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Abstract: The ecosystem of extra-high mountain areas is very fragile. Understanding local vegetation
changes is crucial for projecting ecosystem dynamics. In this paper, we make a case for Himalayan
mountain areas to explore vegetation dynamics and their influencing factors. Firstly, the interannual
trends of the normalized difference vegetation index (NDVI) were extracted by the Ensemble Empirical
Mode Decomposition (EEMD) algorithm and linear regression method. Moreover, the influence of
environmental factors on interannual NDVI trends was assessed using the Random Forests algorithm
and partial dependence plots. Subsequently, the time-lag effects of seasonal NDVI on different climatic
factors were discussed and the effects of these factors on seasonal NDVI changes were determined by
partial correlation analysis. The results show that (1) an overall weak upward trend was observed
in NDVI variations from 1982 to 2015, and 1989 is considered to be the breakpoint of the NDVI
time series; (2) interannual temperature trends and the shortest distance to large lakes were the
most important factors in explaining interannual NDVI trends. Temperature trends were positively
correlated with NDVI trends. The relationship between the shortest distance to large lakes and the
NDVI trend is an inverted U-shaped; (3) the time-lags of NDVI responses to four climatic factors were
shorter in Autumn than that in Summer. The NDVI responds quickly to precipitation and downward
long-wave radiation; (4) downward long-wave radiation was the main climate factor that influenced
NDVI changes in Autumn and the growing season because of the warming effect at night. This study
is important to improve the understanding of vegetation changes in mountainous regions.
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1. Introduction

As an intermediate link between hydrosphere, atmosphere, and lithosphere, vegetation plays a
critical regulatory role in carbon cycling and reducing greenhouse gas emissions [1,2]. In the context of
the warming effect, the response of vegetation to climate change has received much more attention [3–5].
Understanding the variations of vegetation activity, and its driving factors, is of great interest to the
assessment of regional environmental conditions.
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Over the past three decades, most parts of vegetated land showed a greening trend, especially
in the middle and high latitudes of the North Hemisphere, while browning trends were observed in
South Hemisphere [6–8]. At the regional scale, Sahara, U.S. Great plain, and some other regions have
been found to have a greening trend [9,10], whereas browning trends were found in the Northeast
China Plain, Madagascar savanna, and Amazon region [11–13]. Temperature and precipitation have
been considered critical driving factors in many studies on vegetation change [6]. Park and his
co-authors [11] reported that precipitation and temperature affect vegetation growth and degradation
in East Asia. However, other factors that have not been extensively explored include downward
radiations and topographic factors. Downward radiation is the primary energy source of vegetation,
and topographic factors determine the hydrothermal conditions of soil to some extent [12]. The impacts
of downward long-wave radiation, downward short-wave radiation, and topographical factors on
vegetation changes are also crucial in mountainous ecosystems. By introducing these factors, the
research will deepen our understanding of the relationship between interannual normalized difference
vegetation index (NDVI) trends and changing environmental conditions [13].

In addition to interannual variations, other time scales should be considered, such as seasons,
because of seasonal climate changes. In the Tibet Plateau, annual precipitation is centralized in summer
due to the Indian monsoon, whereas the precipitation decreased in autumn and winter due to the
westerly circulation [14]. For temperature in the Tibet Plateau, the warming rate in autumn is faster
than that in summer and spring [15]. The vegetation has different growth rates in spring, summer,
and autumn [16]. Therefore, vegetation changes and influencing factors on the seasonal scale must be
accounted for. In the background of climate changes, topographic factors have relative stability, while
precipitation, temperature, downward radiation, and other meteorological factors are in the dynamic
change process. The relationship between climate factors and NDVI variations reveals the driving
force of seasonal vegetation changes.

Before analyzing the relationship between seasonal vegetation variations and climate factors, the
time-lag effect should not be neglected. The time-lag effect of vegetation responses on climate change
is caused by the constraints of various other factors (soil properties, topography, etc.) on vegetation
changes. The current vegetation activities may be affected by early climate change. The time-lag
effect of vegetation responses to climate change varies with seasons [17] and climate factors [18,19].
Time-lag effects should be considered to improve the accuracy of evaluating the relationships between
vegetation activities and climatic factors.

Although there are many studies on vegetation changes, fewer studies were concentrated in the
mountain area at mid-high latitudes. The Himalayas extra-high mountain region (HEM) is a typical
mountainous areas at mid–high latitudes with a higher warming rate and abundant geomorphological
forms, such as valleys, platforms, hills, and mountains [20]. The ecological diversity of the HEM region
decreases from east to west, changing from the Yarlung Zangbo River Gorge with high biodiversity in
the alpine grassland with less biodiversity [21]. Simultaneously, the southeast portion has experienced
forest degradations [22], and the vertical zonal effect of vegetation is evident in the northeast portion [23].
The HEM region is a typical mountainous area. As such, assessing changes in vegetation in this region
will improve our overall understanding of vegetation change in mountainous ecosystems.

This paper focuses on the spatiotemporal changes in vegetation activities and their responses to
environmental factors in the mountainous areas. The aims of this paper are to (1) assess the interannual
trends in vegetation changes, (2) investigate the time-lag effects of vegetation activities responses
to climatic factors, and (3) analyze the relationship between vegetation changes and environmental
factors. The findings of this paper were used to provide a reference for the ecological security in the
HEM region.
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2. Materials and Methods

2.1. Study Area

The Himalayas extra-high mountain region (HEM) is located in southern Tibet (Figure 1a).
It stretches approximately 1700 km from west to east and 1000 km from south to north, with an average
elevation above 4000 m.
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From east to west, the HEM region has experienced a substantial climate changes from a humid
climate to a semi-humid climate, semi-arid climate, and arid climate (Figure 1b). Medog county and
Cona county are situated in the humid climate region with annual precipitation above 500 mm [24] and
mainly covered with broad-leaved forests and needle-leaved forests. Gongbujiangda county is located
at the transition from southern Tibet valley to eastern Tibet alpine valley, with a mild and humid
climate in its eastern portion and a cold and dry climate in its western part. Coqen, Zhongba, and
Saga counties belong to semi-arid regions with annual precipitation ranging from 200 to 300 mm and
characterized by large day-night temperature differences and long light duration. Alpine vegetation,
grasslands, and meadows account for 80% of total areas in the semi-arid region. The HEM region is rich
in water resources and contains six catchments, including the upstream, midstream, and downstream
catchments of Yarlung Zangbo River, Zangnan inland river catchment, Zangxi inland river catchment,
and the Chang Tang grassland inland river catchment.

2.2. Data Source

2.2.1. Global Inventory Modelling and Mapping Studies (GIMMS) NDVI

For this study, we utilized the freely available GIMMS3g Normalized Difference Vegetation Index
(NDVI) data. The GIMMS3g NDVI with a temporal resolution of 15 days and spatial resolution of
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0.0833◦ was downloaded from the National Aeronautics and Space Administration (http://ecocast.arc.
nasa.gov/data/pub/). This data has a longer time series (1982–2015) and a more extensive spatial range
compared with that of MODIS NDVI [25] and SPOT VGT NDVI [26]. The errors derived from volcanic
eruptions, solar elevation angles, and sensor sensitivity were removed from the GIMMS NDVI data [27].
The artifacts caused by orbital drift and variations in solar angle and view zenith angle were calibrated
during post-processing [28], and the cloud effects were reduced by using the highest fortnightly value
within 0.0833◦of pixels. To match the time and spatial resolution of the meteorological data, GIMMS
NDVI was used to generate monthly average NDVI data and resample the data to 0.05◦ using the
nearest neighborhood method. Water and permanent snow were also included in the insignificant
group to avoid their impact on the pixels. Meanwhile, pixels with an NDVI value of lower than 0.1 for
the growing season (May to October) were thought to be non-vegetation pixels and classified as the
insignificant group [29].

2.2.2. Meteorological Data

For this study, we utilized the China Meteorological Forcing Data (CMFD), including temperature,
precipitation, downward long-wave radiation, and downward short-wave radiation. These data are
available from the Cold and Arid Regions Science Data Center (westdc.westgis.ac.cn/data). The CMFD
with a time span of 1979~2015 has a three hour and 0.1◦ temporal–spatial resolution. The data combines
five auxiliary data sources: China Meteorological station data, Tropical Rainfall Measuring Mission
(TRMM) 3B42 precipitation data, Global Energy and Water cycle Experiment- Surface Radiation
Budget project (GEWEX-SRB) downward shortwave radiation data, Princeton forcing data, and Global
Land Data Assimilation System (GLDAS) data. The CMFD has been widely utilized in primary
plant productivity estimation [30], driving factor analysis of vegetation growth [31], and lake area
simulation [32]. Before the utilization, the 3-hour interval meteorological data were aggregated into
the monthly average temperature, monthly total precipitation, monthly total downward long-wave
radiation, and monthly total downward short-wave radiation data. Meanwhile, the processed data
were resampled to 0.05◦ using the nearest neighborhood method.

2.2.3. Geographic Data

Derived from the Shuttle Radar Topography Mission (SRTM) conducted by NASA and NGA,
the global digital elevation model (DEM) with a spatial resolution of 90 m was downloaded from the
website of the U.S. Geological Survey (USGS) (http://earthexplorer.usgs.gov). The fishnet with a spatial
resolution of 0.05◦ × 0.05◦ extracted the mean DEM based on the mean function of zonal statistics from
the ArcGIS software. The fishnet was converted to a raster with a spatial resolution of 0.05◦ based on
the attribute of mean DEM. The third-level catchment boundary in vector format was downloaded
from the website of the Resource and Environment Data Cloud Platform (http://www.resdc.cn/).

2.3. Methodology

2.3.1. Ensemble Empirical Mode Decomposition (EEMD)

The EEMD algorithm was used to extract the annual components of NDVI and climatic factors
at the whole HEM scale and pixel scale. Taking NDVI as an example, the monthly average NDVI
values from 1982 to 2015 were calculated to generate a time series X(t) with 408 values. Then, the time
series of X(t) was input into the EEMD algorithm to generate m IMF components and one residual
(Equation (1)). Each IMF has its own mean period T, which can be calculated by Equation (1). Based on
the grouping criteria proposed by Wen et al. [33], we summed one residual and the IMFs with a mean
period T greater than 2 to obtain the interannual variation component. If it is needed to obtain the
interannual trend, linear regression was applied for the annual variation component. At a pixel scale,
the same method was used to extract the interannual variation component pixel-by-pixel:

http://ecocast.arc.nasa.gov/data/pub/
http://ecocast.arc.nasa.gov/data/pub/
http://earthexplorer.usgs.gov
http://www.resdc.cn/
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Ti = 2Xi/n (1)

where Ti means the average time period of IMFi, year; Xi means the length of time series of IMFi, year;
n is the number of extrema points of IMFi.

EEMD is an adaptive time-frequency data analysis method developed from Empirical Mode
Decomposition (EMD) [34]. EMD can extract a finite number of components (named IMFs) from
nonstationary and nonlinear data series. The process can be written as Equation (2), in which X(t)
means the original data sequence and r(t) is the residual term. Each IMF has its own respective
frequency and periodic change character. All IMFs meet the following two conditions: (1) the number
of extreme points and zero-crossing points must be equal or different at most one in the whole time
series, and (2) the average value of the envelopes corresponding to the local maxima and local minima
is zero at any point.

X(t) =
m∑

i=1

IMFi(t) + r(t). (2)

Based on the framework of the EMD method, EEMD introduced an ensemble of white noise
signals to overcome the problem caused by mode mixing. Compared with the commonly used methods
for time series analysis, such as Fourier spectral analysis and Breaks for Additive Season and Trend
(BFAST), the EEMD does not need an a priori-defined basis function. Because of its flexibility and
adaptability, the EEMD method has been applied to many studies, such as climatic data analysis [35,36]
and ecosystem changes [33,37]. Here, the EEMD algorithm was applied to extract the interannual
component of NDVI and climate variables.

2.3.2. Breaks for Additive Season and Trend (BFAST)

In this study, the BFAST algorithm was used to detect the breakpoint in time series of the
interannual variation component of NDVI. The interannual variation component of NDVI at the whole
HEM scale was input in the BFAST algorithm. Because the seasonal component was removed when the
EEMD method was used to extract the interannual component, the season model of the BFAST algorithm
was set to “NONE”. Then, the parameter of h was set to 1/7, according to previous studies [38,39]. The
maximum number of breakpoints was set to one, avoiding many breakpoints that could complicate the
results. Meanwhile, one-breakpoint test can ensure that only the most significant change in the time
series is detected [40]. Finally, the algorithm output the most significant breakpoint in the interannual
variation component. BFAST analysis was performed in the R environment and the corresponding
package was downloaded from the website (https://cran.rproject.org/web/packages/bfast/index.html).
The BFAST algorithm is a statistically-based breakpoint analysis method and has widely been applied
in the breakpoint detection of satellite image time series [38,41,42].

2.3.3. Random Forest Regression

To evaluate the importance of environmental predictors on interannual NDVI trends, a random
forest regression model between NDVI and nine environment factors was used. The nine environment
variables are described in Table 1. For 19416 pixels within the HEM region, there was information
about interannual NDVI trends and nine environment variables. Because there is no need for the
prediction function of the Random Forest, this data (n = 19416) does not need to be randomly split into
test data and validation data. The data (n = 19416) were fully inputted into the Random Forest model,
and the interannual NDVI trends were used as the response variable. The randomly selected variables
at each node (mtry), and the number of regression trees of a bootstrap sample (ntree), were set to 4 and
500, respectively.

The nine environmental factors selected in this paper come from three aspects—climate,
topography, and geography. Among the climatic factors, temperature and precipitation have been
crucial factors for vegetation changes in previous studies [6,11]. Decreased downward radiation is

https://cran.rproject.org/web/packages/bfast/index.html
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considered to be the cause of much forest land degradation, such as the degradation of the southeastern
Tibet plateau [22]. Elevation and slope are critical topographic factors. Increasing elevations will
significantly accelerate the climate’s warming rate [43], and slope changes can affect soil erosion
conditions. Lakes and rivers are important water resources for vegetation in arid and semi-arid regions,
and the distances to lakes and rivers will affect the vegetation’s growth environment. The catchment is
the basic hydrological unit, and the hydrological conditions between catchments are quite different,
which can lead to the spatial heterogeneity of vegetation changes [44,45].

Random Forest is a combination of tree predictors, such that each tree is built from a bootstrap
sample of the original data [46,47]. Random Forest Regression (RFR) can be presented by Equation (3),
in which θt means an independent identically distributed random vector, x means an input vector, and
T means the number of trees:

h(x) =
1
N

T∑
t=1

{
h(x,θt)

}
. (3)

The Random Forest Regression method was applied in this study to analyze the importance
of different environmental factors on interannual NDVI trends. The main evaluation index for the
importance is mean decrease accuracy (%IncMSE). The %IncMSE means the percent increase in MSE
as a result of the variable being randomly permuted. More important factors have higher values
of %IncMSE.

The partial dependence plot enhances the exploratory function of the Random Forest model.
This plot provides the ability to visualize the relationships between the response variable and many
explanatory variables [48] and can be used directly from the Random Forest package on the R platform.
In this paper, we used the partial dependence plot to visualize the relationships between interannual
NDVI trends and nine environmental factors.

Table 1. Preprocessing of the nine environmental factors for the Random Forest model.

Factor Description

Interannual temperature trend

Firstly, the interannual variation component of temperature was extracted
by the ensemble empirical mode decomposition (EEMD) algorithm.
Subsequently, the linear regression was applied for the interannual
variation component to obtain the interannual trend of temperature

(°C·year−1). Each pixel has one interannual trend.

Interannual precipitation trend The interannual precipitation trend (mm·year−1) was obtained by the same
method as above.

Interannual downward long-wave radiation trend The interannual downward long-wave radiation trend (W·m-2
·year−1) was

obtained by the same method as above.

Interannual downward short-wave radiation trend The interannual downward short-wave radiation trend (W·m-2
·year−1) was

obtained by the same method as above.

Elevation The digital elevation model (DEM) with a spatial resolution of 0.05◦

Slope Slope (◦) was calculated from DEM through the surface analysis function of
the ArcGIS software

Distance to rivers Euclidean distance (m) to the nearest rivers > 100 m

Distance to large lakes Euclidean distance (m) to the nearest lakes > 1000 m2

Catchment

China’s third-level catchment boundary was used in this study. The HEM
region was divided into seven sub-regions, namely the Chang Tang

Grassland Inland River catchment, the upstream catchment of the Yarlung
Zangbo River, the midstream catchment of Yarlung Zangbo River, the

downstream catchment of Yarlung Zangbo River, the Zangxi Inland River
catchment, and the Zangnan Inland River catchment.

EEMD: Ensemble Empirical Mode Decomposition.

2.3.4. Simple Linear Regression

Simple linear regression was established to determine the correlation between NDVI and each
climatic factor, namely, temperature (TEMP), precipitation (PRE), long-wave radiation (LR), and
short-wave radiation (SR). The relationships between NDVI and climatic factors are shown in
Equations (4)–(7):
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NDVI = ai × TEMP + b (4)

NDVI = ai × PRE + b (5)

NDVI = ai × LR + b (6)

NDVI = ai × SR + b (7)

where ai means the regression coefficient with a time lag of i month. i ranges from 0 to 5 months, while
0 represents no time-lag effect and 1–5 represents 1–5 months lag. Some studies found that the time-lag
effects of NDVI responses to climate variables are generally shorter than half a year in Tibet [18,49].

Summer was taken as an example. When the time lag i = 0,1, . . . ,5 months, the correlation
coefficients (R2) between NDVI and each climatic factor were calculated. These correlation coefficients
(R2) were divided into four levels according to the magnitude of their absolute values: Low (<0.3),
Medium (0.3–0.5), High (0.5–0.8) and Very-High (>0.8). For each climatic factor and each time lag, we
calculated the area fractions corresponding to four levels.

2.3.5. Partial Correlation Analysis

Partial correlation is defined as the correlation of two factors controlling the influence of the other
factors [50]. At the pixel scale, monthly NDVI and monthly climatic factors (temperature, precipitation,
LR, SR) were input into the partial correlation analysis model in MATLAB, and then the partial
correlation coefficients between NDVI and each climate factor were output. Subsequently, the climatic
factor with the largest partial coefficient was selected as the main influence factor. The specific formula
for partial correlation is described as follows:

rxy−z =
rxy − rxz × ryz√

1− r2
xz ×

√
1− r2

yz

(8)

where rxy−z is the partial correlation coefficients between x variable and y variable when the z variable
is selected as the control factor. The rxy, rxz and ryz are the correlation coefficients between x and y, x
and z, and y and z, respectively.

3. Results

3.1. Interannual Trends of NDVI and Climate Factors

Figure 2a illustrated the interannual NDVI variation at the whole HEM scale from 1982 to 2015.
The overall NDVI exhibited a positive trend between 1982 and 2015 at a speed of 0.00012 year−1

(p < 0.05), slower than the growth of Tibet Plateau (0.0002 year−1) [51]. The breakpoint in interannual
NDVI variations appeared in 1989 (Figure 2b). Before the breakpoint time, NDVI exhibited a consistent
positive trend with a rate of 0.0015 year−1 (p < 0.01). After the breakpoint time, a negative trend with a
speed of 0.00044 year−1 (p < 0.01) was found. At the pixel scale, significant positive trends of interannual
NDVI components were found in Gongbujiangda county and surrounding areas and weak positive
trends with a speed between 0 and 0.0005 year−1 were found in the central and northwestern HEM
region (Figure 3). Pixels with a negative trend of interannual NDVI components were concentrated in
the southeast HEM region.

Trend patterns of climate factors were spatially heterogeneous (Figure 4). For interannual
temperature change, most areas showed a positive trend with a rate between 0 and 0.035 °C per year−1.
The largest positive trends for temperature were found in Zhongba county, Saga county, Coqen county
and Ali Prefecture. For interannual precipitation change, the largest positive trends were found in the
southeast HEM region, and the negative trends were found in Lhari county, Saga county, and Coqen
county. For downward long-wave radiation and downward short-wave radiation, most pixels within
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the HEM region showed a positive trend of interannual long-wave radiation variations and a negative
trend of interannual short-wave radiation variations.
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3.2. Environment Influences on Interannual NDVI Trend

Figure 5 shows the importance magnitude of nine environmental variables. Temperature and the
shortest distance to large lakes were the dominant factors in determining the direction and magnitude of
interannual NDVI trends. Downward long-wave radiation, downward short-wave radiation, elevation,
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slope, and the shortest distance to rivers had moderate values of %IncMSE, indicating they are also
important in influencing the NDVI trends. There was a decline in importance for precipitation and
river catchments.

We found different relationships between environmental factors and interannual NDVI trends
(Figure 6). The increased warming leads to the large positive trend of NDVI. When the warming rate is
higher than 0.013 ◦C·year−1, the NDVI trend remains unchanged. The increased precipitation trend
leads to a larger positive trend of NDVI. Elevation has been considered to have a strong association
with the NDVI trend. The large positive trend of NDVI is found in high altitude areas. However, when
elevation exceeds 5000 m, the NDVI trend starts to decrease. For downward long-wave radiation (LR)
and downward short-wave radiation (SR), the long-wave radiation trend has an apparently negative
relationship with the NDVI trend and short-wave radiation has an uncertain relationship with the
NDVI trend. The shortest distance to large lakes plays a vital role in determining the magnitude and
direction of the interannual NDVI trend. The curve between the shortest distance to large lakes and
the NDVI trend presents an inverted U-shape. Within 20 km, the NDVI trend increases significantly,
with an increase in the shortest distance to large lakes. When the shortest distance to large lakes
exceeds 20 km, the NDVI trend decreases significantly, with an increase in the distance to large lakes.
Among six river catchments, the midstream catchment of the Yarlung Zangbo river exhibits the largest
positive NDVI trend and the downstream catchment of the Yarlung Zangbo river exhibits the most
significant negative NDVI trend.
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Figure 5. The importance of environment factors from the Random Forests model. The eight variables
on the x-axis are precipitation (PRE), temperature (TEMP), downward long-wave radiation (LR),
downward short-wave radiation (SR), elevation, slope, shortest distance to rivers, shortest distance to
large lakes and river catchments. Mean Decrease Accuracy (%IncMSE) is the variable on the y-axis.
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3.3. Relationships between Climate Variables and NDVI for Different Seasons

3.3.1. Time-Lag Effects of Vegetation Responses to Climatic Factors at a Seasonal Scale

The time-lag effects of vegetation responses to four climatic factors, that is, temperature (TEMP),
precipitation (PRE), downward long-wave radiation (LR), and downward short-wave radiation (SR),
were obtained using the NDVI time-series and China Meteorological Forcing Data. The results showed
that the time-lag effects varied with climatic factors and seasons. For Summer, when the time lag
of NDVI responses to temperature is two months, the area fraction corresponding to the high level
of the correlation coefficient reaches its largest size, which indicates that the optimal time lag of
NDVI responses to temperature is two months (Figure 7a). In Autumn, the optimal time lag of NDVI
responses to temperature (0 month) is shorter than that in Summer (two months), possibly because
the temperature in Autumn drops rapidly, and the demand for the ideal temperature suitable for
vegetation growth is increasing. The optimal time lags of NDVI to temperature in Summer and the
growing season are same, which indirectly indicates that vegetation activities in summer are crucial for
the growing season. The NDVI exhibited a certain time-lag effect related to precipitation in different
seasons, with the time lag in most areas equaling one month. LR and SR are the primary forms of
energy input on the Earth’s surface. Figure 7g–i shows that the optimal time lags of NDVI responses to
LR are one month, 0 month, and one month, in Summer, Autumn, and the growing season, respectively.
Figure 7j–l show that the time-lag effects of NDVI respond to SR. The optimal time lags in summer,
autumn, and the growing season are two months, 0 months, and four months.
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3.3.2. Responses of Seasonal NDVI to Climatic Factors

Considering the time-lag effects of NDVI responses to different climatic factors in different seasons,
the partial correlation coefficient between NDVI and each climatic factor was calculated.

In Summer, the positive partial correlations between precipitation, downward long-wave radiation,
and NDVI were found in most of the HEM regions (Figure 8b–c). NDVI in Autumn negatively
correlated with the temperature in the central region (Figure 9a), which was consistent with the study
by Dong et al. [52]. This result is possibly because of the drought limitation. As shown in Figure 9c,
there was a significant negative correlation between downward long-wave radiation and autumn
NDVI in the southeastern HEM region, which is not consistent with that in other parts or other seasons
(Summer and growing season). During the whole growing season (May–October), the NDVI exhibited
positive correlations with temperature in the southern HEM region and negative correlations with
temperature in Lhasa city and the surrounding areas.

Figure 10 depicts the spatial patterns of the main influencing factors, respectively, in Summer,
Autumn, and the growing season. One of the four climatic factors with the largest absolute value
of the partial correlation coefficient was identified as the main influencing factor (MICF) (Figure 11).
In Summer, areas with precipitation and downward long-wave radiation as the main influencing
factor account for 25.77% and 26.65% of the total areas, respectively, while those with temperature and
downward short-wave radiation as the main influencing factors only account for 10.18% and 3.1%
of the total areas, respectively. In Autumn, area proportion with downward long-wave radiation as
the main influencing factor increases up to 58.18% compared with that in Summer. The areas with
the main influencing factor being downward short-wave radiation and precipitation only account
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for 14.57% and 6.99% of the total areas, respectively, and these were distributed in the western HEM
region. Throughout the whole growing season (May to October), downward long-wave radiation
plays the most critical important role in vegetation changes, followed by precipitation and downward
short-wave radiation. The temperature has a minor influence on vegetation changes.
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4. Discussion

4.1. NDVI Trends and Breakpoint

Early studies showed that mountainous region in China exhibited greening trends [53], such as
the increase in vegetation at a rate of 0.0024 year−1 in the Changbai Mountain area [54], the positive
NDVI trend at a rate of 0.0031 year−1 in the the Qilian mountain area [55], and the improved vegetation
at a rate of 0.003 year−1 in the Altun Mountains [56]. The growth rate of NDVI in the HEM region is
slower than that of other mountainous regions.

The breakpoint of NDVI in the HEM region was found to be around 1989, which is consistent
with that in the North American [57,58] and the Asia-Pacific regions [58]. In the Asia-Pacific region,
the detected breakpoint was 1991, based on the thirty-year time series of GIMMS NDVI, with an
increasing rate of 26.14 × 10-4 year−1 before 1991 and 5.78 × 10-4 year−1 after 1991 [58]. Unlike the
Asia-Pacific region, the interannual trend of NDVI in the HEM region was negative after 1989. This
negative trend has been reported in other regions, such as temperate and boreal Eurasia [40,59],
western North America [60], tropical regions [61], and China’s Tibetan areas [59]. Temperature-induced
moisture stress is possibly the main influential factor in the NDVI trend [59–62]. The precipitation and
temperature trends were calculated before and after 1989. In the HEM region, the precipitation trend
(0.3 mm·year−1) before 1989 was higher than that after 1989 (0.16 mm·year−1), and the temperature
trend changed little. Temperature-induced moisture stress was also attributed to the negative trend in
the HEM region.

NDVI trends at the pixel scale were heterogeneous. Most pixels with positive trends were
concentrated in the Gongbujiangda county and the surrounding areas. These positive trends agree
with the reported result that the largest increases in NDVI were found in the Niyang basin, which
contains Gongbujiangda county [63]. Rising temperatures over the past decades might have possibly
contributed to the positive trends of NDVI [16,64]. The local non-commercial forest management
strategy has also contributed to these positive trends. The largest negative trends were found in the
southeast portion of the HEM region. Zhang et al. [22] reported that broadleaf forests in southeastern
Tibet plateau experienced the trend of degradation from 1982 to 2006. The decrease in sunshine
duration resulted in a negative trend of NDVI in the southern plateau [65]. A similar phenomenon
of vegetation degradation caused by declining solar radiation was found in other places, such as the
Northern Tibet [66] and Amazon regions [67].
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4.2. The Relationships between Interannual NDVI Trends and Environment Factors

In Section 3.2, two variables (temperature and shortest distance to large lakes) had the highest
importance. The rising trend in temperature has been the main driving force for vegetation greening
in the interannual time scale, possibly because the rising temperature accelerated the growth rate of
vegetation in some areas, such as the Nyingchi region [68]. Meantime, temperature is considered
the main influencing factor for vegetation in the Tibet plateau [69]. There is an inverted U-shaped
relationship between the interannual NDVI trend and the shortest distance to lakes, that is, a positive
correlation within twenty kilometers and negative correlation when exceeding twenty kilometers,
which has also been found in other studies [70]. Li et al. [71] and Chen et al. [72] believed that there
were two possible reasons for explaining the relationships. On the one hand, in summer, the lake effect
causes a decrease in temperature in the vicinity of the lakes, which leads to an unsuitable temperature
for the vegetation growth. On the other hand, when exceeding a certain distance, water vapor sourced
from lake water evaporation decreased with an increase in distance from the lakes, which slows the
vegetation growth rate.

Elevation, downward long-wave radiation (LR) and short-wave radiation (SR) have medium
importance for interannual NDVI trends. As the elevation increased, the NDVI trend increased if the
elevation was less than 5000 m, but it decreased if the elevation was higher than 5000 m. The above
phenomenon could be ascribed to the noticeable elevation-dependent warming effect at elevations
below 5000 m and the negligible elevation-dependent warming effect at elevations above 5000 m [73].
Yan and Liu [43] investigated the warming rates at different elevations in the Qinghai-Tibet Plateau
and found that when the elevation is lower than 5000 m, the warming rate increases with elevation.
The SR and LR are important parts of the ground energy balance. Under the increased SR trend and
LR trend, the land surface gives up more moisture, making the ground drier [74]. This drier climate is
not conducive to vegetation growth, so the NDVI trend is negatively correlated with the SR trend and
LR trend. However, the drying effect is not apparent on a seasonal scale because the strengths of LR
and SR are affected by seasonality [75].

4.3. Analysis of Time-Lag Effect for Different Climatic Factors

The time-lag effect reflects the sensitivity of vegetation to climates, which may vary with geographic
locations and climatic factors. On a global scale, vegetation has a certain time-lag effect of more than
one month with temperatures at low latitudes. At middle and high latitudes, vegetation generally
responds quickly to temperature [18]. At the regional scale, the most mountainous vegetation is driven
by temperature changes. In the Qilian Mountain areas, the time-lag effects of NDVI on temperature
are shorter than one month in the growing season, Spring and Autumn, and longer than two months
in Summer [55]. In the Central Himalayas of Nepal, there is no obvious time-lag effect between
temperature and vegetation, possibly because the temperature is a limiting factor [76]. For the semi-arid
grasslands in Tianshan mountain, the optimal time lag of NDVI to temperature is only twenty days,
because much of the glacial meltwater induced by temperature meets vegetation demands [77]. In the
HEM region, the time-lag effect of NDVI to temperature is longer than that in the Central Himalayas
of Nepal and the Tianshan Mountain, which indicates that vegetation changes are not sensitive
to temperature.

Precipitation is an important factor affecting vegetation changes. In southwestern American [78],
the Australian outback [79], and the Yun-Gui plateau [80], vegetation changes are strongly positively
correlated with precipitation preceding one month. However, in the Amazon Region [19] and the East
Tibetan Plateau [24], the time lags are greater than one month. Regional climates play an essential
role in the spatial difference of the time lags. Most of the HEM region belonged to arid and semi-arid
climates, of which precipitation can effectively alleviate the strong demands of vegetation on water.
Therefore, the vegetation of the HEM region is more sensitive to precipitation than to temperature.

Downward long-wave radiation and downward short-wave radiation are two key factors that
influence the land surface ecosystem. Wang et al. [81] reported that in the permafrost region of the
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Qinghai-Tibet plateau, vegetation growth is more sensitive to downward long-wave radiation than
short-wave radiation. Pepin et al. [82] investigated the relationship between downward long-wave
radiation and elevation-dependent warming effects on mountainous ecosystems and concluded that
downward long-wave radiation contributes more to the warming effect at higher elevations or low
humidity areas. Therefore, the high sensitivity of long-wave radiation to vegetation changes in the
HEM region may be a result of the warming effect of long-wave radiation on vegetation at night.

4.4. Partial Correlations between Seasonal NDVI and Climatic Factors

In this study, it was found that the autumn NDVI has a negative correlation with temperature in
the central HEM region. This result is consistent with the result reported by Zhang et al. [83], who
found that a significant negative correlation between autumn NDVI and temperature was found in
the southwest of the Tibet Plateau. Du et al. [16] found that summer NDVI was strongly negatively
correlated with temperature, and autumn NDVI was weakly positively correlated with temperature,
which is not consistent with these results. There are two reasons for explaining the above phenomenon.
In the one hand, the summer vegetation responding to temperature has a time-lag effect—that is,
vegetation will not change immediately with an increase in temperature. Simultaneously, much
glacier meltwater and precipitation effectively supplements the lack of soil moisture and avoids
drought restriction for vegetation [84,85]. On the other hand, in autumn, in the background of the
decreased precipitation and decreased glacial meltwater, rising temperatures contribute to a drier
climate, which hinders vegetation growth. Another interesting finding is that negative correlations
between temperature and the growing season’s NDVI were concentrated in Lhasa and the surrounding
areas. With rapid urbanization, there has been degradation of natural vegetation in Lhasa and the
surrounding areas [86]. Meanwhile, there is an anomalously high warming rate because of the urban
island effect [87]. Therefore, local NDVI is negatively linked with temperature changes.

Downward long-wave radiation is vital for vegetation changes in Summer, Autumn, and the
growing season. Walters et al. [88] reported that the changes in downward longwave radiation could
mix the warm air and land surface to warm the surface temperature. High altitude areas are considered
to be more prominent in this warming effect [82]. Rangwala et al. [75] found that downward long-wave
radiation is related to winter warming effects in the Tibet plateau. Downward long-wave radiation is
sensitive to changes in humidity. The higher the humidity, the greater the radiation, and vice versa [89].
Therefore, when the climate tends to be dry, the downward long-wave radiation decreases, which
does not lead to much evaporation. The HEM region is characterized by a big day-night temperature
difference in autumn. In this region, the increased downward long-wave radiation is beneficial to the
warming effect at night, which protects vegetation from the frost.

5. Conclusions

Current related research has focused on the response of NDVI variation to climate change, while
interannual NDVI trends and their influencing factors are rarely discussed. This paper analyzed the
relationships between interannual NDVI trends and environmental factors, seasonal NDVI variations,
and climatic factors in the HEM region. There was also a discussion on the time-lag effect of NDVI
responses to climatic factors. The following conclusions were obtained:

(1) From 1982 to 2015, the overall NDVI of the HEM region exhibited a weak upward trend. In detail,
the NDVI showed a significant and rapid upward trend before 1989 and a downward trend after
1989. At the pixel scale, many greening pixels were concentrated in Gongbujiangda county and
the surrounding areas, because of the rising temperature, plenty of precipitation, and the local
forest protection strategy.

(2) Among nine environmental factors, the interannual temperature trend and the closest distance
to large lakes are the most important factors affecting the NDVI trends in the HEM region.
The increasing temperature leads to an increase in the NDVI trend, possibly because rising
temperature accelerates the rates of photosynthesis and respiration in vegetation. Within 20 km,
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the shortest distance to large lakes is positively correlated with the NDVI trend. Glacial lakes in
the HEM region show a cooling effect on the temperature of its nearby area, which may limit the
vegetation growth to some extent. This correlation is negative when exceeding twenty kilometers
because air humidity decreases with an increase in the distance to large lakes, which is not
conducive to vegetation growth in the semi-arid region.

(3) In the HEM region, the time lags of NDVI responses to precipitation and downward long-wave
radiation are short, and those to temperature and short-wave radiation are long. Seasonally, the
time lags of NDVI to climate factors in autumn are shorter than that in summer.

(4) Autumn NDVI was negatively correlated with temperature in the central HEM region, possibly
because of increasing temperature-induced moisture stress. A negative correlation between
temperature and NDVI in the growing season was found in Lhasa and the surrounding areas,
probably because of the urban heat island effect and intense human activities. Among four
climatic factors, downward long-wave radiation was the main climate factor that influenced
NDVI changes in Autumn and the growing season, possibly because of its warming effect at night.
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