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Abstract: High-resolution spatiotemporal wind speed mapping is useful for atmospheric
environmental monitoring, air quality evaluation and wind power siting. Although modern reanalysis
techniques can obtain reliable interpolated surfaces of meteorology at a high temporal resolution,
their spatial resolutions are coarse. Local variability of wind speed is difficult to capture due to its
volatility. Here, a two-stage approach was developed for robust spatiotemporal estimations of wind
speed at a high resolution. The proposed approach consists of geographically weighted ensemble
machine learning (Stage 1) and downscaling based on meteorological reanalysis data (Stage 2).
The geographically weighted machine learning method is based on three base learners, which are
an autoencoder-based deep residual network, XGBoost and random forest, and it incorporates
spatial autocorrelation and heterogeneity to boost the ensemble predictions. With reanalysis data,
downscaling was introduced in Stage 2 to reduce bias and spatial abrupt (non-natural) variation
in the predictions inferred from Stage 1. The autoencoder-based residual network was used in
Stage 2 to adjust the difference between the averages of the fine-resolution predicted values and
the coarse-resolution reanalysis data to ensure consistency. Using mainland China as a case study,
the geographically weighted regression (GWR) ensemble predictions were shown to perform better
than individual learners’ predictions (with an approximately 12–16% improvement in R2 and a
decrease of 0.14–0.19 m/s in root mean square error). Downscaling further improved the predictions
by reducing inconsistency and obtaining better spatial variation (smoothing). The proposed approach
can also be applied for the high-resolution spatiotemporal estimation of other meteorological
parameters or surface variables involving remote sensing images (i.e. reliable coarsely resolved data),
ground monitoring data and other relevant factors.

Keywords: geographically weighted regression; ensemble learning; autoencoder-based deep residual
network; downscaling; XGBoost; random forest; wind speed

1. Introduction

High-resolution spatiotemporal mapping of surface variables can present specific variation at fine
spatial and temporal scales, which provides good knowledge of the spatiotemporal distribution of
these variables. For wind speed, this technique is particularly useful for atmospheric environmental
monitoring [1–3], air quality evaluation [4–7], wind power siting [8], and so on. Recently, meteorological
reanalysis [9–11] has been employed in numeric weather prediction models with historic weather
observations from multiple sources, including satellites and surface stations, to generate images
with more reliable estimates at high temporal resolutions, which are a relatively new source of
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meteorological data. At a high temporal resolution (e.g., 3 h), the reanalysis data are still at a coarse
spatial resolution [e.g., 0.25◦ (latitude) × 0.3125◦ (longitude)], and thus cannot provide local variations
at a fine spatial scale for wind speed, which is affected by prevailing pressure, air temperature and
local site characteristics with a volatile nature. Additionally, such finely resolved variability of wind
speed also might not be captured well (low accuracy) by traditional approaches, including multiple
linear regression [12], nonlinear regression [13] and spatial interpolation [14,15] (e.g., inverse distance
weighting or kriging) due to the sparse spatial distribution of wind speed monitoring stations, and the
limited generalization of these methods compared to advanced machine learning methods, such as
XGBoost and deep learning.

Currently, in addition to classic climate models [16], advanced machine learning techniques, such
as support vector machines [17], neural networks [18,19], hybrid and ensemble machine learning [20],
and deep learning [21] are increasingly employed for time series forecasting of meteorological factors.
For wind speed with high volatility and randomness, machine learning can achieve good performance,
as demonstrated in many applications [8]. However, most of these approaches are based on individual
learners or ensemble learning methods based on limited or weak individual learners, and the output’s
spatial resolution is very limited. For high-resolution spatiotemporal wind speed mapping, few studies
have reported the use of advanced machine learning with reliable performance. Individual learners,
which were mostly used in previous approaches, may deeply learn the irregularities in the training
samples due to the influence of sampling bias, which often leads to overfitting for new datasets.
Ensemble machine learning provides a solution that can mitigate this potential issue, given that
the ensemble averages of multiple models with acceptable accuracy can effectively reduce bias and
variance [22,23]. However, ensemble learning by averaging does not consider geospatial heterogeneity
that, if significant, may bias the final predictions.

Reanalysis data are widely used in a variety of domains, including weather and climate forecasting,
due to their reliability, which is based on their hybrid origins. Practitioners frequently refer to reanalysis
data as benchmark “observations” [24]. Due to their coarse resolution, they are seldom directly used
in high-resolution meteorological mapping. With downscaling [25], reanalysis data can be used
as the original coarse-resolution background information for finely resolved mapping. For the
downscaling of continua, area-to-point prediction (ATPP) techniques, such as area-to-point kriging [26],
Poisson kriging [27], and cokriging [28], are widely used as interpolations. However, kriging-based
ATPP methods need to reliably fit variogram, which may not be suitable for the simulation of volatile
wind speeds. Given practical applications, an autoencoder-based deep residual network can be
employed to capture the quantitative relationship between coarse- and fine-resolution wind speeds.
With a large and flexible network architecture, an autoencoder-based deep residual network has robust
generalization in practical applications [29]. Downscaling with reanalysis data can reduce the bias and
obtain better spatial variation (smoothing) in predictions and improve integrity.

In this study, for high-resolution spatiotemporal wind speed mapping, a two-stage approach
of geographically weighted ensemble machine learning and downscaling with reanalysis data was
developed. The former is based on three base learners: an autoencoder-based residual net, XGBoost
and random forest. The learners were selected due to the considerable differences in their model
structures and their good performance in practical applications. Compared with traditional learners,
such as the nonlinear generalized additive model (GAM) and feed-forward neural networks, the three
learners may have higher learning efficiency and better performance. Although the support vector
machine can obtain a globally optimal solution, its scalability is constrained by a big sample size,
and choosing appropriate hyperparameters and kernel functions is time-consuming and requires expert
knowledge. The fuzzy neural system is based on fuzzy and artificial neural networks, and its main
drawback is slow convergence for regression [30,31]. As a spatial modeling method, kriging involves
variogram simulation which is considerably limited by the sparse distribution of monitoring stations
and wind speed volatility. Comparatively, the three base learners used in Stage 1 are easy to train,
achieve acceptable performance and require fewer manual feature engineering operations.
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Theoretically, models that have no correlations or weak correlations can better improve their
ensemble predictions, and strong learners can prevent ensemble predictions below their individual
performance levels. To ensure high-resolution spatiotemporal mapping of meteorological factors
with reasonable spatial variation at a fine local scale, the proposed approach used relevant covariates,
including coordinates, time indices, elevations and reanalysis data (e.g., wind speed and planetary
boundary layer height (PBLH)) from multiple sources. Coarse spatial resolution meteorological
reanalysis data were used as a priori knowledge to capture spatiotemporal variations in the target
variables at a regional scale [10] and were used in both individual learners and downscaling in the
proposed approach. Resampling was also used to adjust and align the images at different origins and
spatial resolutions.

In the proposed approach, geographically weighted regression (GWR) was conducted over the
three learners’ predictions to detect the spatial variability of their performances. GWR can take full
advantage of the abilities of the three modern regression models by considering spatial heterogeneity for
robust prediction. A case study of mainland China was conducted for wind speeds that are hard to map
at a high resolution due to their implicit volatility. In the wind speed case study, the approach proposed
in this paper was demonstrated to be applicable for the high-resolution spatiotemporal mapping of
meteorological parameters and other surface variables that involve remote sensing (including reliable
coarse-resolution data), ground monitoring data and other factors.

2. Study Region and Materials

2.1. Study Region

The study region (Figure 1) is mainland China with geographical coverage of 73◦27′ to 135◦06′ east
longitude and 18◦11′ to 53◦33′ north latitude and an area of 9,457,770 square kilometers. In mainland
China, the climate varies from region to region due to its massive geographical coverage and diversity
of landforms and elevations. In the northeast, it is hot and dry in the summer and freezing cold in
the winter. In the southwest, there is plenty of rainfall in the semitropical summers and cool winters.
The major influential factors include the geographic latitude, solar radiation, distribution of land
and sea, ocean currents, topology and atmospheric circulation. Thus, it is challenging to map the
high-resolution spatiotemporal surfaces of meteorological factors such as wind speed for such a large
region with considerable heterogeneity between regions.
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2.2. Measurement Data

The ground monitoring station measurement data originated from the daily ground observation
datasets of individual years for mainland China from the China Meteorological Data Service Center
(http://data.cma.cn). The dataset was collected based on 824 national base meteorological monitoring
stations. The 2015 daily wind speed data (unit: meter/second, abbreviated as m/s) measured at a height
of 10–12 m above the ground were collected. Quality assurance was conducted to remove noisy samples.
The final number of monitoring stations was 770. The target variable to be predicted was wind speed.
The output mapping surfaces were at a spatial resolution of 1 km (projected coordinate system: Beijing
1954 with Krassowsky 1940, European Petroleum Survey Group (EPSG): 4214; https://epsg.io/4214)
and a temporal resolution of 1 day. Figure 1 also shows the spatial distribution of the wind speed
monitoring stations.

2.3. Covariates

According to influential factors and data accessibility, the following covariates were selected.
(1) Coordinates
Latitude and longitude were used to capture differences in locations and the related geographical

environment for meteorological factors. The quadratic transformations of the coordinates and their
products (to reflect the interaction of latitude and longitude) were derived to reflect the diversity and
complexity of the landforms. While many machine learning algorithms, such as neural networks,
XGBoost and random forest, cannot directly model spatial autocorrelation, the coordinates are used as
proxies in these algorithms to partially account for spatial autocorrelation.

(2) Elevation
The diversity of elevation is also partially responsible for the considerable differences in the

meteorology in mainland China. This study used elevation data with a 500m spatial resolution from
the Shuttle Radar Topology Mission (SRTM; https://www2.jpl.nasa.gov/srtm/). SRTM was published in
2003 and covers more than 80% of the Earth’s land surface.

(3) Reanalysis data
As mentioned, meteorological reanalysis data were used to provide reliable coarse spatial resolution

estimates. The reanalysis data were from the newest Goddard Earth Observing System-Forward
Processing (GEOS-FP) dataset, which is based on the data assimilation system (DAS). GEOS-FP covers
all of mainland China at a spatial resolution of 0.25◦ (latitude) × 0.3125◦ (longitude) and a temporal
resolution of 3 h (ftp://rain.ucis.dal.ca/ctm/GEOS_0.25x0.3125_CH.d/GEOS_FP). The corresponding
coarse-resolution data of wind speed was used. Furthermore, the PBLH was also extracted, since it is
an important factor for the surface wind gradient and is closely related to wind speed [32,33].

Since the reanalysis data were at a coarse resolution, projection transformation and resampling were
conducted to align the data in terms of origin and resolution for use as the inputs to individual learners.

(4) Day of the year
The day of the year was used to capture the temporal variation in the wind speed to be estimated.
(5) Regional separation
Given the diverse differential geographical, atmospheric and land-use settings across mainland

China, a map (Figure 1) of the six regions of mainland China (northeast, north central, northwest,
southwest, south center, and southeast) from the Resources and Environmental Data Cloud Platform
(http://www.resdc.cn/) was employed to identify the regional qualitative factors in the models and
account for the spatial heterogeneity of mainland China at the regional level.

3. Methods

The systematic framework was based on two stages (Figure 2): (1) training and (2) inference and
downscaling. In Stage 1, for the initial high-resolution prediction, three machine learning models,
which were an autoencoder-based deep residual network, XGBoost and random forest, were trained,

http://data.cma.cn
https://epsg.io/4214
https://www2.jpl.nasa.gov/srtm/
ftp://rain.ucis.dal.ca/ctm/GEOS_0.25x0.3125_CH.d/GEOS_FP
http://www.resdc.cn/
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and GWR was used to fuse the outcomes from the three learners for ensemble predictions (Figure 3).
In Stage 2, for high-resolution mapping of the new dataset, a deep residual network was iteratively
used in downscaling to match the wind speed at a coarse resolution and the average wind speed at
a fine resolution, which were initially inferred from Stage 1 to reduce the bias and obtain better spatial
variation (smoothing) of the predictions.
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3.1. Stage 1: Geographically Weighted Learning

Stage 1 aims to train three representative base models to improve the ensemble estimates using
GWR, which presents reliable fine-resolution spatiotemporal contrasts or variability.
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3.1.1. Base Learners

In ensemble learning, models with no correlations or weak correlations can theoretically generate
better ensemble predictions with less error [23]. Assume m models with errors εi (i = 1, . . . , m, denoting
the model indices) drawn from a zero-mean multivariate normal distribution with variances ε2

i = v
and covariances E

[
εiε j

]
= c. Then, the error made by their average prediction is 1

m
∑
i
εi. The expected

squared error of the ensemble prediction is:

E


 1

m

∑
i

εi

2 = 1
m2 E

∑
i

ε2
i +

∑
j,i

εiε j


 = v

m
+

(m− 1)c
m

(1)

where c represents the covariance between the errors of different models. If c is equal to 0, which indicates
no correlation between the errors of the models, then the expected squared error of the ensemble
averages is 1

m of the error variances, ν. However, if c is equal to ν, indicating a perfect correlation
between the models’ errors, the expected squared error is equal to the error variances, ν, suggesting no
change for the ensemble prediction errors. Therefore, the selection of models that have no correlations
or weak correlations is crucial for improving ensemble predictions.

Furthermore, if a base model is robust, indicating small errors, the expected squared error
of the ensemble predictions can be reduced to a value that may be lower than ν according to (1).
Thus, three typical models (an autoencoder-based deep residual network [29], XGBoost [34] and
random forest [35]) were selected. The deep residual network has a completely different structure
from the other two models (XGBoost and random forests), which are based on a decision tree.
However, the optimization approaches of XGBoost and random forest are different, with the former
using gradient boost and the latter using bootstrap aggregating (bagging). Thus, the three models
are quite different and robust in practical applications [29,34,36,37]. Other learners, such as AdaBoost
or Gaussian process regression, can also be considered. To simplify application and illustrate a
geographically weighted machine learning method, these three typical learners were used as the robust
base learners in the geographically weighted modeling, as their ensemble predictions have sufficiently
competitive performance for this paper’s case study.

(1) Autoencoder-based deep residual network
In this approach, the autoencoder provides the basic infrastructure for the network so that residual

mapping can be implemented by an identity connection from the shallow layers in the encoding
component to the deep layers in the decoding component [29]. Residual (shortcut) connections in
neural networks have been demonstrated to address vanishing/exploding gradients [38] and accuracy
degradation in CNNs [39,40]. Based on similar ideas, residual connections were added into the
autoencoder-based deep network to improve learning accuracy and efficiency, as demonstrated in
practical applications [29]. The Keras-based packages of this approach for Python (https://pypi.org/

project/resautonet) and R (https://cran.r-project.org/web/packages/resautonet) have been published,
and examples can be retrieved online (https://github.com/lspatial/resautonet).

Figure 4 shows the network topology for the prediction of wind speed. This network has 9 input
nodes to represent 9 covariates (latitude, longitude, squares of latitude and longitude, products of
latitude and longitude, elevation, GEOS-FP wind speed, GEOS-FP PBLH, and the day of the year).
For the internal autoencoder, the network structure of the encoding component consists of 4 hidden
layers (the number of nodes for each layer in sequence: [256, 128, 64, 32]), the middle coding layer has
16 nodes; correspondingly, the decoding component consists of 4 hidden layers and the number of
nodes of each layer is the inverse of that of the encoding component. The residual connection is added
from shallow to deep layers. The final output is the target variable (high-resolution wind speed, m/s)
to be predicted. The following loss function was used for optimization:

L
(
θw,b

)
=

1
N
`o

(
y, fθw,b(x)

)
+ Ω

(
θw,b

)
(2)

https://pypi.org/project/resautonet
https://pypi.org/project/resautonet
https://cran.r-project.org/web/packages/resautonet
https://github.com/lspatial/resautonet
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where y is the target variable (wind speed), x denotes the input covariates, fθw,b is the mapping

function with parameters of W and b, and Ω
(
θw,b

)
represents the elastic net regularizer [41] that

linearly combines the L1 and L2 penalties. Throughout this paper, the autoencoder-based deep residual
network was also referred to as a (deep) residual network.
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(2) XGBoost
XGBoost is a scalable end-to-end tree boosting learning system that is widely used to achieve

state-of-the-art results in many domains [34]. XGBoost uses a sparsity-aware algorithm and a
cache-aware block structure for efficient tree learning.

Assume n examples and d features, D =
{
(xi, yi)

}
, |D| = d. Additive functions are used to make

the final predictions [34]:

ŷi = ∅(xi) =
K∑

k=1

fk(xi) (3)

where K is the number of functions corresponding to each tree (K trees in total), f (x) = wq(x) represents
the space of the regression trees (CART), and q represents the structure of each tree that maps an
instance to a leaf.
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Based on gradient tree boosting, XGBoost was trained in an additive manner. Assume the
regularized loss function of step k is

L(k) =
n∑

i=1

l
(
yi, ŷ(k−1)

i + fk(xi)
)
+ Ω( fk)) (4)

where l is a differentiable differential loss function and Ω is the regularizer. To derive the optimal
addition, fk(xi), the second-order approximation of the Taylor series can be employed to optimize the
objective more efficiently than the first-order approximation:

L(k) �
n∑

i=1

[
l
(
yi, ŷ(t−1)

i

)
+ gi fk(xi) +

1
2

hi f 2
k (xi)

]
+ Ω( fk) (5)

where gi = ∂
ŷ(k−1)

i
l
(
yi, ŷ(k−1)

i

)
and hi = ∂2

ŷ(k−1)
i

l
(
yi, ŷ(k−1)

i

)
are the first- and second-order gradient

derivatives of the loss function in terms of the last prediction (ŷ(k−1)
i ).

Then, the optimal weights w can be obtained for a fixed tree structure, q. A greedy heuristic
algorithm or approximate algorithms can be used to construct optimal trees according to the split
score, that is, the loss reduction after the split, based on the optimal weights and loss. For details,
please refer to [34]. There is an open-source library of XGBoost to support the R and Python interfaces
(https://xgboost.readthedocs.io).

(3) Random forest
Random forest [42] is an improved version of bootstrap aggregating (bagging) with a decision

tree as its base model. Bagging starts with sampling (with replacement) n (the sample size) training
samples from the original samples; then, the trees are trained with a bootstrapped subsample. The final
predictions are made by averaging the predictions from the individual regression trees, as follows:

f̂ (x) =
1
K

∑K

k=1
fk(x) (6)

where K is the number of trees, x represents the d-dimensional input and fk(x) is the output of the kth
tree for x.

This bootstrapping procedure can achieve good performance because it can decrease the variance
of the model without increasing the bias, which means that, while the predictions of a single
tree are highly sensitive to noise in the training set, the average of many trees is not as long as
the trees are not correlated. In random forest, in addition to the data examples, sampling with
replacement is also implemented for the set of input features to decrease the correlation between
the models. The Python’s scikit-learn machine learning library provides support for random forest
(https://scikit-learn.org/stable/modules/ensemble.html).

3.1.2. Geographically Weighted Learning

For the three robust base models (the autoencoder-based deep residual network, XGBoost
and random forest) and their averages, spatial autocorrelation cannot be directly embedded within
the models and their predictions. Thus, GWR was proposed to obtain the optimal configuration
(weights) of the three robust models and their spatial variations considering spatial autocorrelation
and heterogeneity for a robust fused prediction (Figure 3).

GWR is a local regression method with a moving window or spatial kernel to constrain the domain
of the samples for regression [43]. In GWR, spatial dependence is considered according to Tobler’s first
law of geography (i.e., “everything is related to everything else, but near things are more related than
distant things”) [44]. Assume that there is a sample of features, x (three features for this paper’s case

https://xgboost.readthedocs.io
https://scikit-learn.org/stable/modules/ensemble.html
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study: the predictions of the three base learners) within the local domain, D, and that GWR considers
location-specific regression coefficients:

yi = β0(ui, vi) +
3∑

k=1

βk(ui, vi)xik + εi(ui, vi) ∈ D, i = 1, 2, . . . , n (7)

where (ui,vi) are the coordinates of the ith sample, βk(ui,vi) is the regression coefficient for the kth base
prediction, and εi is random noise (εi~N(0,1)).

With the weighted least square method, the following solution can be obtained:

β̂(ui, vi) =
(
XTW(ui, vi)X

)−1
XTW(ui, vi)y (8)

where X is the input matrix of all examples, W is the spatial weight matrix of examples of the
target location, (ui,vi), and y is the output vector. GWR is provided in the R spgwr package
(https://cran.r-project.org/web/packages/spgwr/index.html).

For this study, the Gaussian kernel was used to quantify the spatial weight matrix, W:

wi j = exp
(
−

(
di j/b

)2
)

(9)

where b is the bandwidth indicating the sampling domain and dij is the distance between locations i
and j.

GWR can output the predictions and their variance by fusing the predictions from the three
learners (the autoencoder-based deep residual network, XGBoost and random forest). Furthermore,
by using spatially varying coefficients for each learner in GWR, each learner’s contribution to the
integrated prediction and its spatial heterogeneity can also be presented.

For each of the three individual learners, all sample data from 2015 were used to train an integral
model. Considering the implicit character of local regression for GWR and the considerable difference
between different days for wind speed, daily GWR was conducted over daily predictions of individual
learners to obtain the corresponding predictions.

3.2. Stage 2: Downscaling with A Deep Residual Network

For new datasets, Stage 2 aims to use reanalysis data or other reliable data at coarse resolution to
adjust the output initially inferred from Stage 1, making the averages of the output at fine resolution
and the value at the corresponding coarse resolution consistent (Figure 2). Reliable coarse-resolution
data were used as a priori knowledge so that the ensemble predictions from Stage 1 were reasonable and
conformed with the presumed trend at the background (coarse-resolution) scale. Downscaling began
with the ensemble predictions from Stage 1 that captured spatiotemporal contrast or variability well at
a finely local scale. Then, a deep residual network was iteratively used in downscaling to match the
output at fine resolution and the values at coarse resolution until the threshold for their difference
was attained. Except for the coarse-resolution target variable, the set of all other covariates of the new
dataset were used to make predictions at fine resolution in downscaling. Assume the target variable
value at a coarse-resolution grid cell, Gi, i = 1, . . . , C (C is the number of coarsely resolved grid cells),
and at a fine-resolution grid cell, gi, i = 1, . . . , F (F is the number of finely resolved grid cells). Due to its
good ability to capture nonlinear associations between the covariates and the target variable [29] and
spatial continuity, an autoencoder-based deep residual network was used to model the relationship
between the aforementioned covariates and gi at fine resolution with the following regularizer:

1
|Fl|

∑
i∈Fl

gi = Gl, l = 1, 2, . . . , C (10)

https://cran.r-project.org/web/packages/spgwr/index.html
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where Fl represents the set of finely resolved grid cells that overlay the lth coarsely resolved grid cell.
This regularizer in equation (10) indicates that the average of the finely resolved grid cells within each
coarsely resolved grid cell is equal to the grid value of the latter. Given the reliability of the coarsely
resolved dataset (reanalysis data), this regularizer is reasonable as the constraint.

For implementation, the predicted values were adjusted for each finely resolved cell using the
following formula to ensure equality in (10) and a deep residual network was used to update the
regression in each iteration:

ĝ(t)i = ĝ(t−1)
i ·

Gl
1
|Fl|

∑
j∈Fl

ĝ(t−1)
j

(11)

where Gl is assumed to be overlaid with gi, t represents the iteration time, and ĝ(t)i denotes the adjusted
values for iteration t.

Iteration proceeded until the average over the absolute difference in the finely resolved grid cells

between two continuous iterations, that is, 1
F
∑∣∣∣∣ĝ(t)i − ĝ(t−1)

i

∣∣∣∣, was equal to or below a stopping criterion value
or the maximum number of iterations was attained. The complete algorithm is given in Figure 5. Additionally,
an R package of this downscaling algorithm was published (https://github.com/lspatial/autoresnetR).
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AutoResNetDownscaling(FP0, Covs, CV, SCV, maxIter) 

Input:  

  FP0: Finely resolved ensemble predictions by geographically weighted learning; 

  Covs: Set of covariates to quantify the relationship between fine- and coarse-resolution samples; 

  CV: Set of coarsely resolved grids (reanalysis data);   

  SCV: Stopping criterion value;  

  maxIter: maximum number of iterations;  

  RMSE: root mean square error; 

Begin  

  t=0 

  FP=FP0 

  Iteration:  

     Compute R2, RMSE and correlation between fine-  

                 and coarse-resolution grid cells (FP and CV);  

     Adjusted the finely resolved predictions, 𝑔𝑖(𝑡) in FP in using equation (11);  

     Train residual deep network, N to regress 𝑔𝑖(𝑡)
 over the set of covariates, Covs;  

     Update FP using N;  

     Compute 1𝐹 ∑ 𝑔𝑖(𝑡) − 𝑔𝑖(𝑡−1)
; 

  If Cr>SCV and t<maxIter, continue; otherwise terminate this iteration.  

     t=t+1.  

  Return the updated FP, R2, RMSE, correlation and Cr.  

Figure 5. Downscaling algorithm by autoencoder-based deep residual network.

https://github.com/lspatial/autoresnetR
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3.3. Optimization of Hyperparameters and Validation

To obtain robust wind speed predictions, empirical knowledge and a machine learning grid search
were used to find the optimal hyperparameter values. For the autoencoder-based residual network,
initial networks were constructed according to previous empirical knowledge and then refined using
sensitivity analysis. A cross validation grid search for mini-batch size, network depth, output type and
activation functions were conducted to find optimal solutions of these hyperparameters. For XGBoost,
the grid consisted of maximum booting iterations (100, 200, 300, 400), maximum tree depths (6 to 12),
learning rates (0.05, 0.5, 1), and so on, for an optimal search. For GWR, the grid consisted of different
bandwidths (100 km, 200 km, 300 km, 400 km, 500 km) for the search.

For an independent test of Stage 1, 30% of the complete samples were sampled (stratified by region
(Figure 1) and month) to validate each of the three individual models. This stratification sampling
ensured even distribution of the samples across space and time to mitigate the overestimation of spatial
results. Given the need for more samples for local regression, leave-one-site-out cross-validation
(LOOCV) was conducted to validate GWR. Training (for all the models), independent test, and LOOCV
(for GWR) coefficient of determination (R-squared, i.e. R2), adjusted R2, root mean square error (RMSE),
and mean absolute error (MAE) were reported and compared in the results. For Stage 2, similar metrics
(independent test R2 and RMSE) were reported for the autoencoder-based deep residual network to
map the covariates to the finely resolved grids and for the coarse-resolution grid cells and the averages
of the fine-resolution grid cells overlaid in downscaling.

For comparison with nonlinear GAM and the feed-forward neural network, the same samples
used to train the base models in Stage 1 were used for training. Training and test R2, RMSE and
MAE were also reported for both. To ensure fairness in comparison, except for residual connections,
this feed-forward neural network had the same hidden layers and the same number (100, 959) of
parameters as deep residual network. To diagnose potential spatial correlation in the residuals of
ensemble predictions by GWR, Moran’s I was calculated for each day’s residuals [45]; variogram was
also fitted for each day’s residuals, and consequently was used in universal kriging to estimate the
corresponding day’s residuals. LOOCV R2 and RMSE were evaluated for original and estimated
residuals of each day.

4. Results

4.1. Data Summary and Preprocessing

In total, 255,209 measurement samples with their covariates were collected from 770 wind speed
monitoring stations across mainland China (see Figure 1 for the study region and spatial distribution
of these monitoring stations). For 2015, the average daily wind speed was 2.1 m/s. Table 1 shows the
statistics for the measurement samples and their partial covariates. A priori knowledge and the outer
fences technique [46] were also used to filter out several invalid measurement samples.

Table 1. Statistics for the measurements and the covariates for the sample data of wind speed.

Item WSa WSIb O3Ic PBLHd TEMIe ELEf

Unit m/s m/s DU m ◦C m

Mean 2.1 2.8 318.6 683.4 12.9 790.2
Median 1.8 2.4 311.9 612.3 13.3 400.0

IQR 1.4 1.9 52.3 531.0 16.6 1045.5
Range 0.0, 23.2 0.3, 19.2 219.4, 484.4 55.7, 3865.8 −18.1, 38.4 1.8, 4800.0

Note: WSa: wind speed; WSIb: wind speed of reanalysis data; O3Ic: ozone concentrations of reanalysis data; PBLHd:
planetary boundary layer height of reanalysis data; TEMIe: surface temperature of reanalysis data; ELEf: elevation
of the Shuttle Radar Topology Mission (SRTM).
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The result (Supplementary Materials Figure S1) showed less skewness for log-transformed wind
speed measurements than original measurements (2.45 vs. −0.56). Thus, for GWR, the wind speed
measurements were log-transformed in the training samples.

4.2. Training of the Models in Stage 1

In Stage 1, each of the three individual models was trained, and then, their predictions were
geographically weighted to obtain the ensemble predictions. Table 2 presents the performances of
the three base models, GAM and the feed-forward neural network in training and independent tests.
In total, 76,563 independent test samples were obtained. The autoencoder-based deep network had a
training R2 of 0.68 (training RMSE: 0.76 m/s) (RMSE represents the error), which was lower than the
training R2 (0.76) of XGBoost (RMSE: 0.60 m/s) and slightly lower than the training R2 (0.69) of random
forest (RMSE: 0.76 m/s). However, the three models had similar independent test R2 and RMSE values
with very slight differences (test R2: 0.66 for residual network, 0.67 for XGBoost and 0.63 for random
forest; test RMSE: 0.72 m/s for residual network, 0.71 m/s for XGBoost and 0.77 m/s for random forest).
The result shows much higher test R2 (0.63–0.67 vs. 0.42–0.58), and lower test RMSE (0.71–0.77 m/s
vs. 0.82–0.96 m/s) and MAE (0.51–0.53 vs. 0.57–0.67) for the deep residual network, XGBoost and
random forest than GAM and the feed-forward neural network. Figure 6 shows faster convergence
with lower loss and higher validation R2 for deep residual network than for feed-forward neural
network. The results also show a lower difference in R2 and RMSE between the training and testing
for autoencoder-based deep residual networks, indicating less overfitting in generalization. Figure 7
shows the plots of the predicted values/residuals against the observed values for the three individual
wind speed models. In terms of their generalizations in independent tests, the three individual models
had similar performance with very slight differences.

Table 2. Performances of individual models.

Base
Model

Training Independent Test

R2 Adjusted R2 RMSEa MAEb R2 Adjusted R2 RMSE MAE

ARNc 0.68 0.68 0.76 0.49 0.66 0.66 0.72 0.51
XGBoost 0.76 0.76 0.60 0.46 0.67 0.67 0.71 0.51

RFd 0.69 0.69 0.76 0.49 0.63 0.63 0.77 0.53

GAMe 0.43 0.43 0.95 0.67 0.42 0.42 0.96 0.67
FFNNf 0.58 0.58 0.83 0.57 0.58 0.58 0.82 0.57

Note: RMSEa: root mean square error; RAEb: mean absolute error; ARNc: autoencoder-based deep residual network;
RFd: random forest; GAMe: generalized additive model; FFNNf: feed-forward neural network.
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Figure 7. Plots of observed values (a,c,e) and residuals (b,d,f) vs. predicted values of wind
speed for autoencoder-based residual network (a,b), XGBoost (c,d) and random forest (e,f) for the
independent tests.

In the ensemble machine learning by GWR, the ensemble predictions had a test R2 of 0.79 with
a test RMSE of 0.58 m/s (training R2: 0.81; training RMSE of 0.56 m/s) (see Supplementary Materials
Figure S2 for boxplots of their observed and predicted values). The their observed values plotted
against predicted values and residuals in the test are shown in Figure 8. The results show that the test
R2 improved by 12-16% over individual models and that the test RMSE decreased by 0.14-0.19 m/s.
The results show a considerable contribution of GWR to the ensemble predictions by accounting for
spatial autocorrelation and heterogeneity. In the GWR test, Moran’s I was obtained for the residuals of
each day of 2015. The results showed no spatial autocorrelation (with p-value ≥ 0.05 indicating that null
hypothesis of complete spatial randomness cannot be refused) or low Moran’s I (mean: 0.06; range:
0.001–0.15), indicating very weak spatial correlation. Additionally, the variogram of exponential models
was selected through sensitivity analysis and fitted. The results of four typical days (spring: 1 April
2015; summer: 1 July 2015; autumn: 1 October 2015; winter: 20 December 2015) are presented in
Supplementary Materials Table S1 for optimal parameters of the variogram models, and LOOCV
R2 and RMSE between original residuals and estimated residuals by universal kriging, as well as
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Supplementary Materials Figures S3 and S4 for the plots of variogram and scatter points between
original and estimated residuals, respectively. Very small LOOCV R2 (negative values) and almost
random patterns of the scatter plots showed little contribution of variogram based universal kriging to
estimation of the residuals.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 26 

 

 
Figure 8. Observed vs. predicted values (a) and residual (b) plots of wind speed in the test. 

4.3. Predictions and Downscaling in Stage 2 

With the models trained in Stage 1, the daily wind speed was predicted (spatial resolution: 1 
km) for 2015 in mainland China. Figure 9 shows the prediction grids of a typical day (1 January 
2015) in winter for the three individual learners and GWR (a for the autoencoder-based deep 
network, b for XGBoost, c for random forest and d for ensemble predictions by GWR). For the 
purpose of comparison, this paper also shows the prediction grids of a typical day (1 July 2015) in 
summer in Supplementary Materials Figure S5. For ensemble predictions, spatially varying 
coefficients for the intercept and the coefficients for the predictors were obtained as the GWR output 
for 1 January 2015 (Supplementary Materials Figure S6). The results show positive effects for 
XGBoost in northwestern and southern China and for random forest in central and eastern China 
and negative effects for the deep residual network in midwestern and northeastern China, for 
XGBoost in central and northeastern China, and for random forest in northwestern China. The 
variance grids of the ensemble predictions for 1 January 2015 by GWR were also obtained 
(Supplementary Materials Figure S7) as an indicator of the uncertainty. The results showed higher 
variance at several locations in western and northeastern China than that in other regions. 

As shown in b and c of Figure 9 and Supplementary Materials Figure S5, even with a similar 
test performance, the prediction grids using XGBoost and random forest are fine overall but show 
some spatial abrupt (non-natural) variation on a local scale, possibly due to the discretization of the 
features in the decision/regression trees used as base models in XGBoost and random forest. 
Comparatively, the prediction grids produced by the autoencoder-based deep residual network 
appear naturally spatially smooth. Furthermore, the ensemble predictions from the three learners 
generated by GWR reduced the spatial abrupt variation, as shown in d of the two figures. 
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4.3. Predictions and Downscaling in Stage 2

With the models trained in Stage 1, the daily wind speed was predicted (spatial resolution: 1 km)
for 2015 in mainland China. Figure 9 shows the prediction grids of a typical day (1 January 2015)
in winter for the three individual learners and GWR (a for the autoencoder-based deep network,
b for XGBoost, c for random forest and d for ensemble predictions by GWR). For the purpose of
comparison, this paper also shows the prediction grids of a typical day (1 July 2015) in summer in
Supplementary Materials Figure S5. For ensemble predictions, spatially varying coefficients for the
intercept and the coefficients for the predictors were obtained as the GWR output for 1 January 2015
(Supplementary Materials Figure S6). The results show positive effects for XGBoost in northwestern
and southern China and for random forest in central and eastern China and negative effects for the
deep residual network in midwestern and northeastern China, for XGBoost in central and northeastern
China, and for random forest in northwestern China. The variance grids of the ensemble predictions
for 1 January 2015 by GWR were also obtained (Supplementary Materials Figure S7) as an indicator of
the uncertainty. The results showed higher variance at several locations in western and northeastern
China than that in other regions.

As shown in b and c of Figure 9 and Supplementary Materials Figure S5, even with a similar
test performance, the prediction grids using XGBoost and random forest are fine overall but show
some spatial abrupt (non-natural) variation on a local scale, possibly due to the discretization of
the features in the decision/regression trees used as base models in XGBoost and random forest.
Comparatively, the prediction grids produced by the autoencoder-based deep residual network appear
naturally spatially smooth. Furthermore, the ensemble predictions from the three learners generated
by GWR reduced the spatial abrupt variation, as shown in d of the two figures.
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In Stage 2 downscaling, the deep residual network regressed the 2015 daily finely resolved grid
cells over the covariates, with the regularizer of their averages equal to the coarsely resolved grid cell
(Figure 10): test R2: mean of 0.89 with a range from 0.83 to 0.93; test RMSE: mean of 0.54 m/s with
a range from 0.36 m/s to 0.83 m/s. The coarsely resolved grid cells and the corresponding averages
of the predicted finely resolved grid cells both matched statistically for 2015 (Figure 11): Pearson
correlation: mean of 0.95 with a range from 0.92 to 0.97; R2: mean of 0.91 with a range from 0.85 to 0.93;
RMSE: mean of 0.51 m/s with a range from 0.33 m/s to 0.78 m/s. The plots (Supplementary Materials
Figure S8) of the average finely resolved wind speed within each coarsely resolved grid cell and their
residuals against the coarsely resolved wind speed (reanalysis data) for 1 January 2015 and 1 July 2015
show a close match between both with few outliers. The final finely and original coarsely resolved
images for the two dates are shown in Figure 12.
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Figure 11. Boxplots of correlation (a), R2 (b) and RMSE (c) between the averages of finely resolved grid
cells (predicted) and the corresponding coarsely resolved grid cells (reanalysis data).

Time series of daily finely resolved grids of wind speed for 2015 were made across mainland
China. Figure 13 shows four typical days of 2015, as aforementioned. Overall, high wind speeds were
more evenly distributed across mainland China in spring and summer than in autumn and winter.
On average, spring, summer and autumn had higher wind speeds than winter. In winter, the locations
in and close to the Tibet region of western China had higher wind speeds than those in other regions.
The low wind speed aggravated air pollution in the Beijing-Tianjin-Hebei region [47].
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5. Discussion

This paper proposes a two-stage approach for the robust estimation of wind speed, which is
known to be challenging due to complex influential factors and wind speed volatility. In the proposed
approach, Stage 1 aims to improve reliable estimates of the target variable to capture contrast or
spatiotemporal variability at a fine resolution using geographically weighted machine learning,
and Stage 2 aims to adjust the finely resolved prediction grids initially inferred from Stage 1 to make
them consistent with the coarsely resolved reanalysis data. Stage 2 reduced overfitting and improved
spatial variation (smoothing). Therefore, the proposed approach can obtain reliable high-resolution
wind speed estimations.

High-resolution mapping of meteorological parameters is challenging due to the limited number
of available covariates (e.g., just nine covariates in the case of this paper), as multiple factors affect
spatiotemporal variability and they present complex interactions. Although meteorological reanalysis
employs comprehensive data from a variety of sources, including ground-based stations, ships,
airplanes, satellites, and forecasts from numerical weather prediction models, to estimate meteorological
parameters in the state of the system as accurately as possible [24], their spatial resolution is very
coarse, thus constraining their applicability at local levels. Considering this challenge, in Stage 1,
a geographically weighted machine learning method was adopted based on three representative
state-of-the-art learners: an autoencoder-based deep residual network, XGBoost and random forest.
In comparison with GAM and the feed-forward neural network, the test showed that the three base
learners achieved much better generalization and efficient learning. Compared with support vector
machine (SVM) and the fuzzy neural system, which presented very slow convergence in the test using
the wind speed samples, the three learners were convenient to use, with high generalization and fewer
feature engineering operations.

Although these learners achieved good performance with spatial autocorrelation partially captured
by the coordinates and their derivatives, spatial autocorrelation was not embedded directly within the
models, and thus their residuals might present spatial autocorrelation. Furthermore, for large regions
such as mainland China, there is considerable diversity and many differences exist between regions.
Therefore, geographically weighted machine learning was leveraged to integrate the predictions made
by the three types of learners. As a local regression technique, GWR was used to account for spatial
autocorrelation and heterogeneity [48–50], compensating for the shortcomings of modern machine
learners to improve ensemble predictions. In the test of the 2005 wind speed for mainland China,
individual learners achieved an R2 of 0.63–0.67 (RMSE: 0.72–0.77 m/s) in independent tests, and GWR
further improved the R2 to 0.79 (RMSE: 0.58 m/s) in LOOCV. The results showed that GWR effectively
improved the predictions of individual learners by spatially varying fusion. The results of very small
Moran’s I in the residuals of ensemble predictions and little contribution of variogram-based universal
kriging to estimation of the residuals illustrated that most of the spatial autocorrelation was accounted
for by the proposed approach.

Due to the discretization of the quantitative covariates used in the decision (regression) trees,
massive grid predictions by the decision tree-based methods [51] (XGBoost and random forest)
might present spatial abrupt (non-natural) variation at the local spatial scale, as shown in Figure 9.
Comparatively, the autoencoder-based deep residual network did not involve discretization of
covariates whose fully continuous quantitative information was kept in the models and thus
could generate prediction grids with spatially smoother surfaces than XGBoost and random forest.
Then, the ensemble predictions from the three base models were fused using GWR, which mitigated
the spatial abrupt variation. Therefore, using three individual robust learners and GWR, the ensemble
estimates can effectively capture the contrast or variability of the target variable at a fine spatial scale
with improved R2 and lower RMSE.

To further reduce the potential bias and improve spatial variation (smoothing) of predicted values
(caused by decision tree-based algorithms), coarsely resolved reanalysis data, if reliable, can be used as
the regularizer to adjust the ensemble estimates to make them consistent with the coarse-resolution
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grids at the background scale. To achieve reliable generalization with complete removal of spatial
abrupt (non-natural) variation, an autoencoder-based deep residual network was used to regress
the adjusted or regularized ensemble outputs over the selected covariates. Therefore, the specific
contrast or variability at fine resolution captured in Stage 1 could be kept in downscaling with the
reliable coarsely resolved reanalysis data to obtain reasonable grids. The example of wind speed
illustrated effective simulation in downscaling to reduce bias and improve spatial variation (smoothing).
The downscaled time series of the finely resolved grids presented reasonable seasonal patterns of wind
speed across mainland China.

For downscaling, compared with kriging-based ATPP interpolation [25], autoencoder-based deep
residual network provides a flexible network architecture with a large parameter space. Although spatial
autocorrelation, such as kriging, was not directly embedded in the network, GWR was used to capture
spatial autocorrelation and heterogeneity in Stage 1 at a local fine scale. Furthermore, coordinates and
their interaction derivatives were used as covariates within the model to represent spatial variation in
Stage 2 downscaling. In contrast to the kriging method, the downscaling of the deep residual network
did not require variogram simulation, which might introduce uncertainty for the volatile wind speed.
Sensitivity analysis showed that the universal kriging accounted for only 14% of the variance explained
for wind speed (but 72% for relative humidity), compared to 66% by the autoencoder-based deep
residual network in the independent test. This illustrated the inapplicability of kriging interpolation
for capturing the variability of mutable wind speed, and showed that the proposed approach can better
predict wind speed.

For application to other meteorological or surface variables and other regions, this proposed
approach is divided into two stages (Figure 2). Stage 1 aims to train three base learners (deep residual
network, XGBoost and random forest) and GWR using X and y from the training samples. Stage 2
involves inference (prediction) and downscaling using the new and reanalysis datasets to obtain reliable
high-resolution grid predictions. The new dataset first supplied X to the trained base learners and
GWR in Stage 1 to get the initial finely resolved predictions, ŷ. Then, the coarse-resolution reanalysis
data were used to adjust ŷ or ŷ′ (inferred by the downscaling model in each iteration). Then, X and
adjusted ŷ or ŷ′ were used to train or retrain the downscaling model. This process was repeated until
the preselected stopping criterion value (SCV) was attained, as shown in Figure 5.

This study has the following limitations. First, although downscaling was introduced in Stage
2 with coarsely resolved reanalysis data to adjust the ensemble predictions, the reanalysis data
were assumed to be reliable so that the adjusted surfaces in downscaling could also be reliable.
Otherwise, downscaling may distort the adjusted outcomes and evenly introduce bias into the
results. Second, the proposed approach did not embed the mechanism knowledge for generating
wind speed within the models, but instead used only a limited number of available covariates
to capture spatiotemporal variability in Stage 1. However, the coarse-resolution reanalysis data
were also used as the covariates within the model that represent hybrid results based on climate
models, numeric predictions, satellite data and monitoring data. In particular, downscaling with the
coarse-resolution reanalysis data was introduced to regularize the ensemble results. Third, the wind
speed data used to train the models were primarily measured at a height of 10–12 m above the ground
and thus the trained models predicted wind speed at a similar height. This may limit the application
of the results for recovery of the wind potential for energy purposes, which involves estimating the
wind speed at heights between 50–100 m above the ground. However, this paper focused on machine
learning methods for high spatiotemporal mapping of wind speed rather than practical applications of
wind potential recovery. Regarding the latter, new measurement data of wind speed may be gathered
to retrain the models for an appropriate evaluation of wind potential.

6. Conclusions

In this study, a two-stage approach was developed to make robust high-resolution wind speed
predictions across a large region, such as mainland China. In the proposed approach, Stage 1
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obtained geographically weighted ensemble predictions based on three different types of robust
learners, which were an autoencoder-based deep residual network, XGBoost and random forest, to
capture spatiotemporal contrast or variability at fine resolutions with improved performance. Stage 2
introduced downscaling using the coarsely resolved reanalysis data as a regularizer to make the
coarsely resolved grids and the averages of the overlaid finely resolved grids consistent. In the
case study of wind speed prediction for mainland China, the proposed approach achieved a CV
R2 of 0.79 (RMSE: 0.58 m/s) in GWR ensemble predictions and a mean R2 of 0.91 for the 2015 daily
match of coarsely and finely resolved grids in downscaling. This approach provides reliable and
robust predictions for wind speed and can be applied for high-resolution spatiotemporal estimation
of other meteorological parameters and surface variables that involve multiple influential factors at
different scales.
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ensemble predictions by GWR for wind speed; Figure S8: Plots of averages of matched finely resolved wind speed
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and b) and 1 July 2015 (c and d).
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