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Abstract: In this paper, an adaptive contrast enhancement method based on the neighborhood 
conditional histogram is proposed to improve the visual quality of thermal infrared images. Existing 
block-based local contrast enhancement methods usually suffer from the over-enhancement of 
smooth regions or the loss of some details. To address these drawbacks, we first introduce a 
neighborhood conditional histogram to adaptively enhance the contrast and avoid the over-
enhancement caused by the original histogram. Then the clip-redistributed histogram of the 
contrast-limited adaptive histogram equalization (CLAHE) is replaced by the neighborhood 
conditional histogram. In addition, the local mapping function of each sub-block is updated based 
on the global mapping function to further eliminate the block artifacts. Lastly, the optimized local 
contrast enhancement process, which combines both global and local enhanced results is employed 
to obtain the desired enhanced result. Experiments are conducted to evaluate the performance of 
the proposed method and the other five methods are introduced as a comparison. Qualitative and 
quantitative evaluation results demonstrate that the proposed method outperforms the other block-
based methods on local contrast enhancement, visual quality improvement, and noise suppression. 

Keywords: neighborhood conditional histogram; CLAHE; contrast enhancement; optimized 
enhancement 

 

1. Introduction 

With the ability to convert the passively received infrared radiation into infrared images, 
infrared imaging systems have been widely used in military and civilian fields, for instance, thermal 
remote sensing, weapon guidance, night vision, fire detection, and disease diagnosis [1–5]. In these 
fields, infrared imaging has superiority and application prospects that are incomparable to visual 
imaging. However, compared with visual images, the raw infrared images usually suffer from poor 
contrast and low resolution, which are the main factors that limit the performance of infrared imaging 
systems [6]. Therefore, contrast enhancement is one of the indispensable pre-processing methods in 
infrared imaging systems to improve the visual quality of infrared images [7]. 

Contrast enhancement methods for infrared images have been studied for decades, and most of 
them are based on the most famous and classical method histogram equalization (HE) [8]. According 
to the scope of the mapping function of the contrast enhancement method, these methods can be 
classified into two categories: global contrast enhancement (GCE) and local contrast enhancement 
(LCE) [9]. In the GCE methods, one global mapping function which corresponds to the entire image 
characteristics is applied to each pixel of the image. On the contrary, in LCE methods, multiple local 
mapping functions are used to enhance the contrast of their corresponding areas of the image. 

Among the GCE methods, HE is the most well-known one and has been widely applied due to 
its low computational complexity and effectiveness. In HE, the contrast enhancement ratio of each 
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grayscale is proportional to its probability distribution function. Therefore, the enhanced result may 
appear over-enhancement in the homogeneous regions, especially when the homogeneous regions 
account for a large proportion in the infrared images [10]. To address this drawback, there are many 
improved HE methods investigated. The plateau histogram equalization (PHE) [11,12], double 
plateaus histogram equalization (DPHE) [13], and adaptive double plateaus histogram equalization 
(ADPHE) [14] attempt to limit the contrast by introducing one or two proper thresholds to avoid 
over-enhancement. Other methods, such as the brightness preserving bi-histogram equalization 
(BBHE) [15], dualistic sub-image histogram equalization (DSIHE) [16], recursive mean-separate 
histogram equalization (RMSHE) [17], adaptive histogram segmentation (AHS) [7], and adaptive 
histogram partition (AHP) [18], adaptively divide the histogram into two or more intervals, then 
carry out histogram equalization in each interval within the assigned grayscale range. Additionally, 
the histogram modification framework (HMF) [19] and histogram specification (HS) [20] are also 
effective methods to avoid the over-enhancement of HE. The GCE methods generally enhance the 
contrast based on the entire image characteristics with low computational complexity and favorable 
light order preservation. However, the global mapping function is not suitable for various regions 
with different local contrast characteristics, which is the limitation of GCE methods. 

To improve the performance of GCE methods, the LCE methods are developed to enhance the 
local contrast based on the characteristics of local regions. The two representative methods of them 
are the contrast limited adaptively histogram equalization (CLAHE) [21] and partially overlapped 
sub-block histogram equalization (POSHE) [22]. In CLAHE, the input image is divided into multiple 
non-overlapped sub-blocks. In each sub-block, the histogram is clipped and redistributed to avoid 
over-enhancement. In addition, to avoid the appearance of block artifacts, bilinear interpolation is 
carried out between mapping functions of the adjacent sub-blocks. In POSHE, the input image is 
divided into multiple partially overlapped sub-blocks. Histogram equalization is carried out in each 
sub-block, for the pixels in overlapped regions, the enhanced results are the average value of 
correlated sub-blocks. As an improvement of CLAHE, the balanced CLAHE and contrast 
enhancement (BCCE) [23] improves the redistribution mechanism and introduces an exponential 
factor to enhance the local contrast. Nevertheless, the block artifacts and noise amplification may still 
appear in the large homogeneous regions of the enhanced results. Therefore, the adjacent-blocks-
based modification for local histogram equalization (ABMHE) [24] and local gradient-grayscale 
statistical feature (LGGSF) [25] take the content of each sub-block into consideration when calculating 
the corresponding mapping function. In ABMHE, the partially overlapped sub-blocks are 
categorized into three categories based on the gradient information. Not only the category of each 
sub-block but also that of its adjacent sub-blocks are taken into consideration when calculating the 
mapping function. In LGGSF, the non-overlapped sub-blocks are categorized into two categories 
using the classification model trained by a support vector machine (SVM). The mapping function of 
each sub-block is calculated according to its category. These classification-based LCE methods get 
better performance on eliminating the block artifacts. However, the improper classification in the 
transition regions or the low contrast regions may result in the loss of detail. In addition to the block-
based methods, the adaptive trilateral contrast enhancement (ATCE) [26] manipulates the contrast, 
sharpness, and intensity based on the modified histogram and the extracted feature of the input 
image. Other models, such as the unsharp masking [27,28], retinex theory [29], and wavelet transform 
[30–32], can also be utilized to improve the visual quality of infrared images. These LCE methods 
produce better local contrast enhanced result than GCE methods,; however, they may still suffer from 
noise amplification, block artifacts, and/or loss of details. 

In our previous paper [33], we tried to improve the visual quality of infrared images by 
combining the merits of both GCE and LCE methods. In that paper, the global and local histogram 
specification (GLHS) enhances the contrast of infrared images by applying histogram specification 
globally and locally based on the 2D histogram of the input image. Then the local contrast is enhanced 
based on both global and local enhancement results. Whereas the utilization of 2D histogram makes 
GLHS a time-consuming method, we found the global–local conception can be utilized to improve 
the CLAHE method. Therefore, in this paper, an adaptive contrast enhancement method based on 
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the neighborhood conditional histogram is proposed to improve the visual quality of infrared images. 
First, the neighborhood conditional histogram is proposed to avoid the over-enhancement caused by 
the original histogram. When extracting the neighborhood conditional histogram of the input image, 
the neighbor content of each pixel is taken into consideration. In this way, the gray levels of the pixels 
located in the detail regions will get a high probability distribution function and will, accordingly, 
get a high contrast enhancement ratio, and vice versa, if the pixels are located in homogeneous 
regions. Then, for the improvement of CLAHE, we replace the clip-redistributed histogram with the 
proposed neighborhood conditional histogram. And to eliminate the block artifacts, the mapping 
function of each sub-block is updated based on the global mapping function. Lastly, the local contrast 
is optimized and enhanced based on both global and local enhanced result. The remainder of this 
paper is organized as follows. In Section 2, we first review and discuss the CLAHE. In Section 3, the 
proposed method is described in detail. In Section 4, experiments are conducted, and the analysis of 
the experimental results are given. In Section 5, the conclusion is drawn. 

2. Review of CLAHE 

CLAHE is an extension of the adaptive histogram equalization (AHE) algorithm [34]. These two 
methods are dedicated to solving the over-enhancement problem of HE. Over-enhancement is caused 
by the inherent drawback of HE. For a given infrared image X  with L  gray levels, the histogram 
can be expressed as 

=( ) lH l n , = −0,1, , 1l L , (1) 

where ln  indicates the number of pixels with a gray level l  in the image. Based on the definition of 
HE and assuming that the dynamic range of the enhanced result is R (256 for the 8-bit images), the 
enhanced result of the gray level l  is calculated by 

=

−= =  0

1( ) ( )l
l k

Ry T l H k
N

, (2) 

where ( )T l  is the mapping function and maps the gray level l  of the input image into ly  of the 
output image, N  is the total number of pixels in X . Therefore, for the enhanced image, the contrast 
enhancement ratio of the adjacent gray levels in the input image is 

δ −

−= − = ⋅1
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N
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Figure 1. Histogram adjustment within sub-block (i,j). 

As can be seen in Equation (3), the value of δl  is proportional to the corresponding histogram 
value. Which means, for the HE method, the gray level with a high histogram value also has a high 
enhancement ratio and occupies most grayscale range [7]. Unfortunately, the gray levels with 
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histogram values usually belong to the pixels in the background or large homogeneous area. For 
these gray levels, high enhancement ratios and grayscale ranges result in unnaturalness and wash-
out appearance, and the noise in the homogeneous regions will be amplified. At the same time, the 
other gray levels belonging to the pixels in the detail area cannot get desired enhancement ratios and 
grayscale ranges. This is the reason why HE usually causes over-enhancement for infrared images. 
In CLAHE, to avoid the over-enhancement of the homogeneous regions and get better contrast 
enhancement in detail regions, the image is divided into a grid of rectangular contextual sub-blocks 
[21], in each sub-block, HE is carried out. For each sub-block, ,i jH  is used to represent the histogram 

of the sub-block ( , )i j . To avoid over-enhancement, ,i jH  is adjusted by clipping and redistribution 

[35] to get  ,i jH . The mechanism of this adjustment is shown in Figure 1. Where min
,i jl  and max

,i jl  are 

the minimum and maximum gray levels within the sub-block, respectively. The pixels in the green 
area of ,i jH  are redistributed to the blue area, thus  ,i jH  is consists of the blue area and the part of 

,i jH  below clip limit intuitively. This adjustment process is implemented by iteration [35]. 

As can be seen from the previous discussion, it is obvious that the enhancement ratio is related 
to the value of the clip limit. That is, a higher value of the clip limit results in more contrast 
enhancement of the corresponding gray levels. The clip limit of the original CLAHE method is a pre-
defined value [21,36] and is invariant to the image content 

α= + −( )b b
b

N N
clip N

L L
, (4) 

where bN  is the number of pixels in each sub-block, α  is the clip factor within range [0,1]. Based 

on Equation (4), the range of clip limit is   ,b bN L N . When the clip limit is equal to bN L , the 

redistributed histogram  ,i jH  turns to be a uniformly distributed histogram =
, ( )i j bH l N L , which 

linearly maps the input image of range  −  0, 1L  to the output image of range  −  0, 1R . Whereas, 

if the clip limit is higher than the histogram peak, the redistributed histogram  ,i jH  is equal to the 

original histogram ,i jH . It can also be observed that the clip limit determined by Equation (4) is the 

same for each sub-block. Based on  ,i jH , the mapping function of each sub-block is computed by 

=

−= ⋅ 
, ,0

1( ) ( )l
i j i jk

b

RT l H k
N , = −0,1, , 1l L , (5) 

where , ( )i jT l  is the mapping function of the sub-block ( , )i j . Due to the calculation of mapping 

functions being independent of each other, the block artifacts are inevitable. Therefore, to prevent the 
block artifacts, the mapping result of each pixel should take the mapping functions of the nearest four 
sub-blocks into consideration. For an arbitrary pixel p , the final remapped result is computed based 
on the bilinear interpolation [21] and is expressed as: 
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Figure 2. Diagram of the optimization problem. 
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where pX  is the gray value of the pixel p  in the input image, T  is an intermediate variable, ⋅1( )T

, ⋅2 ( )T , ⋅3 ( )T , and ⋅4 ( )T  are the mapping functions of the corresponding sub-blocks centered on 1O

, 2O , 3O , and 4O  as shown in Figure 2. Take an infrared image as an example, the HE result and 
CLAHE result of the given image are given in Figure 3. Here the resolution of the given image is 

×320 256  , and the size of each sub-block is ×64 64 . The clip limit of CLAHE is computed by 
Equation (4), and we set α = 0.01  for the given image. 

As shown in Figure 3, the contrast of the detail regions is not well enhanced in the HE result, 
and the CLAHE performs much better on contrast enhancement in these regions. However, in the 
homogeneous regions, the noise is over-enhancement and artifacts emerge in the CLAHE result. As 
discussed before, for the HE result, the contrast enhancement ratio of each gray level in the input 
image is proportional to the corresponding histogram value. Thus for the CLAHE, the maximum 
contrast enhancement ratio of each sub-block is determined by the clip limit. The clip limit is 
computed based on Equation (4) and is unrelated to the content of each sub-block. As a matter of fact, 
a higher clip limit is required for the sub-blocks with texture and details to get effective contrast 
enhancement. On the contrary, the sub-blocks with concentrated gray level distribution need a 
relatively lower clip limit to avoid the enhancement of noise. It is obvious that a constant clip limit is 
not suitable for CLAHE. In [37], the researchers introduced a mechanism to adaptively set the clip 
limit based on the content of each sub-block. This mechanism works for the 8-bit visual images, but 
it is not applicable to the captured 14-bit infrared images due to its being useless in the noise 
suppression of homogeneous regions. In addition to the noise amplification, the block artifacts are 
not completely eliminated in the homogeneous regions, as shown in Figure 3b. This is caused by the 
very different mapping results when applying the nearest four mapping function to the same gray 
levels if there are different proportions of homogeneous regions in the sub-blocks. Hence, the block 
artifacts still exist in the bilinear interpolation results. 

p1d 2d

3d
4d

1O 2O

4O 3O
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Figure 3. The enhancement result of the given infrared image using contrast-limited adaptive 
histogram equalization (CLAHE). (a) The histogram equalization (HE) result of the given image. (b) 
The CLAHE result of the given image. (c) The histogram of the given infrared image. (d) The 
histogram of each sub-block and the red line represents the clip limit. (e) The mapping function of HE 
and the mapping functions of sub-block 1, 2, and 3 in CLAHE. The X-axis ranges in (c), (d), and (e) 
are set to be (9000,11000) for better visualization. 

3. Proposed Method 

To avoid over-enhancement of homogeneous regions and effectively enhance the contrast of 
detail-rich regions, we replace the clip-redistributed histogram with our proposed neighborhood 
conditional histogram. In our proposed neighborhood conditional histogram, the image content is 
taken into consideration when computing the histogram. Therefore, the corresponding mapping 
function of each sub-block is able to automatically adapt to the content of each sub-block. Then, for 
the further elimination of block artifacts, the local mapping functions are updated based on the global 
mapping function. Lastly, the optimized local contrast enhanced result is obtained by making an 
optimization between the local Weber contrast of global and local enhanced results. In the following 
part, our proposed method is described in detail. 
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3.1. Neighborhood Conditional Histogram 

As discussed in the previous section, the contrast enhancement ratio of each gray level after HE 
is proportional to the corresponding histogram value. In HE, for the pixels in homogeneous regions, 
the corresponding gray levels tend to get higher histogram values than other gray levels. Thus, this 
usually leads to the over-enhancement in the homogeneous regions and lack-enhancement in the 
detail regions. To address this problem, we try to take the image content into consideration when 
performing the histogram statistic. In our proposed neighborhood conditional histogram, the gray 
levels located in detail regions get higher histogram values than those located in homogeneous 
regions. The neighborhood conditional histogram of X  is expressed as 

φ + +
= = =− =−

 
=  − 
  , ,

1 1

1( ) ( , , )
1

A B r r

l a b a i b j
a b i r j rr

H l X X t
w , (7) 

where ×A B  represents the size of the given image, r  is an integer introduced to determine the 
radius of the square neighborhood around each pixel, = + 2(2 1)rw r  is the number of pixels in the 

square neighborhood, t  is a predefined threshold, φ ( , , )l u v t  is defined to be a binary function and 
is expressed as follows: 

φ
 = − ≥= 


1
( , , )

0l

if u l and u v t
u v t

otherwise
. (8) 

By defining the binary function for each pixel and its neighbors, the image content is able to be 
taken into consideration when computing the histogram value. Thus, a higher value of any gray level 
in our proposed neighborhood conditional histogram does not mean that the gray level has a larger 
probability of occurrence in the image. Instead, a higher value represents that the pixels that take on 
the corresponding gray level have a larger probability of being located in the detail regions. For the 
gray levels with a higher histogram value a better contrast enhancement after HE can be achieved. 
Hence, our proposed neighborhood conditional histogram is more reasonable than the original 
histogram. Based on Equation (2), the mapping function of the neighborhood conditional histogram 
can be obtained. The enhanced result of the given infrared image based on our proposed 
neighborhood conditional histogram is given in Figure 4. The parameters are set as = 2r  and = 10t  
here for the given 14-bit infrared image. It is obvious that the neighborhood conditional histogram in 
Figure 4a looks much different from the histogram in Figure 3c. And the enhanced result looks much 
better than the original HE result. 

 
Figure 4. The enhanced result of the given infrared image. (a) The neighborhood conditional 
histogram of the given infrared image. (b) The corresponding enhanced result based on the 
neighborhood conditional histogram. The X-axis range in (a) is set to be (9000,11000) for better 
visualization. 

3.2. Improved CLAHE 
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As discussed in the previous sub-section, our proposed neighborhood conditional histogram 
outperforms the original histogram on adaptively enhancing the contrast of infrared images. 
Therefore, for the improvement of CLAHE, we propose to replace the clip-redistributed histogram 
with the neighborhood conditional histogram. By applying the neighborhood conditional histogram 
to each sub-block, the new histogram of sub-block ( , )i j  is obtained and denoted as ∗

,i jH . And then 

the corresponding local mapping function ∗
, ( )i jT l  is computed by replacing  , ( )i jH k  in Equation (5) 

with ∗
, ( )i jH k . Obviously, if the mapping function ∗

, ( )i jT l  is applied to the sub-block ( , )i j , the 

artifacts will still appear in the homogeneous regions after the bilinear interpolation. With this 
consideration, the local mapping functions have to be updated. As for the sub-blocks of the given 
infrared image, an indisputable fact is that each sub-block is just a part of the whole image. Thus, not 
only the mapping function of each sub-block but also the global mapping function have to be taken 
into consideration to update the local mapping functions. The local mapping functions are calculated 
based on the image content of the corresponding sub-blocks. Due to the calculation processes of the 
local mapping functions being carried out independently, the contrast of each sub-block can be well 
enhanced. However, the block artifacts may appear in the final enhanced result. On the contrary, the 
global mapping function is computed based on the whole image content. Therefore, there are no 
artifacts in the enhanced result, but the local contrast enhancement is not as good as the enhanced 
result using the local mapping functions. Considering the complementary characteristics of the global 
mapping function and the local mapping functions, we update the local mapping functions by 
making an adaptive compromise between the local mapping function and the global mapping 
function. 

The global mapping function ∗( )GT l  is obtained by substituting ∗ ( )GH l  into Equation (2). Here 
∗ ( )GH l  represents the neighborhood conditional histogram of the whole infrared image and is 

computed by adding the neighborhood conditional histograms of the sub-blocks together. 
∗ ∗= ,( ) ( )G i j

i j
H l H l . (9) 

The updated local mapping function ∗
,i jT  is treated as the solution to a bi-criteria optimization 

problem [33]. We use the squared of the Euclidean norm for optimization. Hence, the updated 
mapping function is computed by 

∗ ∗ ∗= − + − 
22

, ,2 2
arg mini j G i j

T
T T T T T , (10) 

where T  is an intermediate variable,   is a regularization parameter and varies over ) ∞0, . The 

solution to this quadratic optimization problem is 

β β∗ ∗ ∗= − +
, ,(1 )i j G i jT T T , (11) 

where 

β =
+

1

.  

As   varies over ) ∞0, , the value of β  is within the range of   0,1 . It is obvious that the 

updated local mapping function ∗
,i jT  turns out to be a weighted average of ∗

GT  and ∗
,i jT . By varying 

β , the weights of ∗
GT  and ∗

,i jT  in ∗
,i jT  change accordingly. When β = 0 , ∗

,i jT  is equal to the global 

mapping function ∗
GT . Thus the enhanced result of sub-block ( , )i j  using ∗

,i jT  is the same as the 

global enhanced result using ∗
GT . As β  increases and approaches 1 , ∗

,i jT  gradually converges to 

the original local mapping function ∗
,i jT  and the corresponding enhanced result of sub-block ( , )i j  
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turns to resemble the enhanced result using ∗
,i jT . Therefore, β  should be set as a block adaptive 

variable that has a different value depending on the block characteristics. This means it should be 
represented as the component of the sub-block ordered set β ∈,( )i j β  instead of the constant β . 

Considering this notation, the solution in Equation (11) is rewritten as 

β β∗ ∗ ∗= − +
, , , ,(1 )i j i j G i j i jT T T . (12) 

As β ,i j  in Equation (12) is recommended to be a block adaptive value, it should be determined 

based on the block content. For the sub-blocks with a large proportion of homogeneous regions, a 
small β ,i j  is required to avoid the over-enhancement and the appearance of block artifacts. Whereas, 

a large β ,i j  is more suitable for the sub-blocks that contain many details and textures to get better 

contrast enhancement. When determining the value of β ,i j , it is reasonable to utilize the 

neighborhood conditional histogram ∗
,i jH , which is also calculated based on the content of the sub-

block ( , )i j . Therefore, in our proposed method, β ,i j  is determined by 

β

−
∗

=


1

,
0

,

( )
=

L

i j
l

i j
b

H l

N
. (13) 

From the definition of ∗
,i jH  in Equation (7), for the sub-block ( , )i j , a higher value of ∗

,i jH  

indicates that there are more pixels with gray level l  located in the detail regions. This means that 
the sum of ∗

,i jH  is larger if there are more details in the sub-block ( , )i j , and accordingly, the value 

of β ,i j  is also larger as required. On the contrary, the value of β ,i j  for the sub-block with more 

homogeneous regions is also smaller. This is reflected in Figure 5, where it is clear that the 
homogeneous area accounts for a large proportion in sub-block 1 and sub-block 2. Therefore, the 
corresponding mapping functions resemble the global mapping function. As shown in Figure 5a, 
there are no artifacts in the homogeneous regions. This indicates that the improved CLAHE performs 
well on enhancing the local contrast with no artifacts. 
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Figure 5. The enhanced result of the given infrared image using the improved CLAHE. (a) The 
enhanced result. (b) The neighborhood conditional histogram of each sub-block and the red line is 
introduced to be a reference value of ten. (c) The global mapping function and the local mapping 
functions of sub-block 1, 2, and 3 in the improved CLAHE. The X-axis range in (b) and (c) are set to 
be (9000,11000) for better visualization. 

3.3. Optimized Local Contrast Enhancement 

To further enhance the local contrast and make the details more visible to human viewers, the 
optimized enhanced result is obtained by combining the local contrast of both global and local 
enhanced results. The global enhanced result GY  is computed by transferring the gray levels of the 

input infrared image to the output gray levels using the global mapping function ∗
GT . The local 

enhanced result LY  is obtained by the improved CLAHE described in the previous sub-section. With 
reference to a given pixel of the desired enhanced result Y , the local Weber contrast is defined as 

−
= k k

k
k

Y Y
C

Y
, (14) 

where kC  denotes the Weber contrast of the pixel k , kY  represents the average gray intensity in 
the neighborhood of pixel k  and is computed by 

∈

= 1

k

k i
i Dk

Y Y
D , (15) 

where kD  represents the neighborhood of the pixel k  and kD  is the total number of pixels in the 

neighborhood. To enhance the local contrast, we suppose that the estimated local contrast of Y is 
expressed as 

∗= ×
k kC c C , (16) 

where  kC  is the estimated local contrast, c  is defined as the contrast parameter, ∗
kC  is the baseline 

local contrast. Taking the local contrast of both global and local enhanced results into consideration, 
the baseline local contrast ∗

kC  is computed by solving a bi-criteria optimization problem as follows: 

λ∗ = − + −
2 2

arg mink Gk Lk
C

C C C C C , (17) 

where C  is an intermediate variable, λ  is defined as a regularization parameter and varies over 
) ∞0, , GkC , and LkC , representing the local contrast of the global and local enhanced results, 

respectively, are calculated by = −( )Gk Gk Gk GkC Y Y Y  and = −( )Lk Lk Lk LkC Y Y Y . The optimal solution 
of Equation (17) is expressed as 

λ
λ λ

∗ = +
+ +
1

1 1k Gk LkC C C . (18) 

As λ  varies from 0  to ∞ , the solution of ∗
kC  in Equation (18) traces the optimal trade-off 

local contrast between GkC  and LkC . The baseline local contrast obtained by λ = 0  corresponds to 
the contrast of global enhanced result, whereas when λ  increases to infinity, it resembles the 
contrast of the local enhanced result. Thus, we obtain different baseline local contrast according to 
λ . Taking the region characteristics of the input image into consideration, it is more reasonable to 
set λ  as a region adaptive variable instead of a constant value. This means λ  should be set as the 
component of the lexicographically ordered image ( λ ∈k λ ). In the case of the contrast parameter c  

in Equation (16), the enhancement level of the estimated local contrast  kC  is adjusted by the value 
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of c . To adaptively enhance the local contrast, in the proposed method, c  is also determined to be 
a region adaptive variable by considering the regional characteristics. Therefore, the contrast 
parameter c  should also be set as the component of the lexicographically ordered image ( ∈kc c ) 
instead of a constant. Considering these notations and substituting Equation (18) into Equation (16), 
the estimated local contrast  kC  is rewritten as 

λ
λ λ

= +
+ +

 1( )
1 1

k
k k Gk Lk

k k

C c C C . (19) 

Combining Equations (14) and (19), the desired enhanced result kY  meets the formula below 

λ
λ λ

− − −
= ⋅ + ⋅

+ +
1( )

1 1
k k Gk Gk k Lk Lk

k
k kk Gk Lk

Y Y Y Y Y Y
c

Y Y Y
, (20) 

where kY  indicated the average gray intensity of the pixel k  in the desired enhanced result, but the 
value is not given. To compute the desired enhanced result based on Equation (20), we assume that 
there is no significant difference between the average gray intensity of the local enhanced result and 
that of the desired enhanced result ( ≈k LkY Y ). Then, the desired enhanced result kY  is computed by 

λ
λ λ

= + ⋅ ⋅ + ⋅ −
+ +
1( )

1 1
Lk k

k Lk k Gk Lk Lk
k kGk

Y
Y Y c Y Y Y

Y
. (21) 

As formulated in Equation (21), the desired enhanced result is determined by a constant term 
and a variable term. The first term has no contribution to the local contrast enhancement. Therefore, 
the local contrast is enhanced by determining the parameters λk  and kc  adaptively. As discussed 

before, both λk  and kc  should be set as region adaptive parameters that have different values 
depending on the regional characteristics of the input image. In our proposed method, the edge 
information of the input infrared image is utilized. The expressions for λk  and kc  are given by 

λ λ
λ λ

 = Δ
 = + +

0

0 01 ( )
k k

k k kc c c , (22) 

where λ0  and 0c  are user-defined parameters, Δk  is the edge information of the input image at 
the pixel k . In this paper, the edge information is computed by applying the Sobel operator to the 
input infrared image and then is linearly stretched to the same dynamic range of the enhanced result. 
It is clear that the values of λk  and kc  are positively correlated with the edge information Δk , and 

the range of the contrast parameter kc  is  +  01,1 c . For the regions with sufficient edge information, 

the baseline local contrast resembles that of the local enhanced result and will further get enhanced, 
the extent of contrast enhancement is controlled by + 01 c . On the contrary, if the regions have 
insufficient edge information, the baseline local contrast tends to be the same as that of global 
enhanced result and will later remain unchanged as = 1kc . In our experiments, we empirically set 

λ =0 0.5  and =0 1c  for the 14-bit infrared images. A pseudocode of the proposed method is given 
as follows. 

Algorithm 1: Adaptive contrast enhancement 
Input: original infrared image X   
1. Divide the image X  into multiple equal-sized non-overlapped sub-blocks 
2. For each sub-block, extract the neighborhood conditional histogram ∗

,i jH  based on Equation (7) 

3. Obtain the global mapping function ∗
GT  and the original local mapping function ∗

,i jT  based on ∗
,i jH  

4. Compute the updated local mapping function ∗
,i jT  based on ∗

GT  and ∗
,i jT  
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5. Obtain improved CLAHE result LY  based on ∗
,i jT  

6. Map the image X  with ∗
GT  to get the global enhanced result GY   

7. Enhance the local contrast combining LY  and GY  

Output: Enhanced result Y  

4. Experimental Results 

In this section, we apply the proposed method to six captured 14-bit infrared images and two 
raw infrared images extracted from the video sequences in BU-TIV [38] to evaluate its performance. 
The imager we used to capture the six infrared images is developed by our lab based on the sensor 
MARS-LW-RM3 with resolution ×320 256  and is sensitive to the long-wave band μ−8 10 m . The 
resolution of the other two raw infrared images is ×1024 512  and ×512 512 . Figure 6 shows the HE 
results of the eight infrared images as a reference. In our experiments, the results are compared with 
those of four other block-based well-designed contrast enhancement methods: CLAHE, BCCE, 
ABMHE, and LGGSF. All of the experiments are conducted using MATLAB on a PC with Intel(R) 
Core(TM) i5 CPU (3.2 GHz) and 16GB RAM on a Windows 7 operating system. 

 
Figure 6. The HE results of the six infrared images used in the experiments. (a) Building1, (b) Hills, 
(c) Building2, (d) Sky, (e) Trees, (f) Windows, (g) Road, (h) Students. 

4.1. The setting of Block Size and Threshold t  
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In this section, we conduct a further discussion on the block size and the threshold t . The block 
size is introduced to determine the size of each block in CLAHE, and the threshold t  is introduced 
to compute the neighborhood conditional histogram in Equation (7). The proposed method is applied 
to a test image extracted from one image in BU-TIV with the resolution ×320 256  to analyze the 
influence of different parameter settings to the enhanced result. The enhanced results with different 
block size and the threshold t  are given in Figure 7. It can be seen that the nonuniformity of the test 
image is also enhanced when we set = 10t . As t  increases, the nonuniformity of the enhanced 
results is gradually suppressed, and some tiny details are also lost. Therefore, when determining the 
value of the threshold t , we should make a compromise between noise suppression and tiny detail 
preservation. For the block size, some artifacts appear in the enhanced result when the size of each 
block is set to be ×16 16 . As the block size increases, the local contrast enhancement is not as good 
as that obtained by small block size, but this contrast enhancement reduction is not obvious when the 
threshold t  is set to be a large value. In our experiments, we empirically set the block size to be 

×64 64 . For other infrared images with different resolution, the block size can also be set as ×64 64  
or another value, but not too small. For the six test images we captured, the threshold is set as = 10t  
to get better local contrast enhancement. And for the other test images from BU-TIV, we set = 20t  
for the suppression of nonuniformity. 

 
Figure 7. The enhanced results of the proposed method with different parameter setting. 
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4.2. Qualitative Evaluation 

The experimental results of the infrared images are given in Figures 8–13. The results are 
obtained by applying CLAHE, BCCE, ABMHE, LGGSF, and the proposed method to the infrared 
images. In addition to these, the intermediate enhanced results of the proposed method, and the 
enhanced results of the improved CLAHE are given together for comparison. The block size in 
CLAHE, BCCE, ABMHE, and the proposed method is set to be ×64 64 . The number of divisions in 
horizontal and vertical of the image for LGGSF is set to be = = 7x yk k  according to the original 

paper. In CLAHE and BCCE, the clip factor is set as α = 0.01 . In addition, the local contrast 
enhancement factors for BCCE and LGGSF are set as = 8c . Lastly, for ABMHE, the step size of the 
partially overlapped in horizontal and vertical is set to be one-quarter of the block size. For good 
enhancement results, they should obtain better local contrast enhancement and noise suppression, be 
artifact-free and visually pleasing. 

As shown in Figure 8, the enhanced results of CLAHE, BCCE, ABMHE, LGGSF, and the 
proposed method appear similar with respect to the building. CLAHE and BCCE cause noise 
amplification in the sky, which greatly reduces their performance compared with the other methods. 
ABMHE and LGGSF lost some details, as shown in the region marked by the red rectangle. This is 
caused by the improper classification in the transition region between the detail region and 
homogeneous region. The partial boundary of the mountain disappears in the ABMHE result, and 
some details of the trees in the LGGSF result also lost. All these undesired performance reductions 
do not appear in the enhanced result of GLHS and the proposed method. However, it is clear that the 
proposed method gets better local contrast enhancement than GLHS. 

 
Figure 8. Enhancement results for Building1. (a) contrast-limited adaptive histogram equalization 
(CLAHE), (b) balanced CLAHE and contrast enhancement (BCCE), (c) adjacent-blocks-based 
modification for local histogram equalization (ABMHE), (d) local gradient-grayscale statistical feature 
(LGGSF), (e) global and local histogram specification (GLHS), (f) Proposed. 

In Figure 9, the undesired noise amplification still appears in the enhanced result of CLAHE and 
BCCE. The details of the hills and buildings in BCCE result look clearer than those in the CLAHE 
result. Some part of the hills in the region marked by the red rectangle in the enhanced result of 
ABMHE cannot be distinguished from the sky. In the enhanced result of LGGSF, many details of the 
hills and the trees are smoothed. The local contrast enhancement of GLHS result is not as good as 
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that of the other methods. Our proposed method produces a much better appearance and the finest 
details than the other methods. 

 
Figure 9. Enhancement results for Hills. (a) CLAHE, (b) BCCE, (c) ABMHE, (d) LGGSF, (e) GLHS, (f) 
Proposed. 

In Figure 10, CLAHE and BCCE still enhance the noise in the region of the sky. ABMHE obtains 
relatively good enhanced results for there is no transition region between the building and the sky, 
which is the same situation as the experiments in the original paper. In the enhanced result of LGGSF, 
the details of the trees in the left and right of the subgraph are still smoothed. Once again, GLHS does 
not produce better local contrast enhancement, and the proposed method outperforms the other 
methods with no artifacts, good appearance, and fine details. 

 
Figure 10. Enhancement results for Building2. (a) CLAHE, (b) BCCE, (c) ABMHE, (d) LGGSF, (e) 
GLHS, (f) Proposed. 
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In Figure 11, the enhanced results of CLAHE and BCCE look unnatural due to the enhancement 
of noise and the appearance of block artifacts. As observed in the region marked by the red rectangle 
in the enhanced results of CLAHE, BCCE, and ABMHE, there are non-uniform brightness regions in 
the sky around the tower crane. These unpleasant appearance reductions cannot be found in the 
enhanced result of GLHS, LGGSF, and the proposed method. However, the details of the buildings 
and the tower crane do not look clearer than those of GLHS or the proposed method. In the 
homogeneous regions of the enhanced result of GLHS, some granular noise appears. The proposed 
produces an enhanced result with better visual quality improvement. 

 
Figure 11. Enhancement results for Sky. (a) CLAHE, (b) BCCE, (c) ABMHE, (d) LGGSF, (e) GLHS, (f) 
Proposed. 

In Figure 12, CLAHE and BCCE produce better enhanced results than ABMHE, LGGSF, and 
GLHS, which benefits from the absence of the homogeneous region. As shown in the regions marked 
by the red rectangles in the enhanced results of ABMHE and LGGSF, many details of the trees are 
lost. This is caused by the improper classification of this low contrast region. The enhanced result of 
the proposed method looks better than that of BCCE, for the local contrast is well enhanced. 

In Figure 13, the enhanced results of CLAHE, BCCE, ABMHE, LGGSF, and the proposed method 
resemble each other. The enhanced result of GLHS looks clear, but the local contrast is not well 
enhanced. Local contrast in the enhanced results of the proposed method and BCCE appears better 
than that of the other methods. 

In Figure 14, due to the existence of nonuniformity, the enhanced results of CLAHE, BCCE, and 
LGGSF look poor because they are sensitive to the nonuniformity. In the enhanced result of ABMHE, 
there are non-uniform brightness regions in the road. GLHS performs best in terms of nonuniformity 
suppression. However, the local contrast is not well enhanced. The proposed method is able to 
suppress the nonuniformity and get better local contrast enhancement. 

In Figure15, the enhanced results of CLAHE and BCCE look terrible for the enhancement of the 
nonuniformity. The nonuniformity is well suppressed in the enhanced result of ABMHE, but there 
exists non-uniform brightness. The nonuniformity is suppressed in some regions of the LGGSF result. 
GLHS performs well on the nonuniformity suppression, but the local contrast is not well enhanced. 
The proposed method produces a better enhanced result with a natural appearance and 
nonuniformity suppression. 
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Figure 12. Enhancement results for Trees. (a) CLAHE, (b) BCCE, (c) ABMHE, (d) LGGSF, (e) GLHS, 
(f) Proposed. 

 
Figure 13. Enhancement results for Windows. (a) CLAHE, (b) BCCE, (c) ABMHE, (d) LGGSF, (e) 
GLHS, (f) Proposed. 
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Figure 14. Enhancement results for Road. (a) CLAHE, (b) BCCE, (c) ABMHE, (d) LGGSF, (e) GLHS, 
(f) Proposed. 

 
Figure 15. Enhancement results for Students. (a) CLAHE, (b) BCCE, (c) ABMHE, (d) LGGSF, (e) 
GLHS. (f) Proposed. 

4.3. Quantitative Evaluation 

In this section, to evaluate the performance of the six methods objectively, four metrics are 
adopted in this paper. They are the measure of enhancement by entropy (EMEE) [39], structural index 
(SI) [40], no-reference structural sharpness (NRSS) [41], and the lightness order error (LOE) [42]. 

EMEE is defined based on the Weber contrast and the concept of entropy, which is computed 
by the equation below. 

α

α
= =

   
=    

+ +      


1 2
max max
, ,

min min
1 11 2 , ,

1( ) ln
k k

k l k l

k l k l k l

I I
EMEE I

k k I c I c
, (23) 
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where 1k  and 2k  are the number of divisions in horizontal and vertical of the given image I , max
,k lI  

and min
,k lI  represent the maximum and minimum values of the block ( , )k l , respectively, α  is an 

additional parameter, and c  is a small constant introduced to avoid dividing by zero. Generally, a 
larger EMEE value implies a higher contrast of the given image. In this paper, we set α = 0.2 , 

= 0.0001c , and the block size is ×8 8 . 
SI is defined based on the correlation coefficient, and the expression is given below. 

σ
σ σ

+
=

+
,( , ) X Y

X Y

c
SI X Y

c
. (24) 

where X  and Y  represent the input image and the enhanced image, σ ,X Y  is the covariance of X  
and Y , σ X  and σ Y  are the standard deviation, c  is a small constant introduced to avoid dividing 
by zero, and σ ,X Y  is computed by the equation below. 

σ μ μ
=

= − −
− ,

1

1 ( ( ) )( ( ) )
1 X Y

N

X Y X I Y I
i

I i I i
N

, (25) 

where N  is the number of pixels in the images, μ
XI  and μ

YI
 are, respectively, the mean intensity 

of XI  and YI . It is clear that SI indicates the global structural similarity of the enhanced image when 
compared to the input image. A larger SI value means that there is a high similarity between the 
enhanced image and the input image in terms of structure. 

NRSS is defined based on the well-known SSIM (structural similarity index measurement) [43]. 
It indicates the structural sharpness of the given image and is computed by the equation below. 

=

= −  ( )

1

1( ) 1 ( , )F II

K
GG

i i
i

NRSS I SSIM B B
K

, (26) 

where IG
iB  and ( )F IG

iB  are one of the K  overlapped sub-blocks with higher variations in IG  and 

( )F IG , IG  represents the gradient image and is computed by applying the Sobel operator to the given 

image I , and ( )F IG  is the gradient image of the Gaussian-blurred image ( )F I . A large NRSS value 

means that the given image looks clear with high contrast. In this paper, the block size in NRSS is set 
to be ×32 32 , the step size is set to be half of the block size, and K  is equal to half of the total number 
of the overlapped sub-blocks. 

LOE is defined to indicate the lightness order error between the input image and the enhanced 
image. The expression of LOE is given below. 

= =

= =


=


  = ⊕  

  ≥

= 
 





,
1 1

, , , , ,
1 1

1

( , ) ( , )

1,
( , )

0,

A B

a b
a b

A B
D D D D

a b a b m n a b m n
m n

LOE RD
AB

RD U X X U Y Y

for x y
U x y

else

, (27) 

where ×A B  represents the image size of DX  and DY , ( , )U x y  is the unit step function, ⊕  is the 

exclusive or operator, DX  and DY  are the down-sampled versions of X  and Y  to reduce the 
computational complexity. The ratio between the size of the input image and that of the down-
sampled image is set as = 16r  in this paper. Obviously, a small LOE value indicates that the 
enhanced image gets better naturalness preservation of the input image. 

In Table 1, the quantitative evaluation results of the six methods in terms of the four metrics are 
given. The highest results of EMEE, SI, and NRSS, the lowest results of LOE are marked in bold in 
the table. Among these methods, the other five methods except GLHS are block-based methods, and 
the foundation of GLHS is global histogram specification. Therefore, GLHS usually gets the highest 
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SI values and the lowest LOE values. The proposed method provides almost the highest EMEE values, 
except in Hills. Although the EMEE value of the proposed method in Hills is slightly smaller than 
that of ABMHE, the proposed method provides the highest average EMEE value among the five 
methods. For the SI values, due to the utilization of block-based local contrast enhancement, the SI 
values of the five block-based methods are lower than those of GLHS. The proposed method usually 
gives relatively higher SI values among the block-based methods, and the average SI value of the 
proposed method is the highest in the five block-based methods. This means the proposed method 
performs well on the structural similarity with the input image. Benefitting from the local contrast 
enhancement process, the NRSS values of GLHS are the highest among the six methods. For the first 
six infrared images, the proposed method usually produces relatively high NRSS values. Whereas 
for the other two test infrared images, the NRSS values of the proposed method are not as high as 
those of BCCE and LGGSF, this is caused by the setting of the higher threshold. The reason why the 
NRSS values are not the highest among the methods is the combination of both global and local 
enhanced results when enhancing the local contrast. Comparison of LOE values indicates that the 
proposed method almost provides the lowest values among the five block-based methods, except in 
Sky and Trees. However, the average LOE value of the proposed method is obviously the lowest 
among that of the other block-based methods. In summary, the values of the four metrics demonstrate 
that the proposed method outperforms the other five methods in terms of local contrast enhancement 
and performs well on the structural similarity, detail improvement, and naturalness preservation. 

Table 1. The quantitative evaluation results of contrast-limited adaptive histogram equalization 
(CLAHE), balanced CLAHE and contrast enhancement (BCCE), adjacent-blocks-based modification 
for local histogram equalization (ABMHE), local gradient-grayscale statistical feature (LGGSF), global 
and local histogram specification (GLHS), and the proposed method in terms of enhancement by 
entropy (EMEE), structural index (SI), no-reference structural sharpness (NRSS), and lightness order 
error (LOE). 

Metrics Methods 
Infrared images in the experiments 

Average 
Building1 Hills Building2 Sky Trees Windows Road Students 

EMEE 

CLAHE 0.2000 0.1963 0.5770 0.3317 0.4823 0.5753 1.4999 0.3592 0.5277 
BCCE 0.4388 0.4486 0.7091 0.6456 1.0899 1.5121 1.8979 0.4839 0.9032 

ABMHE 1.4180 1.8156 1.6300 1.8697 2.5899 1.4987 1.6859 0.7242 1.6540 
LGGSF 0.2960 0.2153 0.6360 0.1497 1.2646 0.9432 1.1786 0.1701 0.6067 
GLHS 0.3809 0.2377 2.8797 0.4055 1.5728 1.9295 0.5263 0.3730 1.0382 

Proposed 3.3892 1.8031 5.5496 2.1652 5.9257 4.8795 2.5674 0.8721 3.3940 

SI 

CLAHE 0.6873 0.6851 0.6887 0.6885 0.6569 0.8021 0.6476 0.7586 0.7019 
BCCE 0.6449 0.6388 0.6672 0.5907 0.6476 0.7943 0.6197 0.5595 0.6453 

ABMHE 0.7930 0.8563 0.6541 0.9103 0.7924 0.8197 0.8676 0.8211 0.8143 
LGGSF 0.8347 0.9283 0.7537 0.9778 0.6575 0.8341 0.7031 0.8551 0.8180 
GLHS 0.9577 0.9494 0.8608 0.9793 0.9027 0.9211 0.9761 0.9094 0.9321 

Proposed 0.8607 0.8996 0.7503 0.9625 0.7247 0.8490 0.8999 0.9520 0.8623 

NRSS 

CLAHE 0.8704 0.8442 0.8535 0.8483 0.7960 0.7682 0.7734 0.8115 0.8207 
BCCE 0.9237 0.9038 0.9092 0.8981 0.8609 0.8202 0.8723 0.8806 0.8836 

ABMHE 0.8578 0.8343 0.8425 0.8263 0.7780 0.8141 0.7656 0.7856 0.8130 
LGGSF 0.8925 0.8797 0.8748 0.8770 0.8474 0.8257 0.8491 0.8684 0.8643 
GLHS 0.9613 0.9583 0.9398 0.9352 0.8997 0.9055 0.8771 0.8851 0.9203 

Proposed 0.9160 0.8988 0.9124 0.8879 0.8660 0.8558 0.8102 0.8349 0.8728 

LOE 

CLAHE 73.89 87.27 64.98 97.09 70.73 43.24 523.51 257.11 152.23 
BCCE 79.95 89.96 68.28 104.92 74.46 44.77 544.24 324.97 166.44 

ABMHE 42.46 41.41 44.83 51.38 39.90 48.97 338.67 241.06 106.09 
LGGSF 34.68 35.15 35.38 9.67 82.74 41.20 463.96 201.55 113.04 
GLHS 11.26 9.5156 9.08 8.75 10.13 10.35 63.04 28.01 18.77 

Proposed 23.47 26.44 25.78 17.56 53.64 29.90 274.76 94.67 68.28 

In Table 2, the average time consumption for the six methods to process the six captured test 
images are given. It is clear that the time computation of CLAHE and BCCE is lower than those of 
the other three methods. The local contrast enhancement process of BCCE leads to a higher 
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computation time than CLAHE. Due to the utilization of sub-block classification and labeling, LGGSF 
needs more computation time than BCCE. The computation time of the proposed method is higher 
than LGGSF and BCCE, this is caused by the computation of neighborhood conditional histogram in 
each sub-block and the optimized contrast enhancement process. For the GLHS, the utilization of the 
2D histogram, histogram specification, and the local contrast enhancement process lead to a more 
time-consuming process. In ABMHE, the large amount of overlapped sub-blocks and the sub-block 
searching operations make it a computationally expensive method. Therefore, its consumption time 
is the highest among the six methods. 

Table 2. The average time consumption of the six methods on the six captured test images (Unit: 
Second). 

Method CLAHE BCCE ABMHE LGGSF GLHS Proposed 
Time 0.0675 0.0842 3.2471 0.1522 0.9172 0.1674 

5.Conclusion 

In this paper, to improve the visual quality of infrared images, we proposed an adaptive contrast 
enhancement method based on the neighborhood conditional histogram. We introduced the 
neighborhood conditional histogram into CLAHE to avoid over-enhancement and achieve adaptive 
contrast enhancement for various sub-blocks. To eliminate the block-artifacts, the mapping functions 
are further updated based on the global mapping function. Lastly, the local contrast is optimized 
based on both global and local enhanced result, and then adaptively enhanced based on the edge 
information of the input image. The neighborhood conditional histogram and the strategy that 
combines both global and local mapping functions to reduce the block artifacts and enhance the local 
contrast are the main innovations of this paper. By setting different parameters for the neighborhood 
conditional, the proposed method is able to adaptively enhance the local contrast and suppress the 
nonuniformity of the input infrared images. In addition, the proposed method has the potential to be 
implemented on the hardware platform, such as FPGA. Therefore, the proposed method can be 
applied to the infrared imaging system to improve performance. 
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