/j.atmosenv.2018.12.023
http://dx.doi.org/10.1080/01431160110069818
http://dx.doi.org/10.1146/annurev.py.24.090186.001405
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/S0034-4257(02)00197-9
http://dx.doi.org/10.1016/S0034-4257(02)00037-8
http://dx.doi.org/10.1016/0034-4257(81)90020-1
http://dx.doi.org/10.1109/TGRS.2010.2050488
http://dx.doi.org/10.1029/2011GL048684
http://dx.doi.org/10.1109/IGARSS.2008.4779267
http://dx.doi.org/10.1117/12.681147
http://dx.doi.org/10.3390/rs70810543


Remote Sens. 2019, 11, 1440 22 of 23

21. Larson, K.M.; Small, E.E. Normalized Microwave Reflection Index, I: A Vegetation Measurement Derived
from GPS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1501–1511. [CrossRef]

22. Martin-Neira, M. A Passive reflectometry and interferometry system (PARIS) application to ocean altimetry.
ESA J. 1993, 17, 331–355.

23. Masters, D.; Axelrad, P.; Katzberg, S. Initial results of land-reflected GPS bistatic radar measurements in
SMEX02. Remote Sens. Environ. 2004, 92, 507–520. [CrossRef]

24. Garrison, J.L.; Komjathy, A.; Zavorotny, V.U.; Katzberg, S.J. Wind speed measurement using forward scattered
GPS signals. IEEE Trans. Geosci. Remote Sens. 2002, 40, 50–65. [CrossRef]

25. Komjathy, A.; Maslanik, J.; Zavorotny, V.U.; Axelrad, P. Sea ice remote sensing using surface reflected GPS
signals. Geoscience and Remote Sensing Symposium. Proc. IGARSS 2000, 7, 2855–2857.

26. Semmling, A.M.; Beyerle, G.; Stosius, R.; Dick, G.; Wickert, J.; Fabra, F.; Cardellach, E.; Ribó, S.; Rius, A.;
Helm, A.; et al. Detection of arctic ocean tides using interferometric GNSS-R signals. Geophys. Res. Lett.
2011, 38, 155–170. [CrossRef]

27. Larson, K.M.; Ray, R.D.; Nievinski, F.G.; Freymueller, J.T. The Accidental Tide Gauge: A Case Study of GPS
Reflections from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1200–1204. [CrossRef]

28. Cardellach, E.; Fabra, F.; Rius, A.; Pettinato, S.; D’Addio, S. Characterization of Dry-snow Sub-structure
using GNSS Reflected Signals. Remote Sens. Environ. 2012, 124, 122–134. [CrossRef]

29. Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Aguasca, A.; Vall-Llossera, M.; Valencia, E.; Ramos-Perez, I.
Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the
Interference Pattern GNSS-R technique. Radio Sci. 2011, 46. [CrossRef]

30. Rodriguez-Alvarez, N.; Camps, A.; Vall-Llossera, M.; Bosch-Lluis, X.; Monerris, A.; Ramos-Perez, I.;
Valencia, E.; Marchan-Hernandez, J.F.; Martinez-Fernandez, J.; Baroncini-Turricchia, G.; et al. Land
Geophysical Parameters Retrieval Using the Interference Pattern GNSS-R Technique. IEEE Trans. Geosci.
Rem. Sens. 2011, 49, 71–84. [CrossRef]

31. Egido, A.; Caparrini, M.; Ruffini, G.; Paloscia, S.; Guerriero, L.; Pierdicca, N.; Floury, N. Global Navigation
Satellite System Reflectometry as a Remote Sensing Tool for Agriculture. Remote Sens. 2012, 4, 2356–2372.
[CrossRef]

32. Wan, W.; Larson, K.M.; Small, E.E.; Chew, C.C.; Braun, J.J. Using geodetic GPS receivers to measure vegetation
water content. GPS Solut. 2015, 19, 237–248. [CrossRef]

33. Small, E.E.; Larson, K.M.; Smith, W. Normalized Microwave Reflection Index, II: Validation of Vegetation
Water Content Estimates at Montana Grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7,
1512–1521. [CrossRef]

34. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back Propagating Errors. Nature
1986, 323, 533–536. [CrossRef]

35. Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef]
[PubMed]

36. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
37. European Space Agency (ESA). CCI Land Cover Product User Guide Version 2.4. ESA CCI LC Project, 2014.

Available online: http://maps.elie.ucl.ac.be/CCI/viewer/index.php (accessed on 17 June 2019).
38. Bontemps, S.; Herold, M.; Kooistra, L.; van Groenestijn, A.; Hartley, A.; Arino, O.; Moreau, I.; Defourny, P.

Revisiting land cover observation to address the needs of the climate modeling community. Biogeosciences
2012, 9, 2145–2157. [CrossRef]

39. Xu, H.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L.; Jiang, H. Quality Improvement of Satellite Soil Moisture Products
by Fusing with In-Situ Measurements and GNSS-R Estimates in the Western Continental U.S. Remote Sens.
2018, 10, 1351. [CrossRef]

40. Small, E.E.; Roesler, C.J.; Larson, K.M. Vegetation Response to the 2012–2014 California Drought from GPS
and Optical Measurements. Remote Sens. 2018, 10, 630. [CrossRef]

41. The NASA Land Processes Distributed Active Archive Center (LP DAAC). Available online: https://lpdaac.
usgs.gov/ (accessed on 11 October 2016).

42. Melillo, J.M.; Mcguire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global
Climate-Change and Terrestrial Net Primary Production. Nature 1993, 363, 234–240. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2014.2300116
http://dx.doi.org/10.1016/j.rse.2004.05.016
http://dx.doi.org/10.1109/36.981349
http://dx.doi.org/10.1029/2010GL046005
http://dx.doi.org/10.1109/LGRS.2012.2236075
http://dx.doi.org/10.1016/j.rse.2012.05.012
http://dx.doi.org/10.1029/2011RS004680
http://dx.doi.org/10.1109/TGRS.2010.2049023
http://dx.doi.org/10.3390/rs4082356
http://dx.doi.org/10.1007/s10291-014-0383-7
http://dx.doi.org/10.1109/JSTARS.2014.2320597
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/72.97934
http://www.ncbi.nlm.nih.gov/pubmed/18282872
http://dx.doi.org/10.1023/A:1010933404324
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://dx.doi.org/10.5194/bg-9-2145-2012
http://dx.doi.org/10.3390/rs10091351
http://dx.doi.org/10.3390/rs10040630
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
http://dx.doi.org/10.1038/363234a0


Remote Sens. 2019, 11, 1440 23 of 23

43. Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation
Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76.
[CrossRef]

44. Shishi, L.; Chadwick, O.A.; Roberts, D.A.; Still, C.J. Relationships between GPP, Satellite Measures of
Greenness and Canopy Water Content with Soil Moisture in Mediterranean-Climate Grassland and Oak
Savanna. Appl. Environ. Soil Sci. 2011, 2011, 1–14.

45. Hunt, E.R., Jr.; Qu, J.; Hao, X.; Wang, L. Remote sensing of canopy water content: Scaling from leaf data to
MODIS. Proc. SPIE 2009, 7454, 745409.

46. Goddard Earth Sciences Data and Information Services Center. TRMM (TMPA-RT) Near Real-Time
Precipitation L3 1 day 0.25 degree × 0.25 degree V7. Savtchenko, A., Greenbelt, M.D., Eds.; Goddard Earth
Sciences Data and Information Services Center (GES DISC). Available online: https://disc.gsfc.nasa.gov/

datasets/TRMM_3B42RT_Daily_V7/summary?keywords=TRMM_3B42RT_Daily (accessed on 17 June 2019).
47. Ding, S.; Su, C.; Yu, J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell.

Rev. 2011, 36, 153–162. [CrossRef]
48. Li, T.; Shen, H.; Zeng, C.; Yuan, Q.; Zhang, L. Point-surface fusion of station measurements and satellite

observations for mapping PM 2.5, distribution in China: Methods and Assessment. Atmos. Environ. 2017,
152, 477–489. [CrossRef]

49. Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest
regression. Remote Sens. Environ. 2016, 178, 127–141. [CrossRef]

50. Yang, R.; Zhang, G.; Liu, F.; Lu, Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.; Li, D. Comparison of boosted
regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine
ecosystem. Ecol. Indic. 2016, 60, 870–878. [CrossRef]

51. Were, K.; Bui, D.T.; Dick Øystein, B.; Singh, B.R. A comparative assessment of support vector regression,
artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across
an afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [CrossRef]

52. Rodríguez, J.D.; Pérez, A.; Lozano, J.A. S Sensitivity analysis of k-Fold Cross validation in prediction error
estimation. IEEE Trans. Patt. Anal. Mach. Intell. 2010, 32, 569–575. [CrossRef]

53. Zhao, X.; Jing, W.; Zhang, P. Mapping Fine Spatial Resolution Precipitation from TRMM Precipitation
Datasets Using an Ensemble Learning Method and MODIS Optical Products in China. Sustainability 2017, 9,
1912. [CrossRef]

54. Shi, Y.; Song, L. Spatial Downscaling of Monthly TRMM Precipitation Based on EVI and Other Geospatial
Variables Over the Tibetan Plateau From 2001 to 2012. Mt. Res. Dev. 2015, 35. [CrossRef]

55. Wang, Y.; Qi, Q.; Liu, Y. Unsupervised Segmentation Evaluation Using Area-Weighted Variance and
Jeffries-Matusita Distance for Remote Sensing Images. Remote Sens. 2018, 10, 1193. [CrossRef]

56. Zeng, W.; Lin, H.; Yan, E.; Jiang, Q.; Lu, H.; Wu, S. Optimal selection of remote sensing feature variables
for land cover classification. In Proceedings of the Fifth International Workshop on Earth Observation and
Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–5.

57. Novelli, A.; Tarantino, E.; Caradonna, G.; Apollonio, C.; Balacco, G.; Piccinni, F. Improving the ANN
classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT)
aimed at LU/LC monitoring of a river basin. In Proceedings of the International Conference on Computational
Science and Its Applications, Ho Chi Minh City, Vietnam, 24–27 June 2017; pp. 420–432.

58. Jia, Y.; Ge, Y.; Ling, F.; Guo, X.; Wang, J.; Wang, L.; Chen, Y.; Li, X. Urban Land Use Mapping by Combining
Remote Sensing Imagery and Mobile Phone Positioning Data. Remote Sens. 2018, 10, 446. [CrossRef]

59. Braasch, M.S. Multipath Effects. In Global Positioning System: Theory and Applications; Parkinson, B.W.,
Spilker, J.J., Jr., Axelrad, P., Enge, P., Eds.; the American Institute of Aeronautics and Astronautics: Reston,
VA, USA, 1995; Volume 1, pp. 547–568.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/oxfordjournals.aob.a083148
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42RT_Daily_V7/summary?keywords=TRMM_3B42RT_Daily
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42RT_Daily_V7/summary?keywords=TRMM_3B42RT_Daily
http://dx.doi.org/10.1007/s10462-011-9208-z
http://dx.doi.org/10.1016/j.atmosenv.2017.01.004
http://dx.doi.org/10.1016/j.rse.2016.03.006
http://dx.doi.org/10.1016/j.ecolind.2015.08.036
http://dx.doi.org/10.1016/j.ecolind.2014.12.028
http://dx.doi.org/10.1109/TPAMI.2009.187
http://dx.doi.org/10.3390/su9101912
http://dx.doi.org/10.1659/MRD-JOURNAL-D-14-00119.1
http://dx.doi.org/10.3390/rs10081193
http://dx.doi.org/10.3390/rs10030446
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Materials 
	Study Area 
	Data Resources 
	The Normalized Microwave Reflection Index (NMRI) 
	Indices Related to the VWC 


	Methodology 
	Data Processing and Dataset Selection 
	Machine Learning Methods 
	Back-Propagation Neural Network (BPNN) 
	Generalized Regression Neural Network (GRNN) 
	Random Forest (RF) 

	Traditional Multiple Linear Regression (MLR) Method for Comparison 
	Validation Methods and Evaluation Indicators 

	Experiment and Analysis 
	Dataset Selection 
	Performance of the Models 
	Overall Performance of the Models 
	Model Performance for Each Site 

	Point–Surface Fusion Results of NMRI 
	Long Time-Series Variation of NMRI and Drought Events 

	Conclusions and Future Research 
	The Procedure to Calculate GNSS-IR Index NMRI 
	References

