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Abstract: Accurate classification of tropical tree species is critical for understanding forest habitat,
biodiversity, forest composition, biomass, and the role of trees in climate variability through carbon
uptake. The aim of this study is to establish an accurate classification procedure for tropical tree
species, specifically testing the feasibility of WorldView-3 (WV-3) multispectral imagery for this task.
The specific study site is a defined arboretum within a well-known tropical forest research location in
Costa Rica (La Selva Biological Station). An object-based classification is the basis for the analysis
to classify six selected tree species. A combination of pre-processed WV-3 bands were inputs to the
classification, and an edge segmentation process defined multi-pixel-scale tree canopies. WorldView-3
bands in the Green, Red, Red Edge, and Near-Infrared 2, particularly when incorporated in two
specialized vegetation indices, provide high discrimination among the selected species. Classification
results yield an accuracy of 85.37%, with minimal errors of commission (7.89%) and omission (14.63%).
Shadowing in the satellite imagery had a significant effect on segmentation accuracy (identifying
single-species canopy tops) and on classification. The methodology presented provides a path to
better characterization of tropical forest species distribution and overall composition for improving
biomass studies in a tropical environment.

Keywords: tropical forest; tree species identification; object-based classification; image segmentation;
WorldView-3

1. Introduction

Accurate identification of tropical forest species would support a more accurate measure of several
important species-dependent environmental variables, such as above-ground biomass and carbon
uptake [1]. Currently, large uncertainties exist in estimates of biomass and carbon uptake for tropical
forests [2]. An improved species inventory leading to better biomass estimates could improve current
carbon budget measurements, leading to more accurate carbon offset programs [3]. The use of remote
sensing imagery for forest analysis has a long history, from the use of the legacy Landsat systems [4],
to contemporary imaging systems such as Landsat 8 [5], Sentinel 2, and high-resolution commercial
imaging systems [1,6]. In addition, many studies have attempted to use remotely sensed imagery for
tree type identification in complex tropical forest assemblages [4,7].

Many pixel-based classification studies have used several different classification processes (e.g.,
maximum likelihood, spectral angle mapper, support vector machine, random forest, etc.) to determine
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which method works best in different types of forests, but with minimal success [8–10]. Most pixel-based
tropical forest studies generated accuracies ranging from 42–74%, depending on the forest assemblage
and environments studied [8–10]. Some features, such as tree canopies, are typically not homogeneous,
which can lead to a reduction of separability between other features [9]. This can lead to poor feature
definition and low classification accuracies [11].

As pixel-base approaches have been the standard for remote sensing classification, Geospatial
Object-Based Image Analysis (GEOBIA) has made significant advances in the last decade and has
proven to be superior to pixel based approaches [12,13]. Many studies have also evaluated various
types of machine learning methods, such as Random Forest (RF), decision trees, Support Vector
Machines (SVM) and Artificial Neural Network (ANN) schemas. Utilizing the entire tree canopy
(including all of the nuanced variances in the tree crown) rather than individual pixels within the crown
or even individual leaves, has proven to be a more accurate method for a classifying complex features
such as tree canopies [14]. High spatial resolution imagery can provide multiple pixels per tree canopy,
and a segmentation process performed on such an image can yield (with careful tuning of parameters)
clusters of pixels that represent single-tree canopy tops. This cluster of pixels, when averaged, contains
higher-fidelity representation of the overall canopy reflectance. Object-based classification methods
can also add additional whole-object information beyond spectral content such as shape, size, pixel
variability and proximity to other objects [9,13] that can provide critical information to identify objects
even in the case of non-homogeneity within a defined object. With the introduction of high resolution
imagery (nearing 1 m spatial resolution), the application of a segmentation process to identify image
objects has been successfully extended to vegetation studies, specifically for the identification of canopy
tree types within a forest [13].

Regarding object-based classification, Clark et al. [15] achieved an 87.4% classification accuracy in
their study of a tropical forest regime in Costa Rica when using an object-based approach through a
Random Forest classifier. Others have directly compared the pixel-based approach to the objects based
approach, with the object-based approach achieving superior results in a complex forest setting [14–16].
Immitzer et al. [12] used a random forest classifier to compare pixel based versus object-based
classification in an Austrian mixed forest using Worldview-2 image data. Manually extracted tree
crown data provided ground truth from known tree locations in the study area. An object-based
random forest approach provided the highest classification accuracy at 82.4% and the pixel-based
classification was on average 10 percentage points lower in accuracy.

An option for a GEOBIA application is a rule-set object-based approach which provides the ability
of user input on variable importance and ranges of variable response to better characterize features [17].
The success of this technique depends heavily on the data input types and the segmentation procedure to
accurately define the objects being classified. Myint et al. [18] used a rule-set object-based classification
to quantify mangrove extent in Bangladesh using Landsat imagery and achieved an overall accuracy
of 84.1%, but the authors noted that the settings for segmentation and rules applied to the particular
study might not be suitable for other study areas. They also discovered that more bands included
in the classification process did not equate to higher accuracies but instead led to lower accuracies
due to signature confusion related to high correlation between certain Landsat bands. Additionally,
Ke et al. [19] used a rule-based classification to map forests in New York State by using both QuickBird
imagery and LiDAR data (tree height measurements) for both the segmentation and rule-set data
input. Classification of four specific evergreen species and a broad deciduous species group yielded an
accuracy of near 90%. The addition of height information from the LiDAR data increased classification
accuracy by approximately 10%, supporting the premise that more and diverse data sets of a study
area increases the classification accuracy [19].

In addition, traditional statistical techniques such as Multinomial Logistics Regression and
Linear Discriminant Analysis [15,16,20–22] have had some success to assist in determining the best
combination of data types for classification purposes. Cross et al. [20] used a Discriminant Analysis
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with a Wilks’ Lambda test to analyze WorldView-3 bands and 14 distinct Spectral Vegetation Indexes
(SVIs) in their discriminatory power to differentiate tropical forest tree types in Costa Rica.

Any process of classification of tropical vegetation would need to account for a variety of variables
that control intra-species and inter-species variations [11]. Seasonality is an important consideration
in any study of the tropical rainforest. Hesketh et al. [23] showed that all data used for classification
purposes should be constrained to one of the seasons (wet or dry) as inter-seasonal variability is typically
low (with a dry season preference due to showing more differences between features consistently
through the season) but variability between seasons is high. Castro et al. [24] also reported this
effect, where classifying using data from various seasons or sites can reduce classification accuracy
substantially. In addition, lianas can significantly skew the tree crown spectral signature for a given
species at the leaf level, and possibly at, the crown level [11,23].

In this study, we build on our previous research [20,25], which determines effective data types for
species differentiation and validates WorldView-3 as a viable data source for differentiating tree species
respectively, to move the current research forward by utilizing very high resolution image-derived data
products in a rule-set object-based classification for accurate identification of tropical forest species.
This process contrasts to the complex approaches stated above, where affordable multispectral imagery
and a simple, straightforward approach is utilized to differentiate tree species. This approach employed
the information from several WorldView-3 image bands and two WorldView-3 image spectral vegetation
indices derived in Cross et al. [20] to identify six different tropical forest species in Costa Rica. All data
and imagery collected was constrained to the dry season minimizing any variance [23]. Illumination
and view angle corrections, and the application of an atmospheric compensation procedure, assisted
in creating an accurate forest canopy reflectivity image data set. Guidance on the makeup of the
segmentation settings [9,18,26,27] allowed an accurate classification of tree species within the study site.

2. Materials and Methods

We have developed a processing and validation methodology for this study and our previous
work [20,25] that applies corrected WorldView-3 multispectral imagery to extract a species canopy map.
Tree species identification is achieved through an object-based classification. This is summarized in a
flowchart (Figure 1) and discussed in detail below.
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Figure 1. A flowchart of the data preparation and analysis process described in this study.

2.1. Study Site

La Selva Biological Station in Costa Rica (hereafter, ‘La Selva’) was chosen as the study area for this
research due to its accessible location, extensive trail and tower infrastructure, and excellent support
staff. La Selva also contains the 3.5 ha Holdridge Arboretum (hereafter, ‘Arboretum’), a managed
research area within La Selva established in 1968 (Figure 2), which is the study site for this research
effort. The Arboretum contains approximately 929 cataloged plants and trees, with the most recent
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census occurring in August 2016–March 2017. Within the managed area, 727 trees represent 185 native
species [28]. The Arboretum is the focus of many research efforts at La Selva, and provides a baseline
for taxonomic studies of tropical tree species within Central America.
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Figure 2. A true-color composite WorldView-3 image of the Holdridge Arboretum. The outline of the
Arboretum boundary is in yellow. Trails into and through the Arboretum are in white. Tree canopies
are evident in the multispectral imagery. Please refer to Table 1 for imagery specifications.

2.2. WorldView-3 Imagery and Ground Truth Data Preparation

A logical data choice for achieving the stated goals in this study would be either a hyperspectral
system [29,30] and/or a LiDAR system [31,32], as these imaging systems have proven to be excellent
choices for species discrimination/identification, especially in complex forest areas [11,33]. The purpose
for using WorldView-3 (a multi-spectral sensor imaging system) for this study is to determine if a
more cost-effective image data set can be effective in a tropical forest setting. The advantages of
the WorldView-3 sensor are a large area collection, good revisit times over broad areas of interest,
and overall cost advantages over specialized aircraft-based sensor systems. While the WorldView-3
sensor does not match the spatial resolution of LiDAR or spectral resolution of a hyperspectral sensor,
there is sufficient spatial and radiometric resolution to collect many intra-crown pixels within a tree
crown, and a sufficient number of image bands for spectral characterization of a particular species [25].

2.2.1. WorldView-3 Imagery Acquisition and Preparation

DigitalGlobe provided the WorldView-3 imagery for this study, and the acquisition from November
11, 2014 was a nearly cloud-free scene from the end of the dry season (Table 1), maximizing our potential
of tree species identification [23,24]. We used DigitalGlobe’s proprietary Atmospheric Compensation
process (AComp), a physics-based compensation schema that uses observed in-scene pixel spectra for its
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correction procedure [34] that accounts for water vapor in the atmospheric column, to atmospherically
correct the image. The derived pixel-based Aerosol Optical Depth (AOD) information was applied into
a radiative transfer schema for the imagery bands collected and the output was an atmospherically
compensated image of surface reflectance values per pixel [35]. This was an essential step in acquiring
a true surface reflectance measure from the WorldView-3 imagery.

Due to the non-Lambertian characteristics of tree canopies, and with the imagery collected at a
non-nadir imaging view angle (Table 1), a Bidirectional Reflectance Factor (BRF) correction was required
to convert data to an on-nadir view [36–38]. Reflectance anisotropy can vary by up to 30% within a
closed forest canopy [39] and high spatial resolution imagery with variable view angles (WorldView-3)
can be especially affected [40]. Average BRF correction values (Table 2) for different wavelength regions
derived from Breunig et al. [41] for a typical mixed tropical tree canopy, and supporting information
from [42], provided the correction parameters needed for the imagery.

Table 1. WorldView-3 imagery specifications [43].

Bands Spectral Range (nm) Resolution

Panchromatic 450–800 Panchromatic 0.31 m
Coastal 400–450 Multispectral 1.24 m

Blue 450–510 Dynamic Range 11 bits/pixel

Green 510–580 Specific Image Information for Study

Yellow 585–625 Date/time 11/11/2014, 15:52:28Z
Red 630–690 Zenith, Az. View Angle 26.2◦, 108.8◦

Red Edge 705–745 Cloud Cover 0.5%

Near-IR1 770–895 Data Extent

Near-IR2 860–1040 NW, SE Corners 10.48◦ N, 84.14◦ W,
10.25◦ N, 83.99◦ W

Table 2. BRF Correction factors for the WorldView-3 Imagery. Values were derived from
Breunig et al. [41] and represent backscatter viewing conditions. Dividing the observed reflectance by
the BRF correction factors derives the on-nadir surface reflectance. OZA = Observation Zenith Angle.

Bands Spectral Range (nm) BRF Factor 26.2◦ OZA

Coastal 400–450 1.01
Blue 450–510 1.08

Green 510–580 1.15
Yellow 585–625 1.17

Red 630–690 1.20
Red Edge 705–745 1.25
Near IR1 770–895 1.33
Near IR2 860–1040 1.34

Because of the off-nadir image collection and the inherent displacement error due to overall
tree canopy height, a georectification process was performed to improve the locational accuracy of
trees within the study area. A Trimble GeoExplorer 2008 GPS with a Trimble Zephyr 2 external
backpack antenna, utilizing differential corrections through the Satellite Based Augmentation System
and employing multipath correction, provided high positional accuracy ground control points (most
points were better than 1-m positional accuracy). An image-to-map nearest-neighbor rectification
procedure within ENVI provided appropriate geometrically corrected imagery.

2.2.2. Ground Truth Data Collection and Processing

We established ground truth of the tree species studied by finding well-exposed examples of the
selected tree species crowns in the field outside of the Arboretum study area. Six select tree species
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crown collections within La Selva Biological Reserve during May 2017 provided the ground truth
necessary for this study (Table 3). All tree samples for ground truth were independent from the
Arboretum study site (but still within the confines of La Selva). Tree crown samples were of sufficient
size to be at the top of the forest canopy structure and visible in the WorldView-3 image.

Table 3. Six tree species extracted for ground truth in May 2017 from various locations within La Selva
Biological Station, Costa Rica.

Tree Species Family Approximate Location Total Crowns Total Pixels Collection
Size (m2)

Castilla elastica Moraceae Lab area and west La Selva 3 81 100.44

Cedrela odorata Meliaceae Lab area and east La Selva 2 81 100.44

Cordia alliodora Boraginaceae Arboretum trail from lab 2 39 48.36

Pentaclethra
macroloba Fabaceae Station entrance and west La Selva 9 217 269.08

Pterocarpus sp. A Fabaceae Lab area and east La Selva 2 128 158.72

Stryphnodendron
microstachyum Fabaceae Station entrance and lab area 3 87 107.88

The availability of each species within the Arboretum and the clear identification of the tree crown
within the imagery determined the tree species selection for this study. The ground truth data collected
outside of the Arboretum (Table 3), determined which canopy trees would be a part of the classification
analysis within the Arboretum.

Figure 3 illustrates two typical crown data extractions from the WorldView-3 imagery for ground
truth purposes.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 18 

 

The availability of each species within the Arboretum and the clear identification of the tree crown 
within the imagery determined the tree species selection for this study. The ground truth data collected 
outside of the Arboretum (Table 3), determined which canopy trees would be a part of the classification 
analysis within the Arboretum. 

 
Table 3. Six tree species extracted for ground truth in May 2017 from various locations within La 

Selva Biological Station, Costa Rica. 

Tree Species Family Approximate Location  
Total 

Crowns 
Total 
Pixels 

Collection 
Size (m2) 

Castilla elastica Moraceae Lab area and west La Selva 3 81 100.44 
Cedrela odorata  Meliaceae Lab area and east La Selva 2 81 100.44 
Cordia alliodora Boraginaceae Arboretum trail from lab 2 39 48.36 

Pentaclethra 
macroloba Fabaceae 

Station entrance and west 
La Selva 9 217 269.08 

Pterocarpus sp. A  Fabaceae Lab area and east La Selva 2 128 158.72 
Stryphnodendron 
microstachyum Fabaceae 

Station entrance and lab 
area 3 87 107.88 

 
Figure 3 illustrates two typical crown data extractions from the WorldView-3 imagery for ground 

truth purposes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Data extractions for two tree crowns in La Selva. In the upper right image, the purple 
polygon represents a crown extraction from S. microstachyum and the red polygon is a P. macroloba 
extraction. The upper left image shows the extraction areas superimposed on the WorldView-3 
panchromatic image. The image directly above is a closer view of the crown extraction for P. macroloba 
showing the individual multispectral pixels within the defined crown sample. 

GPS positions of the selected tree observations, converted to an ESRI Shapefile, provided accurate 
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Figure 3. Data extractions for two tree crowns in La Selva. In the upper right image, the purple polygon
represents a crown extraction from S. microstachyum and the red polygon is a P. macroloba extraction.
The upper left image shows the extraction areas superimposed on the WorldView-3 panchromatic
image. The image directly above is a closer view of the crown extraction for P. macroloba showing the
individual multispectral pixels within the defined crown sample.
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GPS positions of the selected tree observations, converted to an ESRI Shapefile, provided accurate
geolocation for matching the field-identified tree to the proper canopy visible in the WorldView-3
imagery. Additional ESRI Shapefiles provided by the staff at La Selva (trail locations, trail signs,
streams and rivers, etc.) assisted in locating selected tree species within the image. An extraction of
the full-crown pixel clusters yielded mean image-derived spectra for each crown. Figure 4 illustrates
the average reflectance per tree crown for each WorldView-3 band of the ground truth of the six tree
species studied, displaying the variance in the reflectivity values between species. These average
reflectivity data values and their specific characteristics are typical of trees within the dry season [25].
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Average values for the Arboretum area also included. Lines between points are for clarity to show the
trend in variability between bands.

In addition to the spectral reflectivity for each species, an extracted Canopy Average of the
Arboretum was also included in Figure 4. This represents the collective response of canopy vegetation
over the study area, and is an important data input to a vegetation index used in this study. A sampling
of most of the non-shadow area of the Arboretum yielded a collection of 9750 pixels. Avoiding shadow
areas was a priority during the extraction of the Canopy Average to ensure that the value calculated
included mostly tree canopies.

An additional data set used for ground truth was an Arboretum inventory data file, which
includes precise locations of canopy tree species [28], and was used for determining the accuracy of
the classification in this study. A detailed catalog for the Arboretum describes all trees according to
species, size measured in Diameter at Breast Height (DBH), and precise geolocation referenced from a
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permanent 25 m × 25 m grid (azimuth and distance from each grid post). The staff at La Selva produced
an ESRI Shapefile (UTM Zone16N grid, meters) of the Arboretum catalog for easy integration with the
imagery data [28].

2.3. Analysis

A series of preliminary statistical evaluation procedures helped determine which image data
would be most effective for classification. Next, an imagery segmentation process defined tree
crowns within the Arboretum, and a rule-set object-based classification approach with the appropriate
data input guided the identification of individual tree species. Finally, an error matrix provided a
determination of the accuracy of the classification process.

2.3.1. Data Selection

Typically, the most important imagery bands for vegetation are in the mid- to long-wavelength
visible range showing the variation in chlorophyll activity, and near infrared, showing the variation
in structure and water content. [44]. WorldView-3 has additional image bands in the Blue, Yellow,
Red Edge, and two bands in the near-infrared (NIR-1 and NIR-2), providing a greater potential
for differentiating vegetation [45]. Chlorophyll absorption is pronounced in the Blue and Red
bands [46,47], and the Yellow band holds promise in providing additional information for species
identification [48]. The Red Edge band characterizes plant health and is sensitive to Leaf Area
Index [47,49,50]. An additional near-infrared band allows more information about vegetation water
content and overall structure.

In addition to the sensor band information, we analyzed two Spectral Vegetation Indices (SVIs)
to determine their ability to classify vegetation. The use of SVIs has been well documented for
determining a variety of vegetation parameters, including chlorophyll production, gross primary
productivity, leaf area index, vegetation type, and biomass estimates [51–55]. The creation of these
particular SVIs were driven by better tree differentiation within a dense tropical forest canopy [20].

The WorldView Red Edge Slope Weighted Index (WV-RESWI) provides a measure of Red Edge
band intensity and a measure of the reflectivity slope between the Red and the Near-IR1 bands of
Worldview-3 (Equation (1)). Variation in red absorption by chlorophyll and infrared reflectivity by
plant structure are important reflective characteristics that define specific tree species [46,51]:

WV-RESWI = ((Near-IR1 − Red)/0.173) * Red Edge. (1)

The second specialized SVI used in this study is the WorldView Average Canopy Reference Index
(WV-ACRI). It is a measure of the differentiation of a specific tree species from the overall reflective
response from a complex forest canopy (Equation (2)). The overall infrared response is calculated
using the average of the near-infrared bands in WorldView-3 (Near-IR1, Near-IR2), and the visible
response is a combination of the Green, Yellow, and Red Edge band reflective measurements as they
compare to the Canopy Average for each of those bands. In the equations below, ACnir1 refers to
average canopy Near-IR1 band, ACgrn refers to average canopy Green band, ACre refers to the average
canopy Red Edge Band, etc. Canopy Average values for each WorldView-3 band provided the data
input necessary for the calculation of WV-ACRI for the Arboretum.

WV-ACRI = IRAve + VisRE, (2)

where:
IRAve = ((Near-IR1 − ACnir1) + (Near-IR2 − ACnir2))/2,

VisRE = (Green − ACgrn) + (Yellow − ACyel) + (Red Edge − ACre).

A discriminant analysis (DA) was performed to determine which of the eight multispectral
WorldView-3 imagery bands (independent values) and the two SVIs above, had the most discriminatory
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power for the tree types (specific classes) studied [56]. As a part of the DA, a Wilks’ Lambda test
evaluated the discriminatory power of the independent variables [12,29], providing objective clarity
as to which WorldView-3 bands and Vegetation Indices are most important for characterizing and
differentiating tropical tree species. This test can indicate an initial assessment of group membership
from the independent samples and insight into the importance of each independent variable. When the
value of Wilks’ Lambda for a value is small, a higher discriminatory ability is realized and corresponds
to a statistically greater separability between the classified groups [57]. This is a common use of the
Wilks’ Lambda procedure in image analysis [12,29].

Table 4 shows the results of the Wilks’ Lambda test for the six tree species studied on all eight
bands of WorldView-3 imagery and the two SVIs. The Wilks’ Lambda scores demonstrated significant
discriminatory power in the traditional remote sensing bands typically used for vegetation analysis [44].
All bands and SVIs were significant and were below the threshold of α = 0.05. Both of the specialized
SVIs constructed specifically for the WorldView-3 sensor performed as well or better than individual
imagery bands in their discriminatory power.

Table 4. A summary table of the Wilks’ Lambda test outputs and F-test significance values for
discriminating the six tree species in the study.

Band Locations Wilks’ Lambda F-test

Coastal 0.862 20.090
Blue 0.662 64.082

Green 0.717 49.514
Yellow 0.710 51.138

Red 0.626 74.983
Red Edge 0.560 98.605
Near-IR1 0.500 125.583
Near-IR2 0.529 111.681
WV-ACRI 0.529 111.568

WV-RESWI 0.485 133.042

A statistical correlation (Table 5) provided additional information of the importance of each
band/index studied. The optimum independent data grouping for a classification would be data with
highest discriminatory values and smallest correlation between the variables [12,57].

Table 5. Correlation matrix of the variables from Table 4.

WV-3 Bands
and Indices Coastal Blue Green Yellow Red Red

Edge Near-IR1 Near-IR2 WV-ACRI WV-RESWI

Coastal 1.000 .321 .212 .257 .326 .081 −.017 .002 .058 .014
Blue 1.000 .522 .529 .621 .236 .041 .081 .202 .109

Green 1.000 .683 .586 .587 .369 .381 .580 .454
Yellow 1.000 .647 .446 .137 .183 .387 .257

Red 1.000 .153 −.054 −.017 .123 −.004
Red Edge 1.000 .757 .817 .943 .903
Near-IR1 1.000 .766 .891 .942
Near-IR2 1.000 .914 .837
WV-ACRI 1.000 .958

WV-RESWI 1.000

Figures 5 and 6 show the WorldView-3 band reflectivity and SVI values for the six tree species.
Figure 5 shows the visible portion of the spectrum, from the Coastal Band to the Red Band, and Figure 6
illustrates the range of values from the Red Edge Band through the two SVIs analyzed. The graphs
visualize the reflective variance, as the visible portion of the spectrum (Figure 5) is approximately one
order of magnitude smaller than the other reflectivity values and SVI values (Figure 6).
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Figure 6. Average WorldView-3 band reflectivity in the near-infrared EM spectrum and Spectral
Vegetation Indexes (SVI) values for the six tree species in this study. The inclusion of the values for the
SVIs in this graph are added for comparison purposes only to show differentiation and do not imply a
specific order.

Both SVIs provide an additional important set of information for species differentiation.
The necessity of the additional SVIs is evident in their ability to separate tropical forest species
that are extremely close in spectral response through the original WorldView-3 bands, especially in the
visible portion of the spectrum and overlap of responses in the near-infrared bands.
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2.3.2. Object-Based Classification

A full crown measure of reflectivity for each species (Table 3) is the basis for the classification
within the Arboretum. Each of the tree crowns in the study area were organized into specific object
segments comprising similar digital pixel values (Figure 7), having defined edges that separate each
group from other distinct groupings [17].
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Figure 7. The result of the ENVI segmentation process for the Arboretum based on a setting of 11
for scale and 86 for merge in the segmentation settings. Each defined colorized segmented feature
represents an object in the image with like qualities and reflective properties. The values of the two
SVIs defined the segments (Table 4), maximizing the differentiation in the imagery between features.

The ENVI edge segmentation procedure utilized region-based algorithms which specify spectral
similarity (scale setting) and spatial similarity (merge setting). This segmentation procedure is
typically less sensitive to slight variations in texture, which can be a significant advantage when
using high-resolution imagery [58]. In addition, the edge segmentation is overall a more accurate
process for characterizing tree crowns [59,60]. Settings for scale level and merge level must be defined
appropriately based on the image resolution and object complexity in the landscape [13]. User-defined
thresholds for the scale level and merge level define the segments (with a standard values for both
settings from 0 to 100), and the success of the segmentation is dependent on the complexity of the
landscape features [58]. Incorrect settings of the scale level and merge level will lead to segments
that are too complex, which subdivide known features, or assimilation of multiple features into large
polygons [13]. The settings for scale and merge level are defined at the discretion of the investigator,
as there is no perfectly objective approach or process [14]. Several tropical forest studies have defined
a range between 10 and 40 for the scale level (creating more segments) and between 70 and 90 for the
merge level (merging several segments) to ensure a good characterization of features within an image
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and optimize tree crown definition [9,18,26,27,61]. Through testing of several different combinations
of scale and merge values, a setting of 11 for the scale level and 86 for the merge level ensured a good
object differentiation in the Arboretum study area (Figure 7). The two SVIs described in this study
were the data inputs used for the segmentation process, as each of the SVIs maximize differentiation
between species in the study area (Figure 6).

A rule-set object-based classification identified the tree species based only on their distinctive
mean crown response from the imagery bands and SVIs from the segmentation [61]. This is in contrast
to traditional pixel-based classifications, which classify on individual pixel values and provide a class
for each pixel in the imagery. The rule-set process allows the user to define specific data inputs to each
class, and each data set can be constrained to a specific range of values that represent a certain class [61].
In order to determine the ability of the imagery to classify tree species, no other values (surface texture,
segment metrics, etc.) were included in the classification procedure. We assigned weights to each band
or SVI based on their Wilks’ Lambda score within the rule-set process, ensuring the application of each
band and SVI was at a level commensurate with their ability to differentiate tree species.

For the rule-set classification process, a value range of +/- 5% from each mean value for each
WorldView-3 band and SVI defined a particular tree species. This value range chosen encompasses the
variability that can exist within a particular species allowing for any inter-species variation while still
maintaining a species-based consistency in mean spectral response within the defined object [25].

An accuracy analysis utilizing an error matrix compared the classification results to known point
locations of the same canopy tree species within the Arboretum, determining if the classifier was
identifying the existence and location of the tree type studied. The locations of individual tree species
within the study area were acquired from the Arboretum inventory data file [28], described earlier
in the Materials and Methods Section 2.2.2. The error matrix was applied to Arboretum trees with a
DBH >50 cm to ensure that the tree was large enough to be a part of the visible Arboretum canopy [62].
Trees that fell in this category were checked in situ to verify they were a part of the top canopy of
the Arboretum.

3. Results and Discussion

The first classification analysis performed (Classification 1) assessed all bands and SVIs available
for the process, excluding the Coastal band and Blue band, as both of these bands are unreliable for
use in a humid tropical environment as they are susceptible to severe atmospheric attenuation [46].
The data input for Classification 1 included only the top three image bands (Red Edge, Near-IR1 and
Near-IR2) and the top SVI (WV-RESWI), based on the Wilk’s Lambda scores and Correlation values.
Table 6 shows the results of the error matrix of Classification 1. An “Unknown” classification result
was specified to represent trees or ground cover not included in the error matrix analysis.

Classification 2 included additional bands and SVIs based on information from Tables 4 and 5,
and the visual separation of values as shown in Figures 5 and 6. For each tree species, rule weights
varied for each data input in the classification rule-set. These were based on the combination of bands
or SVIs that best defined a particular species, improving the classification accuracy. The error matrix
results of Classification 2 are shown in Table 7.

As is evident from the error matrix results, the WorldView-3 imagery captured the spectral
variations between the tree species studied. The low errors of commission (7.89%) and omission
(14.63%) in the error matrix for Classification 2 (Table 7) suggest that the segmentation parameters and
rule-sets chosen maximized the unique species reflectivity response in the imagery. Figure 8 illustrates
the distribution of species in and around the Arboretum as defined by Classification 2.
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Table 6. Error Matrix Results—Classification 1. All rule-set inputs were equally weighted across all
bands/SVIs for all tree species. The abbreviation S. micro. represents the tree species S. microstachyum.

Bands/Indices Used: Red Edge, Near-IR1, Near-IR2, WV-RESWI
Overall Accuracy = 75.61%, Kappa = 0.685

Classification
Field Reference

Users Acc.
C. elastica C. odorata C. alliodora P. macroloba P. sp. A S. micro. Total

C. elastica 1 1 100%
C. odorata 1 2 1 4 50.00%
C. alliodora 1 10 11 90.91%
P. macroloba 13 13 100%
P. sp. A 1 4 5 80.00%
S. micro. 1 2 1 4 25.00%
Unknown 1 1 1 3
Total 3 3 12 15 7 1 41

Prod. Acc. 33.33% 66.67% 83.33% 86.67% 57.14% 100% 75.61%

Table 7. Error Matrix—Classification 2. The classification results for all rule-sets specified by tree
species. The abbreviation S. micro. represents the tree species S. microstachyum.

Bands/Index Used: Dependent on Rule-Set for Each Species
Overall Accuracy = 85.37%, Kappa = 0.808

Classification
Field Reference

Users Acc.
C. elastica C. odorata C. alliodora P. macroloba P. sp. A S. micro. Total

C. elastica 2 2 100%
C. odorata 3 1 4 75.00%
C. alliodora 1 11 12 91.67%
P. macroloba 13 13 100%
P. sp. A 1 5 6 83.33%
S. micro. 1 1 100%
Unknown 1 1 1 3
Total 3 3 12 15 7 1 41

Prod. Acc. 66.67% 100% 91.67% 86.67% 71.43% 100% 85.37%

Miss-classifications could be the result of shadowing within the Arboretum image due to the
off-nadir WorldView-3 image acquisition at 26.2◦ zenith view angle (Table 1), as foreground tree
crowns likely obscured or shadowed other possible canopy crowns. There is some evidence of this
by the low Canopy Average values derived from the Arboretum (Figure 4). Other variables, such as
lianas suspended within the canopies studied, could have also affected classification accuracy [23,24],
potentially adding to miss–classifications and increasing the unknown fraction in the error matrix.

Both SVIs significantly improved the segmentation process and overall classification accuracy
outperforming all other bands available (Figure 6, Table 4, Table 5). The WV-ACRI showed promise,
but its overall performance was likely affected in this study due to suppressed Canopy Average values
(Figure 4). The WV-RESWI performed well in showing variability between the chlorophyll production
and plant structure because of its focus on the Red Edge variability between species [46].

Over-classifying individual crowns to a specific species was likely, as the rule-set process attempts
to fit a tree type to a defined segment that represents all or part of a known tree crown within the
study. The high classification accuracy from Classification 2 (85.37%) likely reflects this potential error,
as the tree assemblage within the study area is extremely complex, as tree crowns can easily overlap
creating confusion in the classification procedure. Figure 8, which shows the geographical distribution
of Classification 2 illustrates this effect, where C. alliodora and C. odorata are shown as widespread
as P. macroloba in the Arboretum based on the classification, but in truth P. macroloba is the dominant
species in this area [28].
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4. Conclusions

We sought to establish a process of differentiating selected crown-canopy tree species within
the tropical forest regime through the implementation of an object-based rule set classification
schema. The complexity of a tropical forest assemblage, both in species diversity and inter-species
variability, poses a great challenge to identifying individual tree species [2]. Successfully achieving a
deeper understanding of the species assemblage within the tropical forest could improve our overall
understanding of the role of forests in climate [1]. The results of this study show that a simple
object-based rule-set classification, using readily available multispectral data, can yield accurate results
in a complex tropical rainforest.

Characterizing the intra-crown reflectivity response (using the collective pixels in a segment that
defines the tree crown) is the key to identification of species in a complex forest [63], as all of the
information (and variability) within the tree crown is necessary information to identify tree-species
within the forest assemblage. This provides a significant advantage as compared to pixel-based
approaches, as the natural variability in the object (the tree canopy) is included in the characterization
of the object [12]. This study identified that the necessary components needed to achieve that goal are
high spatial and radiometric resolution imagery (e.g., WorldView-3 or similar) with appropriate bands
and/or data products [20], careful corrections for illumination and attenuation-absorption effects [25],
and a segmentation process that properly assigns single-tree canopies to one (or a few) segmented
pixel cluster(s). Continuing to improve the inputs to the object-based rule-set classification parameters
(more precise segmentation, better data inputs through field measurements of more tree species)
will be important steps in future analyses. This will ultimately contribute to accurately defining
more tree species with their unique spectral signatures in other diverse tropical rainforest locations.
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It is envisioned that this simple, straightforward process can be expanded to more regional scale
tropical environments.
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