
remote sensing  

Article

Virtual Restoration of Stained Chinese Paintings
Using Patch-Based Color Constrained Poisson Editing
with Selected Hyperspectral Feature Bands

Pingping Zhou 1, Miaole Hou 2,3,*, Shuqiang Lv 2,3, Xuesheng Zhao 1 and Wangting Wu 4

1 College of Geoscience and Surveying Engineering, China University of Mining and Technology,
Beijing, Beijing 100083, China; zhpingping@student.cumtb.edu.cn (P.Z.); zxs@cumtb.edu.cn (X.Z.)

2 School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture,
Beijing 100044, China; lvshuqiang@bucea.edu.cn

3 Beijing Key Laboratory for Architectural Heritage Fine Reconstruction & Health Monitoring,
Beijing University of Civil Engineering and Architecture, Beijing 102616, China

4 Capital Museum, Beijing 100045, China; wuwt@capital.org.cn
* Correspondence: houmiaole@bucea.edu.cn

Received: 9 May 2019; Accepted: 6 June 2019; Published: 10 June 2019
����������
�������

Abstract: Stains, as one of most common degradations of paper cultural relics, not only affect
paintings’ appearance, but sometimes even cover the text, patterns, and colors contained in the relics.
Virtual restorations based on common red–green–blue images (RGB) which remove the degradations
and then fill the lacuna regions with the image’s known parts with the inpainting technology could
produce a visually plausible result. However, due to the lack of information inside the degradations,
they always yield inconsistent structures when stains cover several color materials. To effectively
remove the stains and restore the covered original contents of Chinese paintings, a novel method
based on Poisson editing is proposed by exploiting the information inside the degradations of
selected three feature bands as the auxiliary information to guide the restoration since the selected
feature bands captured fewer stains and could expose the covered information. To make the Poisson
editing suitable for stain removal, the feature bands were also exploited to search for the optimal
patch for the pixels in the stain region, and the searched patch was used to construct the color
constraint on the original Poisson editing to ensure the restoration of the original color of paintings.
Specifically, this method mainly consists of two steps: feature band selection from hyperspectral
data by establishing rules and reconstruction of stain contaminated regions of RGB image with
color constrained Poisson editing. Four Chinese paintings (‘Fishing’, ‘Crane and Banana’, ‘the Hui
Nationality Painting’, and ‘Lotus Pond and Wild Goose’) with different color materials were used to
test the performance of the proposed method. Visual results show that this method can effectively
remove or dilute the stains while restoring a painting’s original colors. By comparing values of
restored pixels with nonstained pixels (reference of their same color materials), images processed by
the proposed method had the lowest average root mean square error (RMSE), normalized absolute
error (NAE), and average differences (AD), which indicates that it is an effective method to restore the
stains of Chinese paintings.

Keywords: virtual restoration; Chinese paintings’ stains; feature bands; searched patch; color constrained
Poisson editing

1. Introduction

Chinese paintings, as one of the most important forms of artistic expression of traditional Chinese
culture, are the most valuable treasure of human civilization. However, these ancient paintings suffer
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from various undesirable patterns and face extinction threats due to natural environmental factors
or improper human preservation measures. Stains are one of most common types of degradation
and refer to the formation of spots from paper contamination. Stains not only affect the appearance
of the painting, but sometimes even cover the text, patterns, and colors on the paper cultural relics.
Scholars performed a sampling survey in the Zhengzhou Museum (the first group of Class A museums
in China) and found that 96% of ancient paintings were contaminated by stains, of which 68% were
severely contaminated and 28% were slightly contaminated [1]. To restore their original appearance,
traditional artificial resolution attempts adopt physical or chemical methods to remove these stains [2,3].
However, these approaches need repeated trials, and the repair process has many risks, where any
carelessness may cause permanent irreversible damage to the ancient paintings.

Virtual restoration can reduce human interference and provide a reference for physical repair [4].
This refers to the removal of undesirable degradations on the collected images of a painting to restore
its original appearance, which contributes to improving the artistic value and facilitating subsequent
interpretation. It has become an important field in the digital preservation of cultural relics [5,6],
and most studies adopt standard 3-channel (red–green–blue (RGB)) images [7–9]. With the development
of imaging spectroscopy, hyperspectral images have been introduced for the restoration [2,10,11].
Considering the types of image used, virtual restoration is classified into two categories in this paper:
RGB-based methods without any other auxiliary information source and hyperspectral-based methods.

RGB-based methods refer to re-estimating the color components of degraded regions with inpainting
algorithms based on the assumption that the pixels in these regions share similar geometrical structures or
statistical properties with those of a painting’s undegraded parts [12]. Inpainting algorithms mainly include
the following two types: diffusion-based and exemplar-based algorithms [12,13]. For diffusion-based
inpainting algorithms, Giakoumis et al. [14] applied the controlled anisotropic diffusion algorithm to inpaint
the cracks on digitized paintings. Wu et al. [7] replaced orthogonalized diffusion with cross diffusion to
improve the filling order of the curvature driven diffusion (CDD) algorithm to remove fissures in murals.
These types of algorithms could be well suited for the removal of small areas of degradation, but when
applied to large regions, they always lead to a blurry image. For exemplar-based inpainting algorithms,
Pei et al. [9] proposed an annular scan synthesis method to gradually fill the region from outside the
boundary to the inside to remove stains and crevices on murals, but this method requires adding some
auxiliaries to connect the breach. To ensure the connection of structures, recent studies have preferred
using priority-defined exemplar-based algorithms that give the filling order of target pixels to conduct the
inpainting progress along the structure propagation [15–19]. For example, the Criminisi algorithm [20],
which defines the pixel priority with a confidence term and data term, has proven its effectiveness in the
restoration of murals [16,17]. Recently, sparse representation-based inpainting methods were also introduced
to solve the restoration problems [8,21]. Although exemplar-based and sparse representation-based methods
can inpaint large regions with the known texture parts of the image, due to the lack of information inside the
degradations, they still face a huge challenge when applied to images with complex structures. Regarding
stains, although the covered pigment information remains, the presence of stains leads to changes in the
color of the image, which makes it difficult to use residual information in restoration. Additionally, if the
stained areas are directly removed and inpainted with existing methods used in the literature [9,17], it is
difficult to accurately restore the original internal structures.

Hyperspectral-based methods might provide additional information for stain removal, since
hyperspectral data have a wide spectrum range and the covered pigments remain. However,
current studies have mainly focused on the visual enhancement of blur patterns and texts in cultural
relics using the mining information from hyperspectral data [22–25]. Regarding virtual restoration,
Hou et al. [2] performed maximum noise fraction (MNF) transformation on the hyperspectral data to
concentrate the stain information in some component and then performed inverse MNF transformation
after abandoning the component. Although stains on ancient paintings can be removed, the restoration
results depend on whether the stain component mainly contains stain information. Furthermore,
studies have shown that the stain/artifact cover effect decreases in longer wavelengths when compared
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to that of the RGB image of hyperspectral data [11,26]. Based on this feature, Kim et al. [11] proposed
replacing the gradient of visible bands with that of invisible near-infrared bands capturing fewer
artifacts, and then reconstructed the image with the newly generated gradients. This approach could
effectively remove ink-bleed, corrosion, and foxing of old documents. However, compared to ancient
documents, paintings are more complex, with various colors and structural information. This method
is difficult to restore the original appearance with stain removal.

To effectively remove the stains on Chinese paintings, this paper proposes restoring a painting’s
original appearance with the aid of selected hyperspectral feature bands. We demonstrate a similar
feature of the cover effect decreasing stains in longer wavelengths when compared to that of the RGB
image of hyperspectral data for Chinese paintings. Based on this feature, we propose a patch-based
color constrained Poisson editing method to remove the stains of Chinese paintings. The main
contributions of the proposed method are twofold. On the one hand, the introduction of feature bands
provides the prior information for the restoration, which overcomes the limits of RGB-based methods
due to the lack of information inside the degradations. On the other hand, the construction of color
constraints based on the searched match make the Poisson editing suitable for the removal of stains.
It is worth noting that although hyperspectral data are with hundreds of bands, in this paper, we focus
on restoration of the RGB image (R: 640.31 nm, G: 549.79 nm, B: 460.20 nm) of hyperspectral data,
since they are the most natural visualization of the paintings.

The rest of this paper is organized as follows. In Section 2, we propose the algorithms used
for virtual restoration, including the preprocessing, feature band selection, and patch-based color
constrained Poisson editing. Section 3 describes the experimental results and the comparison with
other restoration methods. Section 4 discusses the parameter setting and the effect of feature band
selection. Finally, the conclusions drawn from the study are presented in Section 5.

2. Methods

We found that Chinese paintings share similar features with those of old documents, where the
cover effect of stains decreases in longer wavelength images when compared to that of RGB image.
This is demonstrated by three examples in Figure 1 (hyperspectral images of paintings are from the
Digital Heritage and Virtual Restoration Laboratory of Beijing University of Civil Engineering and
Architecture); although the stains are obvious at the wavelengths of the RGB image, they are almost
invisible at the wavelength of 877.4 nm, where the covered information can be exposed. Based on the
feature that the cover effect of stains decreases in longer wavelength images, in this paper, we propose
the patch-based color constrained Poisson editing method to reconstruct the manually marked stain
regions of RGB image with the selected hyperspectral feature bands that are less affected by stains.
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Figure 1. Examples showing stains of Chinese paintings at different wavelengths, and the stain regions
were marked by the red dashed curves. The first row displays the image from the painting ‘Fishing’:
(a) RGB image; (b) image at 497.3 nm and covered with small stains; (c) image at 877.4 nm with
almost invisible stains. The second row displays the image from the painting ‘Crane and Banana’:
(d) RGB image; (e) image at 497.3 nm and covered with large stains; (f) image at 877.4 nm with exposed
information inside the stains. The third row displays the image from the painting ‘the Hui Nationality
Painting’: (g) RGB image; (h) image at 497.3 nm and covered with large stains; and (i) image at
wavelength of 877.4 nm with almost invisible stains.

The workflow is summarized in Figure 2. First, the collected hyperspectral images were
preprocessed, which consists of radiometric correction and image denoising. Second, the rules were
established to select three feature bands capturing fewer stains. Then, the feature bands combined
with the RGB image were used to construct the color constraint. On the one hand, the feature bands
that can expose the covered information were used to search for the optimal patch from the nonstained
region for each pixel located in the manually marked stain region. The patch from the RGB image
corresponding to the optimal patch location was used to construct the constraint value for the pixel in
the stain region based on the assumption that the relative spatial locations of optimal patch will be
coincident within the RGB image and feature bands. On the other hand, each stain region of feature
bands was segmented into blocks by quadtree to determine the constraint location. Finally, Poisson
editing was used to reconstruct the stain region of the RGB image with the established color constraint
to remove the stains, in which the contaminated RGB image was regarded as the target image and the
feature bands were regarded as the source image. The details are described in the following sections.

Figure 2. Workflow of the proposed method.
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2.1. Data Acquisition and Preprocessing

These paintings processed in this paper were from the Capital Museum of the China, and the
hyperspectral data of these paintings were captured by the Digital Heritage and Virtual Restoration
Laboratory of Beijing University of Civil Engineering and Architecture. The hyperspectral image
was captured with the Themis Vision Systems VNIR400H, a pushbroom scanning hyperspectral
imaging system. This system capture images at 1040 wavelength bands from 377.45 nm (ultraviolet)
to 1033.10 nm (near infrared), with sampling intervals of 0.6 nm and a spectral resolution of 2.8 nm.
This system takes two halogen lamps as the light source and has an instantaneous field angle of 30◦.
When the hyperspectral image of painting was being captured, the painting was placed on an object
support facing the camera, which is handled vertically. The distance from the painting to the camera
was about 0.8 m, and each collected image is 1392 × 1000 pixels. To avoid other light sources disturbing
the measurement, only two halogen lamps were used to illuminate the painting in the collection. As the
painting is usually large, it is impossible to collect the whole painting within an image. The collection
of a painting is completed with more than one image, and the collected images overlap about 30%
with their adjacent images. In this paper, we selected one or two stain-contaminated images from each
painting as the experimental data.

The captured image is always disturbed by the uneven intensity distribution of the light source
and by dark current noises. To reduce these effects, radiometric correction was performed with the
collected standard white board data and dark current data according to the following formula:

R =
Rraw −Rdark

Rwhite −Rdark
, (1)

where R is the calibrated image, Rraw represents the collected original image, Rdark indicates the dark
current data, and Rwhite is the standard white board image. After seriously noisy band removal,
the bands from 433.57 to 974.96 nm (851 bands in total) were chosen as the input data for our approach.
To further reduce image noise and improve image quality, MNF transformation was applied, in which
the former ten components with large eigenvalue were chosen to perform inverse MNF transformation
since the transformed component shows steadily decreasing image quality with increasing component
number [27].

2.2. Feature Band Selection

The selected feature bands not only serve as the source image to provide the gradient in the
subsequent fusion but are also used to search for the optimal matched patch to construct the color
constraint. Thus, the feature bands need to be minimally affected by the stains in order to expose more
information covered by the stains. Although the cover effect of stains decreases in longer wavelengths,
pigments tend to have a high reflectance in longer wavelengths, resulting in different types of pigments
or paper having less separability. For example, in Figure 1e,f, the paper and blue color material
seem very similar at the wavelength of 877.4 nm when compared with the wavelength of 497.3 nm.
The reducing separability of different color materials may cause difficulty in searching for a match for
these bands. Thus, separability of different color materials is another factor to consider when selecting
the feature bands.

If the band is less affected by the stains, it means that it shares similar gray values for the same color
material with and without stain cover. As shown in Figure 3, the gray values are obviously different
below a wavelength of 700 nm for the same color material due to the stain cover, but they became much
closer as the wavelength increases. Thus, this paper proposes the use of gray value difference between
samples with and without stain cover to determine the band sections. Due to the high correlation
between adjacent bands for hyperspectral data, we used the band average method [28] and took
the average value for every five adjacent bands to reduce the computational burden. Furthermore,
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each band was normalized to a 0–1 range with its maximum and minimum values to unify the
subsequent quantization. With the assumption, the band sections were estimated using Equation (2):

∆R j
i =

∣∣∣∣∣R̃ j
i −R j

i

∣∣∣∣∣, (2)

where R̃ j
i and R j

i indicate the average gray value of the j-th color material with and without stain cover

at band i, respectively, and ∆R j
i indicates the difference between them.

Figure 3. An example showing the comparison of the average spectrum of samples with and without
stain cover: (a) the samples marked with color box in image; (b) average spectrum of samples with and
without stain cover.

Using the difference in Equation (2), the less affected band section OB j(i) for the j-th color material
was obtained by setting a defined threshold δ and taking ∆R j

i ≤ δ. δ, which was empirically set to 0.05
throughout the experiments presented here. The stain region might cover multiple color materials,
so to ensure that all color materials below the stain were properly accounted for, we find the intersection
of the band sections OB j(i) for the various color materials j with Equation (3), where m indicates the
number of color material types:

B(i) = OB1(i)∩OB2(i) · · · ∩OBm(i). (3)

To ensure that the selected feature bands had separability for different color materials and had
fewer relations to provide more information, we used the between-class variance and correlation
coefficient to determine the band combinations with randomly selected samples. A total of 800 pixels
were selected for each color material and were distributed in both stained and nonstained regions.
The established rule to determine the band combinations from the band sections OB(i)is:

OBP =
Si1 + Si2 + Si3

CCi1i2 + CCi1i3 + CCi2i3
, (4)

where OBP are the calculated values from the combinations of three different bands according to the rule.
Si1, Si2, and Si3 indicate the between-class variance at bands i1, i2, and i3, respectively. They describe
the separability for different color materials, and the larger the value, the better the separability. CCi1i2,
CCi1i3, and CCi2i3 indicate the correlation coefficient between these three bands where the smaller the
correlation coefficient, the lower the data redundancy. Additionally, the between-class variance was
computed as shown in Equation (5), where m j is the sample number of color material j, µ j

i is the mean
of samples of color material j at band i, and µi is the mean of all the samples at band i. The correlation
coefficient was computed as shown in Equation (6), where Ri and Rk indicate the samples’ gray value
at bands i and k, respectively:

Si =
m∑

j=1

m j(µ
j
i − µi)(µ

j
i − µi)

T
, (5)
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CCik =

∑
(Ri − µi)(Rk − µk)

(
∑
(Ri − µi)

2)
1
2 (

∑
(Rk − µk)

2)
1
2

. (6)

With these definitions, the three band combinations that maximize the OBP were selected as the
feature bands.

2.3. Patch-Based Color Constrained Poisson Editing to Remove Stains

2.3.1. The Principle of Poisson Editing

Poisson editing is a classical algorithm that reconstructs the image based on the gradient
domain [29], and this idea has been widely used in seamless image composition and cloud removal
in remote sensing images [30,31]. It interpolates inward along the boundary of the target image and
enforces the spatial variation of the reconstructed image consistent with that of the source image.
The colors of the reconstructed image change slowly from the boundary of the target image to the
source image. The idea is as shown in Figure 4. The RGB image with stains is regarded as target image
IT, and the selected feature bands are regarded as the source image IS. The aim was to reconstruct
the pixel values f of stain regions Γ according to the target image’s pixel value f ∗ located on the stain
region’s boundary ∂Γ and according to the gradient V from the source image. To obtain an accurate
and optimized reconstruction result (i.e., the solution of the unknown function f ), the problem is
formulated as:

min
f

x

Γ

|

∣∣∣∇ f −V
∣∣∣|2, with f |∂Γ = f ∗|∂Γ, (7)

where ∇ = ( ∂∂x , ∂∂y) is the gradient operator and can be computed from the following finite difference
formula:

∂ f (x, y)
∂x

= f (x + 1, y) − f (x, y)
∂ f (x, y)
∂y

= f (x, y + 1) − f (x, y) (8)

Equation (7) aims to derive the result f with a gradient that is as close to the guidance vector field
V as possible, where V was computed from the gray scale image that was converted from the source
image. The solution to Equation (7) is the unique solution of the following Poisson equation with
Dirichlet boundary conditions:

∆ f = div V over Γ, with f
∣∣∣∂Γ = f ∗

∣∣∣∂Γ, (9)

where ∆ =
(
∂2

∂x2

)
+

(
∂2

∂y2

)
is Laplacian operator and div V = ∂v1

∂x + ∂v2
∂y indicates the divergence of the

gradient vector V = (v1, v2). The specific solution process can be referenced from the literature [29].
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the selected feature bands.

When Poisson editing was directly introduced into stain removal, although it could achieve the
purpose of removing the stains since the source image captured fewer stains, it could not restore the
original color covered by the stains because of the large color difference, since the target image and
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source image corresponded to different wavelengths, as shown in Figure 5b. Although the stains could
be removed or diluted, the original color is not effectively restored. For example, the stained region in
the top left corner of Figure 5a should have been filled with blue color material pixels in Figure 5b but
was filled with black color material pixels. Bie et al. [32] introduced new energy terms to improve
Poisson editing by drawing the specific color strokes and could control the color of the composited
images. This approach inspired us. However, to restore the paintings’ original color, we could not
casually specify the color of the stained regions. To solve this problem, we searched for an optimal
matched patch in the nonstained region for each pixel in the stained region of the feature bands and
selected some constructed pixels from the RGB image based on the searched patch as a color constraint
to reconstruct the image.

Figure 5. Poisson editing to remove the stains: (a) original red–green–blue (RGB) image; (b) the processed
image by fusing the RGB image and feature bands.

2.3.2. Color Constraint Construction

To restore the original appearance covered by the stains, this paper first used the gray values of
the feature bands to search for the optimal matched patch in the nonstained region for each pixel in
the stained region, as shown in Figure 6a. Although exhaustive patch searching can obtain a global
optimum, the computational cost is high, especially for large images. Considering the search time,
this paper chose the Patchmatch algorithm [33] to search for the optimal matched patch (with a patch
size of 7 × 7) in the feature bands, and the search was based on the similarity measure of the sum of
squared differences (SSD). Each pixel in the stained region could obtain a matched patch and each
pixel overlaps several neighboring patches, as shown in Figure 6a. The target pixel, marked with a red
star, overlapped the neighboring green patch in the stained region. Next, we obtained the locations
that the neighboring patch’s match overlapped with the target pixel, as marked by the red circles in the
nonstained region in Figure 6a. Then, the averaged color votes [33] of the RGB image at these locations
were used to generate the color constraint of this pixel, as shown in Figure 6b. However, if all of the
constructed pixels based on the searched patch were selected as the color constraint, the reconstructed
image would rely solely on the constructed color constraint, and the gradient from the source image
would not contribute. This means that once a match error occurs, it is hard to correct this error with
the gradient, as shown in Figure 7. The pixels marked by the red box in Figure 7a are the constructed
pixels based on the searched patch, and we can see that this region, which should be filled with paper
pixels, is filled with a red color material due to a match error. Figure 7b is the reconstructed image
based on the full constructed pixels as the color constraint, namely based on Figure 7a, where we
see this error continue. To balance the color constraint and gradient, we selected some constructed
pixels as the final constraints, as shown in Figure 7c. Although the selected color constraint pixels
(marked with white blocks) were still located in the incorrectly matched areas, the error phenomenon
was reduced for the reconstructed Figure 7d, based on partial color constraint. In this paper, a partial
color constraint was selected through quadtree segmentation, where the stained region of the feature
bands was segmented into blocks containing 20, 22, 24, 26, 28, 210 pixels, and then a quarter of each
quantity of blocks (discussed in further detail below) was randomly selected as the final constraint as
shown in Figure 7c.
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Figure 6. Demonstration of the color constraint construction: (a) searching for the optimal patches
in the nonstained region for each pixel in the stained region (marked with the red dashed line) in
the feature bands; (b) constructing the color constraint for the target pixel (marked with the red star)
with the locations that matched the neighboring patch overlapping the target pixel (marked with the
red circles).

Figure 7. Image reconstruction with different numbers of constructed pixels as the color constraint:
(a) the constructed pixels based on the searched patch; (b) the reconstructed image with all of the
constructed pixels as the color constraint; (c) the selected locations of the color constraint, marked by
white blocks; and (d) the reconstructed image with selected pixels as the color constraint.

2.3.3. Image Reconstruction with the Color Constraint

This paper aimed to reconstruct stained regions, and the values for the nonstained regions
remained unchanged. As mentioned above, the original Poisson editing could not restore the paintings’
original color since the target image and feature bands have different colors. Thus, this paper improved
Poisson editing by constructing the color constraint f ′, and the new method can be formulated as:

min
f

x

Γ

|

∣∣∣∇ f −V
∣∣∣|2 + λ( f − f ′)2, with f |∂Γ = f ∗|∂Γ, (10)

where λ is used to balance the color constraint and is set to 0.1 in this paper. The implementation
of Equation (10) can be discretized on the pixel grid. Let p indicate the pixel located in a region
contaminated by a stain; Np indicates the 4-connected neighbor set of pixel p, and pixel q is one of its
4-connected neighbors (i.e., q ∈ Np).

〈
p, q

〉
indicates a pixel pair, and vpq is the gradient of the source

image, which is computed as vpq = IS(p) − IS(q). Let f (p) be the value of the image function f at pixel
p. The aim of this paper is to obtain f (p). After discretization, Equation (10) can be converted into
Equation (11):

min
f

∑
〈p,q〉∩Γ,0

( f (p) − f (q) − vpq)
2 + λ( f (p) − f ′(p))2, with f |∂Γ = f ∗|∂Γ, (11)
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Equation (11) can be further generalized into Equation (12), and
∣∣∣Np

∣∣∣ indicates the neighbor
numbers in

∣∣∣Np
∣∣∣. Equation (12) can be solved with conjugate gradient methods:(∣∣∣Np

∣∣∣+ λ
)

f (p) −
∑

qεNp∩Γ

fq =
∑

qεNp∩∂Γ

f ∗(q) + vpq + λ f ′(p). (12)

3. Results and Analysis

3.1. Visual Analysis

This paper focused on the removal of stains, and the stain regions used to locate the pixels which
need to be reconstructed are currently achieved by manual labels. In order to test the effectiveness of
the proposed method in this study, two ancient paintings were used. One was ‘Fishing’ drawn by
Ni Tian, a painter of the Qing Dynasty, as shown in Figure 8a, and the other was ‘Crane and Banana’
drawn by Sima Zhong, a painter of the Qing Dynasty, as shown in Figure 9a. Due to the presence of
stains, the appearance of both paintings has turned yellow or brown. The painting ‘Fishing’ mainly
includes the following substances: black color material, blue color material, and white color material
in the figure’s clothes; red color material in the figure’s legs; brown color material in the boats; and the
support is paper. The stains are presented in the form of small dots and are distributed everywhere
across the ancient painting, mainly covering the brown color material in the boat, the paper, and the
blue color material in the figure’s clothes. The painting ‘Crane and Banana’ mainly includes blue color
material and black color material in the banana and the paper. Additionally, the stains mainly covered
the blue color material and black color material, and they were large and irregular.

According to the established rules, the feature bands were selected as shown in Figures 8c and 9c.
Figure 8c corresponds to the wavelengths of 710.57, 713.76, and 723.33 nm, and Figure 9c corresponds
to the wavelengths of 668.75, 671.98, and 710.57 nm for the bands R, G, and B, respectively. With the
aid of feature bands, the manually marked stain regions shown in Figures 8b and 9b are effectively
removed or diluted, as presented in Figures 8d and 9d. Furthermore, visually, this method restores the
original color covered by the stains.

We also compared our method with the methods proposed by Kim et al. [11] and Criminisi et
al. [20]. The method proposed by Kim et al. was used to remove the artifacts of old documents, and
the method proposed by Criminisi et al. was considered to remove the degradations of murals [16–18].
From the results shown in Figures 8e and 9e, we see that the method proposed by Kim et al. is suitable
for the removal of small stains but does not work for large stains. When compared with our method,
it still retains the stains’ traces, as shown in the red dashed line marked region in Figures 8e and 9e.
Regarding the Criminisi method, although the stains are clearly removed, the original painting content
is changed, as shown by the red dashed line marked region in Figures 8f and 9f. We see that the
structure of the boat was destroyed in the painting ‘Fishing’, and the veins of the leaves at the top left
corner disappeared in the painting ‘Crane and Banana’. In general, our method seems to work better
when used to remove stains from visual inspection.
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Figure 8. The restored results of the painting ‘Fishing’ with different methods: (a) RGB image, and different
color boxes indicate the selected samples for quantitative analysis of Section 3.2; (b) manually extracted
stain regions (marked with white); (c) selected feature bands; (d) image restored by the proposed method;
(e) image restored by Kim et al.’s method; and (f) images restored by Criminisi et al.’s method.

Figure 9. The restored results of the painting ‘Crane and Banana’ with different methods: (a) RGB image,
and different color boxes indicate the selected samples for quantitative analysis of Section 3.2; (b) manually
extracted stain regions (marked with white); (c) selected feature bands; (d) image restored by the proposed
method; (e) image restored by Kim et al.’s method; and (f) result restored by Criminisi et al.’s method.

3.2. Quantitative Analysis

To verify the effectiveness of our method, we needed to quantitatively evaluate the restored results.
However, this was difficult, since there were no ground truth data. In this paper, we referred to the
quantitative analysis method of shadow removal [34,35], which selected the samples to compare the
gray values between the restored pixels in the shaded regions and adjacent pixels in the nonshaded
regions for the same land cover, since they should share similar values.

The samples to verify the methods are shown in Figures 8a and 9a, respectively. For the painting
‘Fishing’, the color boxes of maroon, red, and magenta indicate the reference samples of the brown color
material, paper, and blue color material with 1092, 1651, and 100 pixels, respectively. The color boxes of
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blue, green, and cyan indicate the restored samples of the brown color material, paper, and blue color
material with 1079, 2121, and 100 pixels, respectively. For the painting ‘Crane and Banana’, the color
boxes of magenta and red indicate the reference samples of blue color material and black color material
with 1372 and 600 pixels, respectively. Likewise, the color boxes of cyan and green indicate the restored
samples of blue color material and black color material with 1772 and 806 pixels, respectively. As there
could be some nonstained pixels in the extracted stain regions, these pixels were not only selected
as the reference sample of the original image but also selected as the restored sample of the restored
image, as shown in the sample of black color material at the upper right corner of Figure 9a.

In this paper, we applied the root mean square error (RMSE) [34], normalized absolute error
(NAE) and average differences (AD) [36] to quantitatively evaluate the restored results. The definition
of these metrics in this paper is shown in Equation (13):

RMSE j =

√∑Mj
k=1 [R(xk,yk,b)−R(xs,ys,b)]2

M j

NAE j =
∑Mj

k=1|R|xk,yk,b|−R|xs,ys,b||∑Mj
k=1|R|xk,yk,b||

AD j =
∑Mj

k=1(R(xk,yk,b)−R(xs,ys,b))
M j

(13)

where R(xk, yk, b) indicates the pixel value of restored material j at band b, R(xs, ys, b) indicates the
mean of adjacent pixels in the nonstained area for material j (regarded as reference samples), and M j is
the sample number of restored material j.

The quantification results are shown in Tables 1 and 2, respectively. Among these metrics, AD is
used to evaluate either underestimation or overestimation of reconstructed values, and larger values
of these metrics indicate larger reconstruction errors. It can be seen that the proposed method has
the lowest values in each band in most cases for the given metrics compared with other methods,
which indicates that they are most similar to the ‘reference samples’ and further proves the effectiveness
of our method. The method proposed by Kim ranks second place, and it is primarily caused by
forcing the values of reconstructed image close to those of the original contaminated image during
the reconstruction process, thereby causing the stains to remain. The method proposed by Criminisi
has the largest values in most cases because the processed stain regions always cover several color
materials, and it is difficult to accurately infer the inner contents with the known pixels located in the
border of stain regions when removing the stains and then filling in these lacuna regions. When the
processed regions only cover one color material, take the stain, for example, which covers the blue
color material for painting ‘Fishing’, the method proposed by Criminisi could yield lower values,
but they are still lager than those of our method and not as accurate as the proposed method.

Table 1. Quantitative analysis by comparing the restored samples to the reference samples for the
painting ‘Fishing’.

Material Metric
Kim Criminisi Proposed Method

B G R B G R B G R

Brown
color

material

RMSE 0.0314 0.0411 0.0528 0.0361 0.0523 0.0659 0.0282 0.0407 0.0526
NAE 0.0917 0.0955 0.1026 0.0940 0.1175 0.1292 0.0716 0.0892 0.1005
AD −0.0137 −0.0075 −0.0030 −0.0100 −0.0170 −0.0233 0.0021 0.0014 −0.0005

Paper
RMSE 0.0544 0.0606 0.0670 0.0593 0.0815 0.0996 0.0367 0.0472 0.0591
NAE 0.1326 0.1148 0.1062 0.1294 0.1369 0.1378 0.0804 0.0834 0.0903
AD −0.0337 −0.0282 −0.0206 −0.0202 −0.0269 −0.0327 −0.0041 −0.0054 −0.0088

Blue color
material

RMSE 0.0168 0.0127 0.0075 0.0086 0.0056 0.0056 0.0050 0.0035 0.0049
NAE 0.0560 0.0332 0.0154 0.0226 0.0121 0.0108 0.0141 0.0072 0.0074
AD −0.0166 −0.0122 -0.0063 0.0050 0.0034 0.0038 0.0043 −0.0005 −0.0026
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Table 2. Quantitative analysis by comparing the restored samples to the reference samples for the
painting ‘Crane and Banana’.

Material Metric
Kim Criminisi Proposed Method

B G R B G R B G R

Blue color
material

RMSE 0.0226 0.0281 0.0341 0.0220 0.0415 0.0684 0.0120 0.0226 0.0343
NAE 0.1922 0.1469 0.1315 0.1313 0.1695 0.2167 0.0855 0.1059 0.1311
AD −0.0179 −0.0150 0.0029 0.0037 0.0079 0.0209 −0.0033 −0.0028 0.0035

Black color
material

RMSE 0.0144 0.0224 0.0300 0.0452 0.0743 0.1009 0.0115 0.0201 0.0298
NAE 0.1545 0.1541 0.1524 0.3213 0.3401 0.3451 0.1019 0.1194 0.1478
AD −0.0047 −0.0027 −0.0020 0.0399 0.0624 0.0772 0.0043 0.0038 −0.0008

3.3. Results for Other Study Areas

In order to verify the effectiveness of the proposed method, this paper additionally selected data
from four scenes for further experiments, and the restored results are shown in Figure 10. Figure 10a,b
and Figures 8 and 9 are respectively from the same Chinese paintings, but visually, the types of stains
are different. Additionally, Figure 10c,d is from other Chinese paintings, where the types of pigments
covered by the stains are different. One is ‘the Hui Nationality Painting’ from the unknown painter,
and the other is ‘Lotus Pond and Wild Goose’ from the painter Zhoujing. It is seen that this method
can remove or dilute the stains and maintains the original appearance of the painting to a large extent.

Figure 10. The restored results for other study areas: (a–d) the original images contaminated by the
stains and marked by the red dashed line; (e–h) the restored images with the proposed method.

4. Discussion

4.1. Parameter Setting

The blocks formed by quadtree segmentation are a parameter used to balance the color constraint
adjustment and the gradients of source image. The more blocks that are selected for the color constraint,
the more the reconstructed image relies on the color constraint; conversely, if fewer blocks are selected
as the color constraint, the more the reconstructed image relies on the gradient, as shown by the red
box marked region in Figure 11. We can see that the reconstructed image with partial pixels as the
color constraint appears more natural, and the seams between the different adjacent pixels were less
obvious when compared with the reconstructed image with all pixels as the color constraint. This paper
explored the effect of different selected block numbers according to the selected samples in Section 3.2.
The block numbers were set as full pixels, 50%, 25%, and 12.5%, respectively. Since the position of the
constraint block was randomly generated when reconstructing the image, we performed 50 tests on
the paintings ‘Fishing’ and ‘Crane and Banana’, respectively, to reduce the influence of this factor on
the reconstruction result, and then averaged the RMSE, NAE and AD of the 50 tests.
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The quantitative analysis results were as shown in Tables 3 and 4. We could see that the values of
reconstructed results were largest in most cases when full constructed pixels were used as constraints,
especially for the case where there were matching errors in ‘Fishing’. Therefore, it is an effective
method to improve the image reconstruction accuracy with part constructed pixels as the constraint.
In addition, too small constructed pixels as the color constraint could also decrease the accuracy of the
reconstructed image, and the highest accuracy was usually obtained when the block numbers were
set as 25%. Therefore, we recommend 25% as an appropriate value to balance the color constraint
adjustment and the gradients of source image.
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Figure 11. Image reconstruction with different numbers of pixels as the color constraint: (a) the original
image; (b) the constructed pixels based on the searched patch; (c) the reconstructed image with all of
the constructed pixels as the color constraint; and (d) the reconstructed result based on a quarter of
blocks as the color constraint.

Table 3. Quantitative analysis of the reconstructed results based on different numbers of pixels as the
color constraint for the painting ‘Fishing’.

Band Block
Number

Brown Color Material Paper Blue Color Material

RMSE NAE AD RMSE NAE AD RMSE NAE AD

B

Full 0.0288 0.0739 0.0048 0.0394 0.0858 −0.0054 0.0063 0.0183 0.0058
50% 0.0284 0.0720 0.0032 0.0376 0.0814 −0.0041 0.0052 0.0144 0.0045
25% 0.0282 0.0713 0.0019 0.0373 0.0811 −0.0036 0.0046 0.0126 0.0038

12.5% 0.0284 0.0730 −0.0004 0.0376 0.0825 −0.0044 0.0043 0.0116 0.0034

G

Full 0.0409 0.0896 0.0029 0.0489 0.0857 −0.0069 0.0035 0.0072 0.0014
50% 0.0407 0.0890 0.0020 0.0477 0.0842 −0.0058 0.0034 0.0072 0.0001
25% 0.0406 0.0887 0.0013 0.0477 0.0833 −0.0050 0.0035 0.0070 −0.0001

12.5% 0.0408 0.0893 −0.0006 0.0484 0.0865 −0.0054 0.0036 0.0073 −0.0008

R

Full 0.0526 0.1010 −0.0004 0.0591 0.0923 −0.0101 0.0046 0.0093 −0.0027
50% 0.0526 0.1007 −0.0004 0.0592 0.0907 −0.0090 0.0046 0.0089 −0.0024
25% 0.0526 0.1005 −0.0004 0.0593 0.0899 −0.0082 0.0047 0.0089 −0.0020

12.5% 0.0527 0.1005 −0.0005 0.0601 0.0903 −0.0075 0.0050 0.0090 −0.0023

Table 4. Quantitative analysis of the reconstructed results based on different numbers of pixels as the
color constraint for the painting ‘Crane and Banana’.

Band Block
Number

Blue Color Material Black Color Material

RMSE NAE AD RMSE NAE AD

B

Full 0.0127 0.0917 −0.0038 0.0119 0.1063 0.0046
50% 0.0125 0.0903 −0.0035 0.0118 0.1056 0.0044
25% 0.0124 0.0893 −0.0030 0.0115 0.1033 0.0042

12.5% 0.0122 0.0898 −0.0032 0.0114 0.1039 0.0045

G

Full 0.0230 0.1068 −0.0026 0.0204 0.1231 0.0045
50% 0.0228 0.1065 −0.0027 0.0203 0.1222 0.0039
25% 0.0227 0.1062 −0.0030 0.0201 0.1207 0.0036

12.5% 0.0228 0.1067 −0.0033 0.0201 0.1218 0.0043

R

Full 0.0343 0.1308 0.0039 0.0296 0.1459 −0.0011
50% 0.0343 0.1308 0.0038 0.0296 0.1452 −0.0005
25% 0.0343 0.1308 0.0036 0.0297 0.1471 −0.0008

12.5% 0.0343 0.1310 0.0037 0.0298 0.1483 −0.0015
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4.2. The Effect of Feature Band Selection

Feature bands are a key factor affecting image reconstruction. First, they need to capture fewer stains
since the color constraint construction is based on the feature bands. If the selected feature bands were
severely contaminated by the stains, the material would change its original color, thereby affecting the
search for the optimal match. For example, consider Figure 12, where the severely contaminated RGB
image was chosen as the feature bands. We can see that the constructed pixels marked by the red box,
based on the searched patches, were incorrect, thereby affecting the image reconstruction. Furthermore, the
selected bands had better be with separability. We used the band combinations with the minimum OBP to
reconstruct the image, and the quantitative results are as shown in Tables 5 and 6. Compared to the results
of Tables 1 and 2, we can see that the values of metrics in the three bands are larger, which indicates that
the reconstructed images with the minimum OBP have lower reconstruction accuracy. This is because the
searched matches based on the different feature band image might be different and the feature bands with
the minimum OBP might obtain patches with less accuracy or wrong patches due to the less separability
between different color materials. Overall, feature band images with fewer stains and better separability
can contribution to better reconstructing the image.

Figure 12. Image reconstruction when severely contaminated band combinations were chosen as the
feature bands: (a) feature band image; (b) the constructed pixels based on the searched patches; and (c)
reconstructed image.

Table 5. Quantitative analysis of the reconstructed image based on band combinations with the
minimum OBP for the painting ‘Fishing’.

Band
Brown Color Material Paper Blue Color Material

RMSE NAE AD RMSE NAE AD RMSE NAE AD

B 0.0297 0.0777 0.0018 0.0414 0.0939 −0.0087 0.0116 0.0345 0.0112
G 0.0434 0.0969 0.0021 0.0541 0.1004 −0.0104 0.0119 0.0288 0.0111
R 0.0562 0.1096 0.0014 0.0664 0.1058 −0.0124 0.0172 0.0369 0.0164

Table 6. Quantitative analysis of reconstructed image based on band combinations with the minimum
OBP for the painting ‘Crane and Banana’.

Band
Blue Color Material Black Color Material

RMSE NAE AD RMSE NAE AD

B 0.0123 0.0860 −0.0042 0.0123 0.1139 0.0045
G 0.0234 0.1075 0.0030 0.0218 0.1348 0.0047
R 0.0371 0.1345 0.0086 0.0325 0.1677 −0.0053

5. Conclusions

This paper proposed the patch-based color constrained Poisson editing method to remove stains
from Chinese paintings according to the stains’ features. Compared with the inpainting algorithms
based on RGB, this method can use the additional information from the selected feature bands and does
not destroy the paintings’ structures when the stains covered several colored materials. Compared



Remote Sens. 2019, 11, 1384 16 of 18

with Kim’s method, this method constructed the color constraint with the searched patch, which could
effectively remove or dilute the stains while restoring the paintings’ original color. Furthermore,
this method was tested with several paintings and could achieve good performance. In general,
this study is a new attempt in virtual restoration based on hyperspectral data. Despite the advantages
of this method, due to the limited data, further experiments are needed in the future to explore
the features of the stains and the possibility of hyperspectral data-based restoration. In addition,
the information in the three feature bands is limited. In the future, image enhancement methods in the
literature [11] may be considered to integrate the information of multiple bands to aid restoration.
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