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Abstract: There is always a need to extract more accurate regional common mode component (CMC)
series from coordinate time series of Global Positioning System (GPS) stations, which would be of
great benefit to describe the deformation features of the Earth’s surface with more reliability. For
this purpose, this paper combines all 11 International Global Navigation Satellite System (GNSS)
Service (IGS) stations in China with over 70 stations selected from the Crustal Movement Observation
Network of China (CMONOC) to compute CMC series of IGS stations by using a principal component
analysis (PCA) method under cases of one whole region and eight sub-regions. The comparison
results show that the percentage of first-order principal component (PC1) in North, East and Up
components increase by 10.8%, 16.1% and 25.1%, respectively, after dividing the whole China region
into eight sub-regions. Meanwhile, Root Mean Square (RMS) reduction rates of residual series that
have removed CMC also improve obviously after partitioning. In addition, we compute displacements
of these IGS stations caused by environmental loadings (including atmospheric pressure loading,
non-tidal oceanic loading and hydrological loading) to analyze their contributions to the non-linear
variation in GPS coordinate time series. The comparison result shows that the method we raise,
PCA filtering in sub-regions, performs better than the environmental loading corrections (ELCs) in
improving the signal-to-noise ratio (SNR) of GPS coordinate time series. This paper raises new criteria
for selecting appropriate CMONOC stations around IGS stations when computing sub-regional CMC,
involving three criteria of interstation distance, geology and self-condition of stations themselves.
According to experiments, these criteria are implemental and effective in selecting suitable stations,
by which to extract sub-regional CMC with higher accuracy.

Keywords: IGS stations; CMONOC stations; principal component analysis; common mode
component; sub-regional extraction; station-selection criteria

1. Introduction

The continuously operating GNSS reference stations established by the International GNSS Service
(IGS) have accumulated a huge amount of GNSS data for over 20 years. The results from these data,
coordinate time series of IGS stations, are constantly getting more accurate, accompanied by the
gradual improvement of GNSS technology, data-processing methods and error correction models.
Topics, such as the global or regional observation of crust deformation and regional fault slips have
significant scientific value and practical meaning [1–6]. However, the coordinate time series of GPS
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stations have various influential factors, including one related to time and space is called common
mode error (CME) [7,8]. CME series have obvious periodic terms that are probably caused by some
geophysical signals [9,10]. Therefore, we use the term “common mode component” (CMC) in this
paper instead.

Effective extraction of CMC is quite beneficial in improving the accuracy of coordinate time series,
quantifying the station displacement caused by geophysical signals and accurately describing the
features of regional earth surface deformation. As a result, recent years have seen CMC become a
heated research topic [9–19]. Jiang et al. [20] analyzed 29 stations in the Chinese CORS network and
extracted the CMC series by using a PCA method. After filtering CMC from the original coordinate
time series, they estimated the velocity and its accuracy of each station. Tian and Shen [15] put forward
a correlation-weighted stacking filtering method to remove CMC. This method takes the correlation
coefficients of the coordinate components (North, East and Up) among the stations as the weighs in
filtering, then the root mean square (RMS) value reduced effectively. Besides, it is available in both
large-scale and small-scale GPS networks. Ma et al. [16] employed three kinds of spatial filtering
approaches: stacking, PCA and Karhunen-Loeve Expansion (KLE) to extract CMC from stations in the
Antarctic Peninsula. The results showed that PCA is an efficient filtering method with the highest
accuracy. Zhu et al. [18] calculated the CMC of CMONOC stations through correlation weighted
stacking filtering method. Then they quantified the geophysical signals that induced CMC, including
environmental loading and thermal expansion. The results announced that environmental loading is
one of the main sources of CMC in the vertical component of stations, while the impact of thermal
expansion is not as obvious as the former.

Through continuous exploration in recent years, theoretical CMC research has matured, whereas
there are still questions worth to discussing further. For example, when we compute the CMC of all the
stations in a whole region, the CMC of the sub-regions would be easily regarded as the local individual
feature and hence be neglected. This would then lead to decreasing CMC extraction accuracy and
inaccurate cognition about the motion features of GPS stations. In addition, according to the existing
research results [11,18,21,22], the scale of the research region has direct influence to extracting CMC, so
what are the specific characteristics of such influence in China region? Does it have some useful and
feasible instructions for the regional CMC extraction mode that this paper proposes? We will explore
these topics next.

2. Data and Methodology

2.1. Data

2.1.1. GPS Coordinate Time Series

The data that this paper uses to calculate the CMC of IGS stations in China region is mainly
from Scripps Orbit and Permanent Array Center (SOPAC), one of IGS data analysis centers, and
from China Earthquake Administration (CEA) that provides CMONOC data. Table 1 shows the
related information about their products that we use in this paper. SOPAC products are from the
address “ftp://garner.ucsd.edu/pub/timeseries/measures” which contains “raw” series that include
outliers, “cleaned” series that has excluded outliers and “detrend” series that has removed linear trend.
CMONOC products are acquired from “ftp://ftp.cgps.ac.cn/products/position/gamit/” which includes
coordinate time series of 260 CMONOC stations that spread evenly throughout China. They are also
divided into “raw” and “detrend” series.

ftp://garner.ucsd.edu/pub/timeseries/measures
ftp://ftp.cgps.ac.cn/products/position/gamit/
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Table 1. Introduction of the original coordinate time series of IGS stations in China.

Station Latitude/◦ Longitude/◦ Session/year Time
Span/Year Monument/Bedrock Type

BJFS 39.60861 115.89222 1999.8041–2018.8945 19.1 concrete/weathered sedimentary
CHAN 43.79050 125.44330 2004.9385–2018.8973 14.0 concrete/weathered sedimentary
GUAO 43.47110 87.17730 2002.4534–2016.2008 13.7 reinforced concrete/metamorphic
URUM 43.59000 87.63000 1998.7685–2013.0836 14.3 concrete/bedrock
KUNM 25.02950 102.79720 1999.7247–2018.8973 19.2 concrete/sedimentary
LHAZ 29.65722 91.10389 1995.0233–2018.8973 23.9 roof concrete/none
SHAO 31.09944 121.20028 2002.4781–2018.8808 16.4 concrete/sedimentary
TCMS 24.79778 120.98722 2002.4781–2018.8699 16.4 roof steel/sedimentary
TNML 24.79800 120.98730 2001.8562–2018.8945 17.0 roof steel/sedimentary
TWTF 24.95360 121.16450 1998.8342–2018.8945 20.1 roof steel/none

WHUN 30.53139 114.35722 1996.0669–2016.7363 20.7 granite block/sedimentary

The daily loosely constraint solutions of these CMONOC stations are processed by the software
GAMIT10.4. The detailed processing strategy emerges in the manual whose address is “ftp://ftp.cgps.
ac.cn/doc/processing_manual.pdf”. Figure 1 shows all the IGS and CMONOC stations in China. The
data that this paper uses is the “cleaned” series of 11 IGS stations and “detrend” series of over 70
selected CMONOC stations.
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marked in red bold figures.

2.1.2. Environmental Loading Data

The mass redistribution of atmosphere, ocean and terrestrial water reserves can cause changes in the
Earth’s surface mass loading, thus leading to surface deformation [23–25]. This is called environmental
loading deformation. Surface loading models (SLM) can be established based on geophysical
observations and Earth models to estimate surface displacements caused by environmental loadings.

This paper estimates the displacement of IGS stations caused by environmental loading based on
the surface loading products provided by GFZ [26]. GFZ provides global surface elastic deformation
data in grids form, including atmospheric pressure loading (NTAL), non-tidal oceanic loading (NTOL)
and hydrological loading (HYDL), with a spatial resolution of 0.5◦ × 0.5◦. The temporal resolution is
3 h for NTAL and NTOL data, and 24 h for HYDL data. The input data GFZ calculates NTAL, NTOL
and HYDL are surface pressure data from European Centre for Medium-Range Weather Forecasts

ftp://ftp.cgps.ac.cn/doc/processing_manual.pdf
ftp://ftp.cgps.ac.cn/doc/processing_manual.pdf
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(ECMWF), Max Planck Institute Ocean Model (MPIOM, [27]) and land surface discharge model
(LSDM, [28]). Based on the environmental loading products (netCDF files) of GFZ, we adopt a bicubic
interpolation to interpolate certain station locations and then to compute the environmental loading
series of each CMONOC station. In order to unify the temporal resolution of these environmental
loading displacement series, NTAL and NTOL displacement series take the average every six epochs to
get the daily time series. Then we add these three loadings together to acquire the sum environmental
loading (SUML) of 11 IGS stations in China. The surface elastic deformation data used takes the Center
of Earth’s Figure (CF) as the reference frame [29].

2.2. Methodology

At present, the popular method for CMC extraction is spatiotemporal filtering, which includes
regional stacking [7,21,30], PCA [10,31,32] and KLE [9]. The CMC series is contained in the residual
time series of stations, so when we get the original coordinate time series, the first thing is always to
acquire the residual series by removing the linear and periodic terms.

2.2.1. Acquisition of the Residual Time Series

The original coordinate time series of GPS stations consists of a linear trend, periodic terms
(annual and semi-annual), offsets and noises, so the mathematical model that reflects the displacement
at coordinate components (North, East and Up) can be expressed as follows [33,34]:

v(t) = x(t) − [xR + v(t− tR) +
∑nb

j=1 b jH(t− t j) +
∑nA

k=1 Aksin(ωkt + ϕk) +
∑nL

k=1 aklog(1+

(t− tk)/Tk))]
(1)

where xR and tR are the reference coordinate and epoch; t are epochs of GPS time series; v means linear
velocity; H(t) is the Heaviside step function and used to model offsets with amplitudes bj; nb is the
number of offsets and tj are epochs of these offsets; Ak, wk, ϕk are the amplitudes, angular velocities
and initial phases of periodic signals, respectively; nA is the number of periodic signals, k = 1 for
annual signal and k = 2 for semi-annual signal; nL is the number of logarithmic functions used to model
post-seismic deformation; ak and Tk are two parameters of the logarithmic function; tk are the epochs
of earthquakes that caused logarithmic displacement; v(t) is the residual series that represents the
difference between the observations and the fitting values. It is also used for extracting CMC series.

For offsets contained in coordinate time series, firstly we remove some of them (including
earthquakes and antenna/receiver changing) based on the epochs defined by CEA. Then we manually
inspect the remaining offsets in stations one by one, as it is a better method to distinguish them [35].
If some large earthquakes near a station happened right in the same epochs, we assume that these
offsets are probably caused by earthquakes and remove them in the GPS time series. Besides, a few
station components have obvious post-seismic relaxations, and we use logarithmic functions to fit them.
We use least squares fitting (LSF) method to calculate the linear trend, periodic terms and post-seismic
relaxations in Equation (1), then we obtain the residual series of each station component. For outliers
remaining in residual series, three-time interquartile range (3IQR) method is used for culling. After
acquiring the residual series, then we extract CMC from them.

2.2.2. Principal Component Analysis

PCA is a popular approach to reduce the dimensionality of high-dimensional data. The principle
is to transform the original data into a set of linearly independent components and then obtain
the principal components (PCs) that represent the biggest contributors to the original data. In the
application of GPS coordinate time series, PCA decomposes the residual series of GPS stations into
PCs in the temporal domain and the corresponding eigenvectors in the spatial domain. Then the
spatiotemporal variation of the GPS network can be expressed to the largest extent through the first
several PCs.
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For a regional GPS network with n stations that spanning m days, their residual coordinate time
series compose a matrix:

X(ti, x j) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) (2)

B is the corresponding covariance matrix with elements that are defined as:

bi, j =
1

m− 1

m∑
k=1

X(tk, xi)X(tk, x j) (3)

The symmetric matrix B can be decomposed as:

B = VΛVT (4)

where VT(n × n), formed by eigenvectors, is a matrix with orthonormal rows; Λ is a diagonal
matrix composed by non-zero eigenvalues of matrix B; generally in real GPS data, matrix B is full
in rank, which means r = n. The eigenvalues and eigenvectors of matrix B can be written as
(λ1, v1), (λ2, v2), . . . , (λn, vn). v1, v2, . . . , vn is a set of orthonormal bases that help to expand X(ti, x j):

X(ti, x j) =
n∑

k=1

ak(ti)vk(x j) (5)

where ak(t) is the k-th PC and can be derived by:

ak(ti) =
n∑

j=1

X(ti, x j)vk(x j) (6)

where vk(x) is the eigenvector of matrix B. PCs represent the temporal variations and the eigenvectors
represent the spatial responses to the PCs.

The decomposition result of PCA is arranged in descending order, which means the first-order
principal component (PC1) always retains the largest amount of information about the regional GPS
network. PC1 reflects the common temporal characteristics of the whole network, while the high-order
PCs are usually related to local or individual site effects. The eigenvectors of these PCs, however,
reflect the spatial distribution of the corresponding temporal change. As a result, we calculate CMC by:

ε(ti, x j) =

p∑
k=1

ak(ti)vk(x j) (7)

where p refers to the number of PCs that remains to be ascertained in real data processing.
PCA has the advantage of simplifying questions and making them intuitive because it converts

a question from high dimensions to lower dimensions. Besides, it obtains the features of the CMC
spatiotemporal distribution completely through the original data itself, unlike the regional stacking
filtering method that firstly supposes that the spatial distribution of CMC is even. Due to these merits,
we employ PCA to compute the CMC in the research region.

3. CMC Extraction

In this section, we use PCA to extract CMC of IGS stations in two modes. The first extraction mode
is one whole extraction from all IGS stations in China, a direct and most popular method. Another
extraction mode that this paper proposes is eight sub-regional extractions, taking near CMONOC
stations and tectonic units into consideration. Our purpose is to gain a CMC series with more accuracy.
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3.1. One Extraction from all IGS Stations

Figure 1 shows all eleven IGS stations in China. The longest baseline is TWTF to GUAO, with
3654 km while the shortest is TNML to TCMS, only 8 m. The average length of these baselines is 2016
km, so the GPS network is medium-scale [22]. Next, we use PCA to extract CMC from all IGS stations
in China, in order to analyze the amount of CMC in this medium-scale network.

Figure 2 illustrates the effect of different time spans of the coordinate time series on the percentage
of PC1 when uniformly extracting the CMC of the IGS station in China. In general, the length of
the coordinate time series is inversely proportional to the percentage of PC1. The longer the time
span is, the smaller the percentage of PC1. This can be understood as the longer the coordinate time
series accumulated by each station, the less significant the common components in the residual series.
Specifically, when the time series span is less than 10 years, the percentage of PC1 varies greatly with
different time spans. When the time span is longer than 10 years, it gradually becomes stable. The
percentages of PC1 in North and East components are about 34%, and about 26% in Up component.
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For the coordinate time series of a nine years’ span (2010–2019), Figure 3 shows the percentage of
all the 11 PCs in North, East and Up component, which is also the contribution rate of each PC to the
residual time series. Table 2 gives information about normalized eigenvectors of top three PCs. They
are unitless values calculated through the eigenvalue of one station dividing the largest eigenvalue
among these stations.
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Table 2. Eigenvectors of the first three PCs from IGS stations in China.

Station
North East Up

p1 p2 p3 p1 p2 p3 p1 p2 p3

BJFS −0.16 0.90 0.32 0.73 −0.35 0.63 1.00 −0.11 −0.26
CHAN −0.12 1.00 −0.22 0.86 −0.33 −0.06 0.70 −0.02 −0.08
GUAO −0.03 0.63 1.00 0.78 −0.61 −0.40 0.49 −0.19 1.00
KUNM 0.56 −0.21 0.93 0.76 −0.86 −0.10 0.84 −0.61 −0.20
LHAZ 0.16 0.92 0.60 0.80 −0.40 −0.15 0.65 0.07 0.80
URUM 0.88 −0.47 0.30 0.50 0.05 1.00 0.81 −0.29 −0.34
SHAO 0.83 0.53 −0.58 1.00 1.00 −0.29 0.77 0.92 −0.30
TCMS 0.82 0.40 −0.65 0.96 0.97 −0.34 0.76 0.80 −0.21
TNML 1.00 −0.14 −0.07 0.54 0.20 0.22 0.05 1.00 0.33
TWTF −0.26 0.89 −0.48 0.95 −0.47 −0.28 0.53 −0.84 0.00

WUHN 0.73 0.37 0.18 0.84 0.43 0.45 0.73 −0.02 0.16

For identifying the number of PC used for computing CMC, we can choose it both from eigenvalues
and eigenvectors. According to the treatment of Dong et al. [9], we regard the component as PC if
most sites (more than 50%) have significant normalized responses (larger than 0.25). From Figure 3, we
know that the contribution percentage of PC1 to residual series in North, East and Up is 43.8%, 38.8%
and 29.6% respectively. Table 2 shows that the normalized eigenvectors of PC1 are over 0.25 on each
component of more than 50% sites, while the normalized eigenvectors of PC2 meet the above demand
in North component but fail in East and Up. Consequently, the CMC on North is PC1 and PC2, while
the CMC on East and Up components is PC1 only.

Considering the fact that the contribution percentage of PC1 that represents regional common
deformation is small, the CMC of all IGS stations in China region probably fails to be extracted
accurately. From the above equations, CMC extraction is influenced by the number of GPS stations and
distances among them. Therefore, it is highly necessary to combine some CMONOC stations to extract
CMC of these IGS stations in higher accuracy. When deciding the available CMONOC stations, this
paper takes two factors into account, the distance away from an IGS station and division of tectonic
units. As the region size has a direct influence on CMC extraction, we should ascertain the appropriate
region size and study the features of such influence in China.

3.2. Influence of Region Size on CMC Extraction

When exploring the influence of region size on CMC extraction, we choose one satisfactory
experimental region. Given the fact that Northeast Block of China is the most stable among all blocks
in China, without an obvious interior fault zones [36], it proves to be the most suitable research region.
Moreover, most CMONOC stations in Northeast Block have similar monument types and geological
features, which helps to approximately regard the distance as the unique variable that influences the
accuracy of CMC extraction.

The spatial distribution of IGS and CMONOC stations in Northeast Block of China is shown in
Figure 4. When carrying out this experiment, we employ a strategy that takes CHAN, an IGS station, as
the region center and the radius is 300, 400, 500, 600, 700, 800, 900 and 1050 km respectively. A series of
concentric circles contain 19 CMONOC stations that locate in northeastern three provinces and eastern
part of Inner Mongolia. The information of the total 20 stations is given in Table 3. These CMONOC
stations were constructed at different times. The earliest two stations, SUIY and HLAR, were built up
in 1999 (the first-stage CMONOC project, CMONOC-I). The latest station is JLYJ that was established
in 2011 (the second-stage CMONOC project, CMONOC-II). Corresponding to Section 3.1, this section
also uses the coordinate time series with a time span of 9 years (2010–2019) as the research object.



Remote Sens. 2019, 11, 1389 8 of 17Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 17 

 

 

Figure 4. Distribution of IGS and CMONOC stations in Northeast Block of China. 

Table 3. Introduction of IGS station (CHAN) and CMONOC stations in Northeast Block of China. 

Station Latitude/ ° Longitude/ ° Session/ Year Distance Away 
to CHAN/ km Monument Type 

CHAN 43.79069  125.44420  2004.9385–2018.9822 0 bedrock 
HRBN 45.70261  126.62037  2003.0014–2018.9959 231.973 soil 
NMAG 43.30348  122.62722  2010.4973–2018.9959 233.983 bedrock 

JLCB 42.41055  128.10593  2010.6233–2018.9959 265.425 bedrock 
LNSY 41.82708  123.57948  2010.5849–2018.9959 266.143 soil 
JLYJ 42.68296  129.50451  2011.1959–2018.9959 344.581 soil 

NMWL 46.04064  122.02728  2011.0068–2018.9959 367.755 bedrock 
LNYK 40.68354  122.60304  2010.5685–2018.9959 417.151 bedrock 
LNDD 40.03162  124.32725  2010.6068–2018.9959 427.606 bedrock 
NMAL 43.86335  120.11291  2010.7877−2018.9959 428.789 bedrock 
SUIY 44.43334  130.90807  1999.1630−2018.9959 443.044 granodiorite 

LNHL 40.68769  120.85180  2010.8178−2018.9959 512.057 bedrock 
HLHG 47.35276  130.23563  2011.0041−2018.9959 544.274 bedrock 
HLWD 48.67141  126.13617  2010.6041−2018.9959 544.990 bedrock 
LNJZ 39.09181  121.74011  2011.0041−2018.9959 606.403 bedrock 

NMDW 45.51310  116.96303  2010.6041−2018.9959 698.775 bedrock 
HLAR 49.27049  119.74126  2010.4973−2018.9959 749.134 bedrock 
NMER 50.57642  123.72720  1999.1630−2018.9959 765.064 andesite 
HLFY 48.36699  134.27715  2010.6507−2018.9959 850.307 bedrock 

HLMH 52.97508  122.51272  2011.0151−2018.9959 1042.765 bedrock 
Note: The fifth column represents the distances of CMONOC stations to CHAN that are calculated by their 
spatial rectangular coordinates (ITRF2008 Framework, epoch 2017.001). The precision presented here is 1 meter.  

We use PCA to decompose the residual series of stations that locate in circles with different 
radiuses. Figure 5 demonstrates the relation between region size and the contribution percentage of 
PC1 in extracting CMC. In this region, the contribution percentage of PC1 in horizontal components 
(North and East) remains steady as the region size increases gradually. In the East, it has a slight 

Figure 4. Distribution of IGS and CMONOC stations in Northeast Block of China.

Table 3. Introduction of IGS station (CHAN) and CMONOC stations in Northeast Block of China.

Station Latitude/◦ Longitude/◦ Session/Year Distance Away
to CHAN/km

Monument
Type

CHAN 43.79069 125.44420 2004.9385–2018.9822 0 bedrock
HRBN 45.70261 126.62037 2003.0014–2018.9959 231.973 soil
NMAG 43.30348 122.62722 2010.4973–2018.9959 233.983 bedrock

JLCB 42.41055 128.10593 2010.6233–2018.9959 265.425 bedrock
LNSY 41.82708 123.57948 2010.5849–2018.9959 266.143 soil
JLYJ 42.68296 129.50451 2011.1959–2018.9959 344.581 soil

NMWL 46.04064 122.02728 2011.0068–2018.9959 367.755 bedrock
LNYK 40.68354 122.60304 2010.5685–2018.9959 417.151 bedrock
LNDD 40.03162 124.32725 2010.6068–2018.9959 427.606 bedrock
NMAL 43.86335 120.11291 2010.7877−2018.9959 428.789 bedrock
SUIY 44.43334 130.90807 1999.1630−2018.9959 443.044 granodiorite

LNHL 40.68769 120.85180 2010.8178−2018.9959 512.057 bedrock
HLHG 47.35276 130.23563 2011.0041−2018.9959 544.274 bedrock
HLWD 48.67141 126.13617 2010.6041−2018.9959 544.990 bedrock
LNJZ 39.09181 121.74011 2011.0041−2018.9959 606.403 bedrock

NMDW 45.51310 116.96303 2010.6041−2018.9959 698.775 bedrock
HLAR 49.27049 119.74126 2010.4973−2018.9959 749.134 bedrock
NMER 50.57642 123.72720 1999.1630−2018.9959 765.064 andesite
HLFY 48.36699 134.27715 2010.6507−2018.9959 850.307 bedrock

HLMH 52.97508 122.51272 2011.0151−2018.9959 1042.765 bedrock

Note: The fifth column represents the distances of CMONOC stations to CHAN that are calculated by their spatial
rectangular coordinates (ITRF2008 Framework, epoch 2017.001). The precision presented here is 1 m.

We use PCA to decompose the residual series of stations that locate in circles with different
radiuses. Figure 5 demonstrates the relation between region size and the contribution percentage of PC1
in extracting CMC. In this region, the contribution percentage of PC1 in horizontal components (North
and East) remains steady as the region size increases gradually. In the East, it has a slight decrease
from 300 km to 1050 km, while in the North it is nearly unchanged and arrives 50% slower. However,
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the contribution percentage of PC1 in vertical component (Up) has a strong relation with region size. It
drops significantly along with the increase of distance, from 78% to only 49%. Furthermore, we notice
that the change trend of the Up component falls dramatically between 600 km and 700 km, with the
figure going from 66% to 58%. In summary, CMC can be extracted accurately in a region of 600 km,
and the contribution percentages of PC1 in North, East and Up components are more than 50%.
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3.3. Sub-Regional Extractions Considering Tectonic Units

It is necessary to combine the CMONOC stations around IGS stations in order to acquire more
accurate CMC from IGS stations in the China region. Above we discussed the influence of the region
size on CMC extraction, and this may provide a criterion to choose suitable CMONOC stations.
However, the Northeast Block is the most stable throughout China and the established criterion may
not necessarily hold for other blocks. In cases where the region is less stable, we suggest that there is a
strong need for another criterion, namely geology, to further restrain selecting stations. In this paper,
we raise second-class tectonic units as the geology criterion [37,38] because CMC can be extracted
more accurately in a relatively small-sized and stable region according to Section 3.2. What’s more, the
self-condition of stations should also be combined together with these selection criteria, such as the
completeness of the coordinate time series, time span, and whether there is some short-term drastic
land subsidence or some unexplained offsets.

Criteria for selecting CMONOC stations are protocoled in this paper as follows. First, interstation
distance criterion: The distance between one CMONOC station and IGS station does not exceed 600 km.
Second, geology criterion: CMONOC stations and IGS station are in the same second-class tectonic
unit. Third, self-condition criterion: It means that coordinate time series have a time span of over 5
years with 60% completeness, and meanwhile without apparent tectonic movements.

According to these criteria, some stations are discarded. They include XZCY and XZGZ whose
distances to LHAZ are more than 600 km in the Lhasa Sub-block. TJBH and TJWQ in Tianjin are also
abandoned where there is drastic land subsidence because of groundwater exploitation. There are
also some stations with unexplained offsets, such as SXCZ and NMBT that are discarded. After the
selecting process, we get the sub-regional division of IGS stations as shown in Figure 6. Table 4 gives
information about the eight divided sub-regions.
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Especially in Lhasa Sub-block, the indicators on three coordinate components are all over 70%, 
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CMONOC stations that are chosen by the criteria proposed in this paper.

Table 4. Information of eight divided sub-regions when extracting CMC of IGS stations combining
CMONOC stations. Note that GUAO and URUM are in the same sub-region, and three IGS stations in
Taiwan (TCMS, TNML and TWTF) are in the same sub-region.

Station Location Second-Class Tectonic Units
Number of Near

CMONOC
Stations

The Farthest
CMONOC

Station/Distance

BJFS Beijing North China Block (craton) 16 SXLF/558 km
CHAN Changchun Songliao Basin 7 HLWD/545 km
GUAO Urumchi Tianshan Fold System 9 XJJJ/586 km
KUNM Kunming Sichuan-Yunnan Rhombic Block 15 SCSM/467 km
LHAZ Lhasa Lhasa Sub-block 6 XZNM/440 km
SHAO Shanghai Yangtze Block (craton) 7 JXHK/500 km
TCMS Hsinchu South China Orogenic Zone 6 ZJZS/592 km
TNML Hsinchu South China Orogenic Zone 6 ZJZS/592 km
TWTF Taoyuan South China Orogenic Zone 6 ZJZS/573 km
URUM Urumchi Tianshan Fold System 9 XJZS/600 km
WHUN Wuhan Yangtze Block (craton) 7 HNMY/532 km

The construction time of IGS stations in China is generally earlier than that of the CMONOC
stations, and even the running time of CMONOC stations are various. It makes the coordinate time
series of these stations with different starting epoch and time span. Considering that most CMONOC-II
stations were established in 2010, similarly, we use the coordinate time series with a time span of nine
years (2010–2019) when computing CMC. In addition, the starting epochs of CMONOC stations in each
region are firstly arranged in a ranked order, then we choose the middle epoch as the starting epoch in
PCA filtering process. In this way, the number of stations that participate in the CMC calculation in
each region is over half of the total stations.

We use PCA to decompose the residual series of the stations in each sub-region, and contribution
percentage of PC1 is shown in Figure 7. After analyzing the eigenvalues and normalized eigenvectors in
all sub-regions, we define PC1 as CMC in each sub-region. From Figure 7, apart from a few coordinate
components, the contribution percentages of PC1 are over 40% in most components. Especially in
Lhasa Sub-block, the indicators on three coordinate components are all over 70%, representing that
most of CMC there can be extracted precisely by PCA filtering. The average values on the N, E and
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U component are 54.6%, 54.9% and 54.7%, which increases by 10.8%, 16.1% and 25.1% respectively,
compared with the results of mode 1. From this, we know that this indicator, contribution percentages
of PC1, can be an important assessment criterion of CMC extraction.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 17 

 

BJFS CHAN GUAO KUNM LHAZ SHAO TCMS WUHN
0

20

40

60

80

100

Co
nt

rib
ut

io
n 

pe
rc

en
ta

ge
 o

f P
C1

 (%
)

Sub-regions

 N   
 E   
 U

 
Figure 7. Contribution percentage of PC1 in eight sub-regions. The column “TCMS” shows the 
corresponding percentage in the district contains all three IGS stations in Taiwan. Similarly, “GUAO” 
stands for the region where GUAO and URUM stations locate. 

3.4. Comparison of Two CMC Extraction Modes 

In addition to the contribution percentage of PC1 as an indicator, there is another indicator 
which can be used to evaluate the effect of CMC extraction under the above two modes. This indicator 
is RMS reduction rate of residual series before and after PCA filtering (shown in Equation 7). Figure 
8 shows RMS reduction rate of residual time series in Chinese IGS stations under cases of mode 1, 
mode 2, and the difference between the two modes: 𝑅𝑀𝑆reduce = 𝑅𝑀𝑆 − 𝑅𝑀𝑆𝑅𝑀𝑆  (8) 

Among the 33 coordinate components of 11 IGS stations, RMS reduction rates of 31 coordinate 
components after PCA filtering under mode 1 are positive values (shown in Figure 8a), and RMS 
reduction rates of all 33 coordinate components after PCA filtering under mode 2 are positive (shown 
in Figure 8b). The results show that PCA filtering is indeed an effective method to improve the signal-
to-noise ratio (SNR) of GPS coordinate time series. Meanwhile, CMC extraction mode that proposed 
in this paper (mode 2) is more robust than overall filtering of an entire region (mode 1). Figure 8c 
shows the difference in RMS reduction rate for the two modes. There are 26 coordinate components 
(accounting for 78.8%) have positive values in the difference of RMS reduction rate, indicating that 
mode 2 is a more effective filtering method on most coordinate components.  

BJFS
CHAN

GUAO
KUNM

LHAZ
SHAO

TCMS
TNML

TWTF

URUM
WUHN

0

10

20

30

RM
S 

Re
du

ct
io

n 
Ra

te
 ( 

%
 )

 N
 E
 U

(a) mode1

 

Figure 7. Contribution percentage of PC1 in eight sub-regions. The column “TCMS” shows the
corresponding percentage in the district contains all three IGS stations in Taiwan. Similarly, “GUAO”
stands for the region where GUAO and URUM stations locate.

3.4. Comparison of Two CMC Extraction Modes

In addition to the contribution percentage of PC1 as an indicator, there is another indicator which
can be used to evaluate the effect of CMC extraction under the above two modes. This indicator is
RMS reduction rate of residual series before and after PCA filtering (shown in Equation (7)). Figure 8
shows RMS reduction rate of residual time series in Chinese IGS stations under cases of mode 1, mode
2, and the difference between the two modes:

RMSreduce =
RMSbe f ore −RMSa f ter

RMSbe f ore
(8)
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Figure 8. RMS reduction rate of residual time series in Chinese IGS stations. (a) shows the RMS
reduction rate of residual time series obtained from mode1, and (b) shows the RMS reduction rate of
residual time series obtained from mode2. (c) shows the difference between (a,b). Note that the scales
of the vertical axis in these figures are different from each other.

Among the 33 coordinate components of 11 IGS stations, RMS reduction rates of 31 coordinate
components after PCA filtering under mode 1 are positive values (shown in Figure 8a), and RMS
reduction rates of all 33 coordinate components after PCA filtering under mode 2 are positive (shown
in Figure 8b). The results show that PCA filtering is indeed an effective method to improve the
signal-to-noise ratio (SNR) of GPS coordinate time series. Meanwhile, CMC extraction mode that
proposed in this paper (mode 2) is more robust than overall filtering of an entire region (mode 1).
Figure 8c shows the difference in RMS reduction rate for the two modes. There are 26 coordinate
components (accounting for 78.8%) have positive values in the difference of RMS reduction rate,
indicating that mode 2 is a more effective filtering method on most coordinate components.

4. Relevant Geophysical Signals

The nonlinear variations of GPS coordinate time series contain a variety of geophysical signals.
Current research focuses are on the displacements of GPS stations under the impact of surface
environmental loadings such as atmospheric pressure, oceanic tide and hydrology [19,39].

In this section, based on the grid data of loading deformation provided by GFZ, we adopt bicubic
interpolation to calculate the displacement series at 11 IGS stations in China. Taking CHAN station
as an example, Figure 9 shows the station displacement caused by NTAL, HYDL, NTOL and the
sum of these displacements, SUML. In order to further explore the relation between environmental
loading and CMC, and the source of CMC, we remove the annual and semi-annual terms in Equation
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(1) to obtain the residual series, with the seasonal periodic term in them. Thus, it helps to study the
characteristics of non-linear variations in GPS coordinate time series [33]. Using the same methods
and steps as in the previous section, we get the CMC series in mode 2. These series contain significant
seasonal periodic signals.
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Figure 9. Displacements on CHAN station caused by geophysical signals, including atmospheric
loading (NTAL), hydrological loading (HYDL), non-tidal oceanic loading (NTOL) and their sum
(SUML). Note that the scale of the vertical axis in (c) is smaller than (a,b,d) The displacements caused by
environmental loadings in vertical component (Up) are much bigger than that in horizontal components
(North and East). Among these three loadings, NTAL contributes the most to SUML; the second
contributor is HYDL; and NTOL contributes the least to SUML. SUML represents obvious seasonal
variations, and its amplitude can be up to 10 mm in some years.

PCA filtering and environmental loading corrections (ELCs) are two commonly used methods
for analyzing non-linear variations of GPS coordinate time series because both can effectively reduce
SNR of GPS coordinate time series. In order to evaluate whether PCA filtering under mode 2 or
ELCs is more effective for improving SNR of the GPS coordinate time series (especially in the vertical
component), we calculate RMS reduction rate of residual series before and after PCA filtering and ELCs.
The results are shown in Figure 10. As shown in Figure 10a, RMS reduction rates of all 33 coordinate
components after PCA filtering are positive values, while 23 coordinate components after ELCs are
positive, and RMS reduction rate of the remaining 30.3% of the coordinate components corrected
by environmental loadings become larger (shown as some columns are below the horizontal axis in
Figure 10b). This change in RMS reduction rates is consistent with the results from Jiang et al. [30].
Especially for the three vertical coordinate components shown in Figure 10b, which have negative RMS
reduction rates. Given the fact that there is an apparent phase difference between the periodic terms of
environmental loading displacement and GPS coordinate time series in vertical component, there is
less RMS reduction rate for ELCs than PCA filtering. This reveals the high efficiency of PCA filtering
under mode 2 that we demonstrate in this paper, and this PCA filtering under mode 2 is superior to
ELCs in improving the SNR of the GPS coordinate time series.



Remote Sens. 2019, 11, 1389 14 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 17 

 

2010 2013 2016 2019
-3

-2

-1

0

1

2

3

D
isp

la
ce

m
en

ts/
 m

m

Year

 N
 E
 U

(c) NTOL

 
2010 2013 2016 2019

-15

-10

-5

0

5

10

15

D
isp

la
ce

m
en

ts/
 m

m

Year

 N
 E
 U

(d) SumL

 

Figure 9. Displacements on CHAN station caused by geophysical signals, including atmospheric 
loading (NTAL), hydrological loading (HYDL), non-tidal oceanic loading (NTOL) and their sum 
(SUML). Note that the scale of the vertical axis in (c) is smaller than (a), (b) and (d.) The displacements 
caused by environmental loadings in vertical component (Up) are much bigger than that in horizontal 
components (North and East). Among these three loadings, NTAL contributes the most to SUML; the 
second contributor is HYDL; and NTOL contributes the least to SUML. SUML represents obvious 
seasonal variations, and its amplitude can be up to 10mm in some years. 

In this section, based on the grid data of loading deformation provided by GFZ, we adopt bicubic 
interpolation to calculate the displacement series at 11 IGS stations in China. Taking CHAN station 
as an example, Figure 9 shows the station displacement caused by NTAL, HYDL, NTOL and the sum 
of these displacements, SUML. In order to further explore the relation between environmental 
loading and CMC, and the source of CMC, we remove the annual and semi-annual terms in Equation 
(1) to obtain the residual series, with the seasonal periodic term in them. Thus, it helps to study the 
characteristics of non-linear variations in GPS coordinate time series [33]. Using the same methods 
and steps as in the previous section, we get the CMC series in mode 2. These series contain significant 
seasonal periodic signals.  

 

BJF
S

CHAN
GUAO

KUNM
LHAZ

SHAO
TCMS

TNML
TWTF

URUM
W

UHN --
0

15

30

45

60

75 (a) PCA Filtering

R
M

S 
R

ed
uc

tio
n 

R
at

e 
( %

 )

 N
 E
 U

 

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 17 

 

BJFS
CHAN

GUAO
KUNM

LHAZ
SHAO

TCMS
TNML

TWTF

URUM
WUHN ---90

-60

-30

0

30

60

90

 

(b) ELCs

R
M

S 
R

ed
uc

tio
n 

R
at

e 
( %

 )

 N
 E
 U

 

Figure 10. RMS reduction rate before and after PCA filtering (a) and environmental loading 
corrections (b) in the residual time series of IGS stations in China area. 

PCA filtering and environmental loading corrections (ELCs) are two commonly used methods 
for analyzing non-linear variations of GPS coordinate time series because both can effectively reduce 
SNR of GPS coordinate time series. In order to evaluate whether PCA filtering under mode 2 or ELCs 
is more effective for improving SNR of the GPS coordinate time series (especially in the vertical 
component), we calculate RMS reduction rate of residual series before and after PCA filtering and 
ELCs. The results are shown in Figure 10. As shown in Figure 10a, RMS reduction rates of all 33 
coordinate components after PCA filtering are positive values, while 23 coordinate components after 
ELCs are positive, and RMS reduction rate of the remaining 30.3% of the coordinate components 
corrected by environmental loadings become larger (shown as some columns are below the 
horizontal axis in Figure 10b). This change in RMS reduction rates is consistent with the results from 
Jiang et al. [30]. Especially for the three vertical coordinate components shown in Figure 10b, which 
have negative RMS reduction rates. Given the fact that there is an apparent phase difference between 
the periodic terms of environmental loading displacement and GPS coordinate time series in vertical 
component, there is less RMS reduction rate for ELCs than PCA filtering. This reveals the high 
efficiency of PCA filtering under mode 2 that we demonstrate in this paper, and this PCA filtering 
under mode 2 is superior to ELCs in improving the SNR of the GPS coordinate time series. 

5. Conclusions 

Combining some selected CMONOC stations, we employ a PCA filtering method to compute 
regional CMC of IGS stations in China under two extraction modes, one whole extraction of all eleven 
IGS stations and eight sub-regional extractions combined with near CMONOC stations. The 
following conclusions may be drawn:  

(1) The average PC1 contribution percentage of eight sub-regions in North, East and Up 
components are 54.6%, 54.9% and 54.7%, which increase by 10.8%, 16.1% and 25.1%, respectively, 
compared with the result of one whole region. The regional CMC extracted in sub-regional mode are 
more significant, and RMS reduction rates on more coordinate components are positive values after 
CMC extraction. Moreover, the differences of RMS reduction rates are positive on 78.8% coordinate 
components, indicating that PCA filtering in a sub-regional mode is a more effective filtering method 
for most coordinate components. This will help to improve SNR in GPS coordinate time series, and 
thus to reveal the surface deformation characteristics of the IGS station more realistically and 
accurately. 

(2) Regional CMC is a spatiotemporal-dependent displacement series. It is affected by factors, 
such as the region size and time span of the coordinate time series. When the CMC of the IGS station 
in China is uniformly extracted, the length of the coordinate time series is inversely proportional to 

Figure 10. RMS reduction rate before and after PCA filtering (a) and environmental loading corrections
(b) in the residual time series of IGS stations in China area.

5. Conclusions

Combining some selected CMONOC stations, we employ a PCA filtering method to compute
regional CMC of IGS stations in China under two extraction modes, one whole extraction of all eleven
IGS stations and eight sub-regional extractions combined with near CMONOC stations. The following
conclusions may be drawn:

(1) The average PC1 contribution percentage of eight sub-regions in North, East and Up components
are 54.6%, 54.9% and 54.7%, which increase by 10.8%, 16.1% and 25.1%, respectively, compared
with the result of one whole region. The regional CMC extracted in sub-regional mode are more
significant, and RMS reduction rates on more coordinate components are positive values after
CMC extraction. Moreover, the differences of RMS reduction rates are positive on 78.8% coordinate
components, indicating that PCA filtering in a sub-regional mode is a more effective filtering
method for most coordinate components. This will help to improve SNR in GPS coordinate
time series, and thus to reveal the surface deformation characteristics of the IGS station more
realistically and accurately.

(2) Regional CMC is a spatiotemporal-dependent displacement series. It is affected by factors, such
as the region size and time span of the coordinate time series. When the CMC of the IGS station
in China is uniformly extracted, the length of the coordinate time series is inversely proportional
to the percentage of PC1. The longer the time span is, the smaller the percentage of PC1. When
the time series span is greater than 10 years, the percentage of PC1 in North and East components
are about 34%, and about 26% in the Up component. In the Northeast Block of China, regional
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CMC of GPS stations can be extracted satisfactorily within the interstation distance of 600 km.
The contribution percentages of PC1 in North, East and Up components are all over 50%, and
along with the increase of region size, it does not change significantly in horizontal components
but drops dramatically in the vertical direction.

(3) This paper puts forward new criteria for selecting appropriate CMONOC stations near IGS stations
when computing sub-regional CMC, including considerations of interstation distance, geology
and self-condition of stations. Experimental results show that these criteria are implemental and
effective in selecting suitable stations. PCA filtering with the above-mentioned criteria helps to
improve the accuracy of coordinate time series of GPS stations, which is beneficial to reveal the
deformation of the Earth surface.

(4) PCA filtering and environmental loading corrections are two commonly used methods for
analyzing non-linear variations of GPS coordinate time series. By comparison, we know that
PCA filtering in sub-regional mode results in dramatic improvements of SNR in GPS coordinate
time series. After ELCs, however, there are still 30.3% of the coordinate components with larger
RMS reduction rates, probably because of the phase differences of the periodic terms between
GPS coordinate time series and environmental loading displacements in the vertical components.
Therefore, PCA filtering in sub-regional mode is superior to ELCs in improving the SNR of the
GPS coordinate time series.
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