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Abstract: In this paper, we present a method for hyperspectral retrieval using multispectral satellite
images. The method consists of the use of training spectral data with a compressive capability.
By using principal component analysis (PCA), a proper number of basis vectors are extracted.
These vectors are properly combined and weighted by the sensors’ responses from visible MODIS
channels, achieving as a result the retrieval of hyperspectral images. Once MODIS channels are
used for hyperspectral retrieval, the training spectra are projected over the recovered data, and the
ground-based process used for training can be reliably detected. To probe the method, we use only
four visible images from MODIS for large-scale ash clouds’ monitoring from volcanic eruptions. A
high-spectral resolution data of reflectances from ash was measured in the laboratory. Using PCA,
we select four basis vectors, which combined with MODIS sensors responses, allows estimating
hyperspectral images. By comparing both the estimated hyperspectral images and the training
spectra, it is feasible to identify the presence of ash clouds at a pixel-by-pixel level, even in the
presence of water clouds. Finally, by using a radiometric model applied over hyperspectral retrieved
data, the relative concentration of the volcanic ash in the cloud is obtained. The performance of the
proposed method is compared with the classical method based on temperature differences (using
infrared MODIS channels), and the results show an excellent match, outperforming the infrared-based
approach. This proposal opens new avenues to increase the potential of multispectral remote systems,
which can be even extended to other applications and spectral bands for remote sensing. The
results show that the method could play an essential role by providing more accurate information of
volcanic ash spatial dispersion, enabling one to prevent several hazards related to volcanic ash where
volcanoes’ monitoring is not feasible.

Keywords: spectral retrieval; volcanic ash clouds; remote sensing

1. Introduction

Catastrophes due to volcanic activities have been present throughout human history, causing
social, economic, and political damages [1,2]. Around 60 eruptions are recorded per year around
the world, representing one of the most dangerous and destructive natural phenomena [3].
Their consequent ash clouds cause adverse effects on the population’s health from near and distant
areas, such as respiratory issues and cardiovascular diseases [4–6]. Moreover, volcanic ash clouds
discharged to the atmosphere also have adverse effects on agriculture, causing diseases in grazing
animals (from gastrointestinal problems to blindness), erosion, sedimentation of irrigation canals, and
interruption of supplying and transport lines [7].
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Therefore, monitoring volcanic activity is currently an important task to avoid and prevent
undesirable damages. This task has been typically performed employing ground-based sensors,
enabling a local strategy of variables’ monitoring. These ground-based sensors and measurements
typically include [8]: networks of seismometers to detect volcanic earthquakes caused by magma
movement [9]; ground deformation networks to measure the rise and fall of the ground’s surface [10];
measurement of gas emissions into the atmosphere [11,12]; sampling and analysis of gases and
water emitted from the summit and flanks of a volcano [13]; observations of volcanic activity
using thermal imagery [14]; measurements of other geophysical properties (e.g., strainmeters [15],
using infra-sound [16]) and environmental indicators (e.g., groundwater levels). Furthermore, volcano
observatories require telemetric instruments for the storage and real-time analysis of measured volcano
data [3]. Nevertheless, ground-based sensors and measurements for volcanic monitoring have severe
limitations, such as the subsequent damage of these devices when a volcanic event occurs and a
restricted implementation only to accessible areas. Furthermore, ground-based volcano monitoring is
not adequate to monitor large-scale and fast space-time dynamic phenomena, such as volcanic ash
clouds and their dispersion in the atmosphere [3].

Over the last few years, images recorded from satellites have allowed monitoring volcanic ash
clouds and their dispersion in the atmosphere. These monitoring methods could surpass the limitations
of the high noise and non-uniformity of images if suitable and specific algorithms calculate an accurate
classification of the volcanic ash cloud and its spatial dispersion in a satellite image [17,18]. Moreover, if
proper algorithms for volcanic ash monitoring are proposed, meteorological satellite images could also
be used for this task [19], which improves temporal resolution and surpasses the high cost of infrared
(IR) technology in satellite images. Current methods for large-scale volcanic ash clouds’ monitoring
are classified according to the use of different spectral bands and their associated technology, a their
combination [20,21], as well as the field measurements [22,23]: one method is based on a microwave
imaging system, measuring the ash radiation between 19 and 85 GHz, by detecting the scattering
produced by the millimeter particles of volcanic ash. However, this method lacks precision due to
simplifications, leading to calculation errors [24]. Infrared (IR) imaging is considered one of the most
classical and used methods for volcanic ash clouds monitoring, based on the calculation of temperature
differences to detect their compounds (ash, water, aerosols, among others) [25]. Recently, in [26],
ash clouds and hot-spot detection were combined to estimate a dynamic map of hazard assessment,
including estimations of lava propagation and the maximum run-out distance. In [27], the results of
detecting the expansion of a high-temperature fumarolic field using IR thermal imaging in combination
with geochemical and seismicity measurements were shown. These data were correlated to precede
an explosive eruption or a magmatic intrusion. In [28], some thermal anomalies were detected nine
days before the eruption of Villarrica Volcano, by taking satellite images acquired from Technology
Experiment Carrier-1 (TET-1). Images from TET-1 were corrected based on look-up tables derived
from the radiative transfer code of MODTRAN-5, to attenuate differences produced by atmospheric
water vapor. Next, the temperature, area coverage, and radiant power of the detected thermal hotspots
were derived at the subpixel level. The core of the proposals in [26–28] was the use of infrared or
thermal imaging techniques. Nevertheless, in volcanic ash clouds, the magnitude of the apparent
temperature difference depends on the optical thickness, water content, and sulfuric acid concentration,
in addition to the particle size and their distribution [19,29,30]. The work in [31] analyzed the temporal
fluctuations of ash detection based on the robust satellite technique (RST), combining multi-temporal
approach information, running on both polar and geostationary satellite data. The results in [31]
were encouraging, but the proposal was limited by the calculation of residuals strongly related to
meteorological clouds, which are associated with pixels with a medium-low confidence level of
detection, on the one side enabling a better mapping of ash coverage. According to [32], IR-based
methods provide contrast evidence in the image or need to be corrected, because volcanic gasses
and water vapor in clouds absorb certain wavelengths. Besides, a proportion of the atmospheric
radiance, and indeed daytime solar radiance, is sensor-ward reflected. This phenomenon adds an
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undesirable signal in IR satellite sensors, which is partially corrected by the measurement corrections
with a radiative transfer model available to simulate such atmospheric effects [33–35]. In summary,
IR satellite images are strongly sensitive to interpretation errors, mainly due to similar IR emissivity
between ash and other terrestrial compounds.

Most of the methods for large-scale volcanic ash clouds’ monitoring use measurements from
AVHRR and MODIS instruments mounted on the NOAA, Terra, and Aqua Satellites. AVHRR and
MODIS instruments measure in the spectral bands 10.8 ± 0.5 µm and 12 ± 0.5 µm [µm] [36,37]. The
normalized thermal index (NTI) detects thermal anomalies such as a volcanic eruption, if a threshold
value is surpassed NTI > −0.8 [37]. The NTI threshold is set higher to avoid false detection of
thermal anomalies, but is not sensitive to volcanic ash monitoring. The work in [38] proposed a
volcano-specific threshold to surpass the insensitivity with respect to the volcanic ash, where the
optimal NTI for volcanic ash monitoring needed to be calculated for each volcano [39], which is not
feasible in practice. NTI is calculated by the radiance difference between Channels 21, 22, and 32 from
MODIS. Channels 21 and 22 are used to detect radiance at the same spectral interval of 3.959 µm, but
with different radiometric accuracy (expressed as noise-equivalent temperature variation; NE∆T in K)
of 2.0 and 0.07, respectively, differing in the saturation temperature: 335 K for Channel 21 and 300 K
for Channel 22. This difference enables the calculation of NTI if Channel 22 is saturated [37]. Channel
32 is centered at 12.020 µm (NE∆T = 0.05). Then, the radiance difference is divided by the sum of
both radiances to calculate a normalized value, able to detect the presence of volcanic ash clouds.
Unfortunately, the NTI-based method for volcanic ash monitoring can be used only with satellite
images are measured at night [37]. Another approach to volcanic ash monitoring using IR imaging is
the brightness temperature difference [2,29]. This method essentially employs spectral information in
the far-infrared range (FIR) between 10.8 ± 0.5 µm and 12 ± 0.5 µm. Volcanic ash monitoring with FIR
measurements detects brightness temperatures of the compounds, decreasing the successful detection
of ash clouds due to emissivity similarities with terrestrial compounds. The negative values of the
brightness temperature difference are related to the presence of volcanic ash clouds, and the positive
values of the brightness temperature difference are related to other cloud compounds, such as water or
ice [32,40].

The contribution of this paper is to propose a novel method to increase the spectral capability
of the multispectral satellite images. We applied this method for volcanic ash clouds’ monitoring
from eruptions. However, the method can be extended to other applications and bands for remote
sensing. The core of this proposal is a model-based methodology to estimate high-spectral resolution
reflectance from ash clouds, using for that the sensors’ responses for Visible Bands 8, 9, 10, and 11 from
MODIS, centered at 410 nm, 443 nm, 488 nm, and 531 nm, respectively. The sensors’ responses are
linearly combined with basis vectors extracted from a high-spectral reflectance data (training spectra)
measured in our facilities and weighted with solar radiance. With the estimated hyperspectral data, the
volcanic ash clouds’ monitoring is performed by comparing the estimated spectrum at a pixel-by-pixel
level, with the training spectra, achieving excellent results and surpassing false detection given by
the presence of water clouds. An additional contribution of this paper is the calculation of volcanic
ash relative concentration, using a radiometric algorithm applied over retrieval data. The results are
compared with the temperature brightness difference method, also using MODIS satellite images in
the IR. The temperature brightness difference method is based on the calculation of the difference
temperature by pixel, calculated in Bands 31 (10.8–11.3 µm) and 32 (11.8–12.3 µm) as T31 and T32,
respectively. Thus, volcanic ash is detected in the satellite image if the inequality T31 − T32 > a is
achieved, where a is a fixed ash detection threshold [41]. The proposal is tested using satellite images
from the following events: Puyehue-Cordon Caulle, Chile (2011); Etna Volcano, Italy (2002), and
EyjafjallajokullVolcano, Iceland (2010). Due to the use of visible channels, the proposal provides a
complementary technique to IR-based methods, achieving volcanic ash monitoring during the day.

This paper is organized as follows: In Section 2, the fundamentals of remote imaging and the
spectral retrieval algorithm are presented; Section 3 presents the methodology for volcanic ash cloud



Remote Sens. 2019, 11, 1393 4 of 17

monitoring using the proposed approach. Section 4 shows the obtained results of the spectral retrieval
procedure, applied over volcanic ash cloud monitoring in synthetic and satellite images from MODIS;
conclusions and final remarks are summarized in Section 5.

2. Background

2.1. Remote Sensing with MODIS

The MODIS instrument remotely measures the entire Earth’s surface every 1–2 days,
acquiring data in 36 spectral bands ranging in wavelengths from 405 nm–14.4 µm. MODIS measures
images of the Earth’s surface, in three different spatial resolutions: 250 m, 500 m, and 1 km. Its optical
channels allow it to sense spectral information by reflection (typically between Bands 1 and 19) and by
radiation (typically infrared bands from Channels 20–36). A more detailed description of the MODIS
specification can be found in [42]. Measurements of radiation emitted from the Earth, as well as the
radiation reflected from sunlight on the terrestrial surface are recorded as measurements in the IR
range. However, during the day, the Earth-emitted radiation in the visible range is negligible compared
to the radiation reflected from sunlight. Thus, the reflectance spectra in the visible band have gained
real interest. The optical sensor response at each kth visible optical channel, ρk, is defined as a function
of their respective spectral sensitivity ωk and the incident spectra, E, reflected from the Earth’s surface
illuminated by sunlight, which is defined as follows [43,44]:

ρk =
∫ λmax

λmin

ωk(λ) · E(λ)dλ + ek, (1)

where λ ∈ [λmin, λmax] is the spectral sensitivity wavelength range of the kth optical sensor and ek
represents an additive random noise, mainly given by the electronics’ readout noise and dark current
of the detectors [45].

2.2. Spectral Retrieval

The spectral retrieval or spectral estimation consists of the recovering of high spectral resolution
data (at N channels), by using the response of a few optical sensors (k sensors), where typically,
k << N. The spectral retrieval is a special case of an ill-posed problem, where additional information
from the analyzed phenomenon is required. This additional information consists of a referential
database of the phenomenon to be estimated, whose spectral information could be reduced to a few n
basis functions [43]. First, let us assume that a high spectral resolution digital spectrometer measures
an incident spectrum E at an N wavelength. Assuming a linear behavior of the optical system, then
the optical sensor responses in Equation (1) can be represented in matrix notation as:

ρ = ΩTE + e, (2)

where ρ is a k-by-one vector containing the optical sensor pixel response, E is an N-by-one column
vector representing the incident spectrum, and Ω is an N-by-k matrix containing the spectral sensitivity
vectors of the optical channels (T is the transpose function). In practice, spectral sensitivity vectors in
Ω features any optical sensor in a mathematical way and represents the transmittance of the filters of
the optical sensor weighted by its quantum efficiency [46,47]. We will consider that the additive noise
e could be neglected and the spectral sensitivity vectors in Ω are known.

To obtain the spectral retrieval model, let us assume that a set of target spectra of high spectral
resolution N have been previously measured and stored in a referential matrix L. This matrix is
composed of p uncorrelated samples (sorted in rows) and measured with a high spectral resolution
spectrometer; then, the dimension of L is p-by-N. Next, we assume that any spectra in the referential
dataset L could be approximated by a linear model as follows [46,48]:

Ere f = Vε, (3)
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where Ere f is the spectrum defined as a linear combination of the n basis functions, V is an N-by-n
matrix containing the n basis vectors able to generate any spectrum in L, and ε contains the n unknown
coefficients for the linear combination. The linear basis in V is obtained using dimensionality reduction
methods, such as principal component analysis (PCA), non-negative matrix factorization (NNMF), or
independent component analysis (ICA) [43,44,49]. Dimensionality reduction methods allow retaining
most of the spectral information contained in referential dataset L, in a few basis vectors. On the
other hand, consider now the presence of a mapping operator G that suitably combines the linear
representation in Equation (3) and the optical sensor response ρ on Equation (2), able to minimize the
average squared error between any spectrum Ere f contained in L and a properly-estimated spectrum.
The linear relation between the optical sensor response ρ, the mapping operator G, and the estimated
spectrum Ê could be written as follows:

Ê = Gρ. (4)

Then, spectral retrieval is reduced to an optimization problem, where the operator G needs to
be calculated. There are two approaches to address this problem, according to the use of referential
spectral measurements or the required optical sensor spectral sensitivity function Ω. The first approach
does not require the optical sensor sensitivity Ω [49]. Unfortunately, this method requires simultaneous
measurements between referential spectra (L) and the sensors’ channels to calculate the parameters
of the mapping operator G, which would not be feasible in the case of volcanic ash reflectance
measurements. To surpass this limitation, the second approach incorporates the optical sensor spectral
sensitivity Ω. In this context, the Maloney–Wandell method provides a proper estimate of G. This
method of spectral retrieval was firstly proposed for spectral characterization of human vision [43,50],
and in the last few years, its applications have been extended [44,46–48]. Thus, combining Equation (3)
and Equation (2), the linear relation ε =

[
ΩTV

]
ρ can be found. Then, using this relation in Equation (3),

it can be found that matrix G = V
[
ΩTV

]+ (where + represents matrix pseudo-inverse). Then,
replacing G in Equation (4), the retrieval spectra can be computed as:

Ê = V
[
ΩTV

]+
ρ. (5)

The Maloney–Wandell method for spectral retrieval provides good results concerning simplicity
and accuracy. This approach is restricted by knowledge of information concerning the optical sensor
spectral sensitivity Ω, which however is provided by the manufacturers; and the referential dataset of
reflectance spectra L, which are not simultaneously measured. In this paper, we used this approach to
estimate the ash cloud reflected spectra from the response of the visible optical channels from MODIS,
then to compute the ash cloud detection.

3. Methodology

The proposal for volcanic ash monitoring based on MODIS satellite images is schematized
in Figure 1. Measurements of the ash reflectance were performed using samples from the
Puyehue-Cordon Caulle eruption; the event occurred in 2011 in Chile. Reflectance spectra, at high
spectral resolution, were measured using a USB2000 Ocean Optics Inc. spectrometer (calibrated with
an HL2000 lamp, Ocean Optics Inc., Dunedin, FL, USA), enabling us to calculate the basis vectors.
The spectral resolution of the USB2000 Ocean Optics Inc. spectrometer is ∆λ ≈ 0.3 nm, and spectra
were measured within the range of 400 nm–600 nm. A total of 360 spectral samples were measured,
at different incident angles and distances in order to retain most of the spectral information from
uncorrelated samples. Satellite sensors detect the Earth’s surface signals from solar reflections through
atmospheric absorption, so the measured ash reflectance spectra were weighted by solar spectral
radiance. Solar spectral radiance was measured on a sunny day over a diffuse surface and at different
times and angles. Then, reflectance ash samples were weighted by solar spectral radiance, obtaining a
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training spectral matrix L of 920 reflectance samples. The reflectance spectra of ash samples measured
in the laboratory and the obtained training spectra L are shown in Figure 2a,b, respectively.
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Figure 1. Volcanic ash monitoring methodology, based on spectral retrieval and MODIS satellite images.
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Figure 2. (a) Volcanic ash reflectance (in %) measured in the laboratory and (b) training spectral data L,
as measured by the satellite.

Linear basis vectors were calculated by using principal components analysis (PCA). PCA was
chosen because it has been previously verified to provide the most accurate spectral matching results,
using a few of both the optical channels and principal components, compared to the non-negative
matrix factorization (NNMF) and independent component analysis (ICA) reduction methods [46,51].
Thus, PCA was computed over the training spectral data L. Figure 3a depicts the first to fourth
principal components, as a function of wavelength λ, where the fourth component and the subsequent
basis vectors only contain negligible information. Data representation (in %) is depicted in Figure 3b,
calculated as the cumulative variance of the ith principal component. Data representation allows
defining a minimum number of principal components to be used for the spectral retrieval, retaining
the overall variability contained in the referential training matrix [44,52]. From Figure 3b, it is observed
that using the first four principal components retained 99.85% of the overall information contained in
the training matrix of referential ash spectral data.
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(a) (b)

Figure 3. (a) First four principal components for referential ash reflectance data. (b) Accumulated
variance by incrementing the number of principal components.

For computing the spectral retrieval model in Equation (5), the spectral sensitivities of the MODIS
sensors, in the visible band, are required. MODIS sensors have seven optical channels between
400 nm and 600 nm (Bands 3, 4, 8, 9, 10, 11, and 12). According to [44], the Maloney–Wandell method
provides better accuracy in spectral retrieval when the number of basis vectors matches the number
of optical sensors. Then, a key aspect before computing Equation (5) is to find the most proper
optical channels. In such a case, we will choose a subset of four channels from the seven available
visible channels, where sensors orthogonality is maximized and whose center wavelengths (λc) are
relatively equally spaced [53]. That is, the inner product between the sensitivity curves should be
minimized. Defining ωi, i = 1, ..., 4, as an optimal optical channel, such as ωi ∈ ωg, g = 1, ..., 7,
and λc(i) its respective center wavelengths, then the optimal subset of sensors should satisfy the
following properties: ωi

Tωj = 0, ∀i 6= j, and the step λc(i + 1)− λc(i) should be similar. Thus, the
optimal optical channels that satisfy these criteria are Channels 8, 9, 10, and 11. Figure 4 shows
the sensitivity of the selected channels, where intensity describes the spectral radiance necessary to
saturate each channel.

Figure 4. Spectral sensitivity of the MODIS satellite.

Finally, to evaluate the performance of the spectral retrieval, the goodness-of-fit coefficient (GFC)
and root-mean-squared-error (RMSE) metrics suitable for spectral matching [50] were computed
according to Equation (6) and Equation (7), respectively:
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GFC =
∑ E · Ê√

∑ E2 ·∑ Ê2
(6)

RMSE =

√√√√ 1
p

p

∑
j=1

(Ej − Êj)2 (7)

While GFC compares spectral projection (where a GFC close to 1 means an excellent match),
RMSE compares values’ differences over all wavelengths (where an RMSE close to zero means an
excellent match).

Relative Ash Concentration

A volcanic ash cloud in an eruption event is spatially dispersed as a function of the wind speed
and direction [54], resulting in a non-uniform ash cloud concentration or plume density (in kg/m3).
Concerning the interaction between the volcanic ash and the impinging solar radiance, the reflected
light is affected mainly by ash absorption and scattering, while in cloud zones with a weak ash
concentration, part of the solar radiance is also transmitted to the Earth’s surface [55].

In order to corroborate the relative ash concentration calculation, Figure 5a shows the reflectance
of volcanic ash particle samples, measured under different relative concentrations in the line-of-sight
(from 1×–5× relative concentrations). In Figure 5b, the integration of the reflectance samples can
be seen, over all wavelengths. The results show an increasing value of the integral, according to
a · log(x) + b, where a and b are constants. Therefore, while ash samples’ concentration increase, the
reflectance of the ash samples also increases, and the ash cloud becomes less transparent [56].

Then, in this work, the relative concentration of the volcanic ash cloud, Rash, will be calculated as
the integral of the recovered spectrum Ê in Equation (5), as follows:

Rash =
∫ λmax

λmin

Ê(λ)dλ (8)
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Figure 5. (a) Reflectance of volcanic ash at different concentrations. (b) Integral results over the
measured spectral band.

4. Results and Discussion

To corroborate the performance of the spectral recovering model Equation (5), we have tackled
three procedures. First, we have simulated the model to identify the proper number of basis vectors
that improve the performance of the spectral recovery. We have used for that the same spectra from the
training matrix L (Figure 2b) and the selected four optical channels shown in Figure 4. Second, we have
computed this model over a synthetic image constructed for such a purpose. The idea is to corroborate
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that the recovered spectra from other targets exhibit poor GFC metric values. This procedure will allow
defining a threshold of the metric values to discriminate between the ash cloud with other targets.
Finally, we applied the model for ash cloud detection over MODIS images.

4.1. Computational Results for Ash Reflectance Retrieval

In this step, we have computed the spectral retrieval procedure using the training spectra in L
and the selected MODIS channels. Table 1 summarizes the obtained results of the average values of
GFCand RMSE, calculated for a different number of principal components (PC). GFC verifies the high
accuracy of the spectral retrieval, and RMSE allows corroborating that the best results on the spectral
recovery are obtained by using the first four principal components for ash detection.

Table 1. Accuracy of the spectral retrieval as a function of principal components (averages values
of metrics). GFC, goodness-of-fit coefficient.

PC GFC RMSE

1 0.9999 1.0700
2 0.9999 0.8366
3 0.9999 0.7473
4 0.9999 0.7115
5 0.9999 0.8129
6 0.9999 0.8300
7 0.9998 1.1453
8 0.9970 1.4362

With these results, it has been verified that in practice, the recovering process provides excellent
results when the number of principal components matches the number of optical channels [44].
Hereafter, the four selected MODIS channels and the first four basis vectors for volcanic ash detection
will be used.

4.2. Volcanic Ash Detection Validation Using a Synthetic Image

In this step, we have computed the spectral retrieval procedure and the temperature difference
method, applied over a synthetic image composed of ash (at different concentrations: Ash H:
high density; Ash M: medium density; and Ash L: low density), ocean, land, and water cloud targets.
The comparison between both methods was verified by the following procedure:

1. A data cube of dimension Npix × Npix × N × 6 (Npix = 30) pixels was composed by data from
MODIS Channels 8, 9, 10, 11, 31, and 32, using pixels from different targets (ash clouds at different
concentrations, ocean, land, and water clouds, as depicted in Figure 6a).

2. High-resolution spectra were estimated with the model Equation (5), for each pixel, using the
response of MODIS Channels 8, 9, 10, and 11. In Figure 6b is shown the recovered spectra from
the different targets. Note the accuracy in the retrieval procedure (compared with the training
spectra in Figure 2b) when ash pixels were used with the model, in comparison with the noisy
spectra recovered using response channels from other targets.

3. GFC was calculated at each pixel, between the estimated high-resolution spectra and the whole
spectra contained in the training spectra L. Then, the best GFC was saved. If GFC surpassed a
threshold of 0.940, then the pixel was considered as an ash target. Otherwise, the pixel contained
information from another target. In parallel, the temperature difference method was computed
using MODIS Channels 31 and 32. If temperature differences T31 − T32 > −300, then the pixel
would be considered as ash [3].

4. A simple binary classification was computed over the entire synthetic image using both
the proposed and temperature difference methods. In Table 2 are presented the results (in
percentage %).
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Figure 6. Validation of spectral retrieval with a synthetic image. (a) Synthetic image constructed using
(i) ash cloud pixels at high density (Ash H), (ii) ash cloud pixels at medium density (Ash M), (iii) ash
cloud pixels at low density (Ash L), (iv) pixels from the ocean target, (v) pixels from land target, and
(vi) pixels from water cloud target. (b) Recovered spectra with the proposed method (in µW/cm2 nm)
using VIS channel responses from the synthetic image.

Table 2. Comparison between both the proposed and temperature difference methods, using binary
classification (in percentage %).

Criterion Performance (%) Performance (%)
Proposed Method Temperature Differences Method

True positive (ash row) 86.22 99.11
False positive (ash row) 13.77 0.88

False negative (other targets row) 29.33 81.77
True negative (other targets row) 70.66 18.22

With these results, it has been verified that the spectral recovering method provides excellent
results in detecting ash pixels. Although true positives were fewer than those obtained with the
temperature difference method, false negatives were much fewer than the other method, indicating
that by means of a spectral comparison, the spectral recovering method is more robust in discriminating
and separating pixels from other targets. These results agree with previous studies [3,57].

4.3. Volcanic Ash Monitoring Using MODIS Satellite Images

This section presents the obtained results for volcanic ash cloud detection and the relative
concentration estimation, based on the spectral retrieval algorithm and the methodology described
in Figure 1. Three different events where considered for this evaluation: Puyehue, Chile (40◦35′0′′S
72◦7′0′′W), 2011; Etna, Italy (37◦45′18′′N 14◦59′43′′E), 2002; and Eyjafjallajökull, Iceland (63◦37′48′′N,
19◦37′12′′W), 2010. First, the detection of ash clouds was estimated. This procedure was tackled
by calculating a recovered spectrum, pixel-by-pixel, using the response of Channels 8, 9, 10, and
11. Then, the recovered spectrum was compared with all the spectra contained in L (Figure 2b),
and the best GFC metric value was saved. If GFC surpassed a threshold of 0.975, then the pixel
was considered as an ash target. Otherwise, the pixel contained information from another target.
Second, the relative concentration of ash in the cloud was evaluated, by calculating the integral over
the recovered spectrum in pixels where ash was detected. Finally, the performance of the volcanic
ash cloud detection based on the spectral retrieval was compared to the results obtained using the
temperature difference method ([29,58]).
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In Figures 7–9 are shown the results of the volcanic ash cloud detection methods, from the
above-mentioned eruption event. In Figures 7a, 8a, and 9a are shown the composed RGB image
from MODIS during the events, as a reference. In Figures 7b, 8b, and 9b are shown the volcanic
ash cloud detection results using the proposed approach, exhibiting an excellent detection of the
cloud contours, even in zones where ash clouds had a weak concentration and in the presence of
water clouds. In Figures 7c, 8c, and 9c are shown the overall results for volcanic ash cloud detection,
by calculating the relative ash concentration. Note that in the cases of Figures 7c and 9c, a greater
concentration density in the middle of the clouds is clearly highlighted, and the contours revealed a
weak concentration. Furthermore, by following the concentration intensity and plume, the zone of the
eruption is clearly pointed out in the scene. These results reveal an accurate estimation of the ash cloud
and its relative ash concentration, using the spectral recovering model. Instead, Figures 7d, 8d, and 9d
reveal that the temperature difference method lacked precision in the contours’ detection of the cloud,
also exhibiting great influence when MODIS channels were saturated. This problem of striping noise
was strongly eliminated with the proposed approach, because even if any channel used for spectral
recovery were saturated, a spectrum with similar spectral characteristics of ash was recovered anyway.
Thus, the images resulting from the proposed method (Figures 7c, 8c, and 9c) were based on information
provided from various channels, and the influence from any saturated channel was reduced.

(a) (b)

(c) (d)

Figure 7. Result comparison from the Puyehue-Cordon Caulle eruption, Chile, 2011. (a) Composed
RGB MODIS image during the event. (b) Detection of volcanic ash cloud based on spectral retrieval.
(c) Ash cloud monitoring and relative concentration. (d) Temperature difference method results.
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(a) (b)

(c) (d)

Figure 8. Result comparison from the Etna Volcano eruption, Italy, 2002. (a) Composed RGB MODIS
image during the event. (b) Detection of volcanic ash based on spectral retrieval. (c) Ash cloud
monitoring and relative concentration. (d) Temperature difference method.

(a) (b)

(c) (d)

Figure 9. Results of ash monitoring from the Eyjafjallajökull Volcano eruption, Iceland, 2010. (a)
Composed RGB MODIS image during the event. (b) Detection of volcanic ash based on spectral
retrieval. (c) Ash cloud monitoring and relative concentration. (d) Temperature difference method.
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4.4. Analysis and Discussion

From the ash spectral retrieval results shown in Table 1, it was verified that the training spectra
contained most of the variability in the first four principal components according to the PCA results,
due to their highest average values of GFC and smaller average values of the RMSE. Besides, it
was verified that in practice, the recovery process provided excellent results when the number of
principal components matched the number of optimal optical channels. Then, the first four principal
components and the response from MODIS optical Channels 8, 9, 10, and 11 supported the spectral
retrieval method for accurately monitoring volcanic ash clouds. Similar results were corroborated by
using a constructed synthetic image (see Figure 6) where the performance differences were quantified
between spectral retrieval and temperature difference methods. With this last result, the robustness
of the proposed method can be concluded, achieving excellent results in detecting true positive ash
cloud pixels, notably reducing false alarms. From the ash monitoring results using MODIS images
from the Puyehue-Cordon Caulle, Etna, and Eyjafjallajökull eruption events, it was verified that
the ash monitoring based on the spectral retrieval method detected ash in the most extended area,
clearly revealing the contours and ash density in the clouds, compared to the benchmark temperature
difference method. In terms of computer processing time, the spectral retrieval algorithm took 3.81 s
to provide an image with a relative ash concentration (processing on a Win10 i7-6700HQ @ 2.6 GHz,
16 GB RAM4 computer). This time was mainly because the recovered spectrum from each pixel should
be compared with each spectrum in the training matrix. On the other hand, and similar to the method
based on temperature differences, this computational time directly depended on the size of the raw
images. By comparing Figure 7c and 7d, it was observed that the proposal was not strongly affected
by striping noise, such as in the results from the temperature difference method. This result is due
to the fact that even if an optical channel of the MODIS is saturated, the recovered spectrum is also
estimated. Moreover, the relative concentration of ash, calculated with Equation (8) improved the
information derived with respect to the benchmark temperature difference method, which only reveals
ash detection according to the value of the threshold. Subsequently, the results could provide an
accurate evaluation of the ash cloud distribution and its relative concentration, even in the presence of
water clouds. Then, the method provides an efficient tool for volcanic event monitoring.

5. Conclusions and Future Work

In this work, we proposed a method for hyperspectral retrieval using multispectral satellite
images from MODIS, enabling us to monitor ash clouds and their relative concentration accurately
when a volcanic eruption event occurs. The core of this method was the measurements of volcanic
ash spectral reflectance with a high spectral resolution and enough variance to provide representative
information from the process. A total of 920 spectral data from ash samples were used, and this was
enough to provide the basis vectors required for spectral retrieval, where the spectral information
was concentrated in the first four principal components retaining 99.85% of the overall information.
Then, a set of four optimal visible channels from MODIS (Channels 8, 9, 10, and 11) were selected by
maximizing the orthogonality and maintaining equal spacing of the center wavelengths. Then, the
spectral retrieval was computed pixel-by-pixel, using for that a constructed synthetic image containing
different targets and images from different eruption events. Thus, the recovered spectra over the entire
images were compared with the spectra in the training matrix. The metrics GFC and RMSE were
used for determining the accuracy of the method. Once the ash cloud was detected over the image,
a radiometric model based on the integral of the recovered spectrum was applied, enabling us to
estimate a relative concentration of ash from the cloud. The results have shown excellent accuracy in
the ash cloud estimation, outperforming the temperature difference method classically used for such
purposes, providing a complementary tool for daylight monitoring. Future works will consider the
ash cloud monitoring based on the proposed method, evaluating incidence on the size of the training
matrix and using mixed spectral data from different processes, as well as evaluating the recovering
procedure at other spectral bands, to increase the monitoring performance of ash clouds or other
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remote sensing applications. An important point to be treated in the future will be the definition of
an optimization routine to finding an optimum GFC threshold, allowing us to retrieve an optimal
image result independent of the ash cloud concentration, as well as to correlate these results with
ground-based observations.
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