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Abstract: Satellite precipitation estimates (SPE) provide useful input for hydrological modeling.
However, hydrological modeling is frequently hindered by large bias and errors in SPE, inducing the
necessity for bias corrections. Traditional distribution mapping bias correction of daily precipitation
commonly uses Bernoulli and gamma distributions to separately model the probability and intensities
of precipitation and is insufficient towards extremes. This study developed an improved distribution
mapping bias correction method, which established a censored shifted mixture distribution (CSMD)
as a transfer function when mapping raw precipitation to the reference data. CSMD coupled the
censored shifted statistical distribution to jointly model both the precipitation occurrence probability
and intensity with a mixture of gamma and generalized Pareto distributions to enhance extreme-value
modeling. The CSMD approach was applied to correct the up-to-date SPE of Integrated Multi-satelliE
Retrievals for Global Precipitation Measurement (GPM) with near-real-time “Early” run (IMERG-E)
over the Yangtze River basin. To verify the hydrological response of bias-corrected IMERG-E, the
streamflow of the Wujiang River basin was simulated using Ge´nie Rural with 6 parameters (GR6J) and
Coupled Routing Excess Storage (CREST) models. The results showed that the bias correction using
both BerGam (traditional bias correction combining Bernoulli with gamma distributions) and the
improved CSMD could reduce the systematic errors of IMERG-E. Furthermore, CSMD outperformed
BerGam in correcting overall precipitation (with the median of mean absolute errors of 2.46 mm
versus 2.81 mm for CSMD and BerGam respectively, and the median of modified Nash–Sutcliffe
efficiency of 0.39 versus 0.29) and especially in extreme values for uniform format and particular
attention paid to extremes. In addition, the hydrological effect that CSMD correction exerted on
IMERG-E, driving GR6J and CREST rainfall-runoff modeling, outperformed that of the BerGam
correction. This study provides a promising integrated distribution mapping framework to correct
the biased daily SPE, contributing to more reliable hydrological forecasts by informing accurate
precipitation forcing.

Keywords: bias correction; quantile mapping; GPM IMERG; precipitation input; flood forecast

1. Introduction

Accurate precipitation measurements and estimates are crucial to weather forecasting, hydrological
modeling, water resources allocation, and related disaster controlling [1,2]. Over the last two decades,
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satellite precipitation estimates (SPE) have become potential alternatives to obtain high-resolution
precipitation [3,4], as the densities of ground-based rain gauges are far below the standard of the World
Meteorological Organization (WMO) recommendation, especially for mountainous areas featured with
irregular precipitation (25 km2 per gauge) [5]. Nevertheless, bias and errors, being generally larger than
those of the rainfall gauge observations, are inherent in SPE products despite its fine spatial-temporal
information [6–9]. Even the estimates of new-generation Global Precipitation Measurement (GPM)
mission, i.e., the Integrated Multi-satelliE Retrievals for GPM (IMERG), which is anticipated to provide
most accurate precipitation estimates currently, suffer from large bias [10,11]. Currently, the associated
hydrological application is considerably restricted by the biased SPE input. Thus, understanding how
to correct the biased SPE with limited gauge observations to support robust hydrological modeling is
pressing and challenging.

Taking IMERG as an example, the deviation of SPE from gauge observations, owing to indirect
measurement, is related to the satellite sensor systematic errors, retrieval algorithm errors, and
post-processing errors towards specific regions [12,13]. The deviation includes random errors and
systematic bias. The former is inherent in measurement records, while the latter can be removed or
reduced by correction techniques (e.g., statistical methods). Regarding the systematic bias correction of
IMERG, the near-real-time “Early” run (IMERG-E hereafter), it is important to real-time flood forecast
but is lacking in merging ground observation and has a larger bias compared to the post-real-time
“Final” run (IMERG-F hereafter) [14,15]. Despite ground data limitation of near-real-time estimates,
for example IMERG-E, there exist two aspects of technical difficulties in bias correction of all SPE: how
to consider the probability of precipitation occurrence for data at daily, or even finer temporal scales,
and, how to improve the correction accuracy of extremely high values [16,17]. For the first aspect,
there are more or less zero values in daily or sub-daily precipitation records, which are different from
other meteorological variables such as temperature and wind speed. This means that the precipitation
occurrence probability is a random value less than 1 and should be modeled properly. For the
second, the biased extremely high values are more difficult to correct due to their very low occurrence,
compared to the moderate precipitation intensities. This difficulty of modeling or predicting extremes
is a potential barrier to the flood forecast in hydrological modeling. Therefore, a skillful bias correction
method is expected to collectively account for both of the above-mentioned problems.

Theoretically, the statistical bias correction method applied to SPE currently relies on the transfer
function to define the mapping from SPE to the corresponding observation precipitation [9,18,19].
Among various transfer functions, the distribution mapping is frequently reported by previous studies,
with satisfying performance relative to others [20–22]. Traditionally, most distribution mapping
correction is implemented on a monthly scale when correcting the daily precipitation series. Recently,
a sliding-window-based dynamic transfer function was proposed to make the daily scale correction
more precise [23]. Conceptually, the distribution mapping method aims to map the cumulative
distribution function (CDF) of raw SPE to the CDF of observations.

Specifically for the purpose of constructing an appropriate transfer function of distribution
mapping bias correction towards daily precipitation, the Binomial distribution is often explored to
consider the discrete event of precipitation occurrence or nonoccurrence, while the skewed distribution
(gamma distribution is commonly used) is used to fit the continuous non-zero precipitation [24,25].
However, a mixture including the Bernoulli and gamma distributions to account for the mixed
discrete/continuous nature of precipitation assumed by current studies is not a “true” mixture in
the sense of uniform format but an addictive combination of two separate steps. At the same time,
the corrected precipitation extremes relying on gamma distribution mapping or its analogies are
insufficient to be captured.

Recently, the censored shifted distribution has been proposed to uniformly and jointly model
precipitation occurrence/nonoccurrence and intensity using a left-shifted continuous distribution
instead of the multiple steps in mixed Bernoulli and gamma distributions (BerGam) [26–28].
The censoring and shifting change translates the fraction of the probability density function (PDF) which
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falls below zero into a positive probability of exactly zero. As pointed out by Schleiss et al. [29] and
Baxevani and Lennartsson [30], by using the same variable for precipitation occurrence/nonoccurrence
and intensity, censored shifted distribution avoids a marginal effect, where unrealistically large
intensities can appear due to average rain-rate independent from the occurrence process in the
separated modeling of BerGam. On the other hand, the mixture distribution is introduced into the bias
correction of precipitation since the gamma distribution is not powerful enough to model the extreme
values, which are particularly important in practice [30–32]. Frigessi et al. [33] and McInerney et al. [34]
reported that although the low and moderate precipitation intensities are generally well modeled,
the extremely high values located in the tail of the gamma distribution are usually difficult to capture
due to the highly light tails. Therefore, the tail distribution associated with extreme values should be
paid particular attention to. An extreme value distribution of generalized Pareto is applied to extreme
values of high precipitation intensity [35,36]. To integrate the two problems, a censored shifted mixture
distribution mapping (gamma and generalized Pareto distributions mixed here) method (CSMD) was
established in this study, in which the improvement was concentrated on two aspects of uniform
format and improved capture capability of extremely high values, as mentioned above.

The novelty of this study is that the SPE were bias-corrected using a CSMD method, in which not
only both the precipitation occurrence probability and precipitation intensity were jointly modeled, but
also the extreme precipitation was particularly considered. The CSMD was validated by bias-correcting
the IMERG-E over the Yangtze River basin of China. The specific objectives of the present study
were to investigate: (1) how well the improved bias correction approach of CSMD performed relative
to the traditional BerGam method, (2) what the difference is in the CSMD approach among three
time windows, including correction based on a whole period window, correction based on a monthly
window, and dynamic correction based on a sliding window, and (3) how the hydrological model
responded to the bias-corrected IMERG-E using CSMD. This paper is organized as follows: in Section 2,
the study area and data used are presented. In Section 3, the detailed mathematical description of
traditional BerGam and the improved CSMD correction was derived. The results and discussion are
presented in Section 4, and finally, the conclusions are presented in Section 5.

2. Study Area and Data Description

2.1. Yangtze River Basin

The largest river basin in China, the Yangtze River basin, was selected, which covers a drainage
area of 1.8 million km2 that accounts for about one-fifth of China’s territory and is located within
90◦32′-121◦56′E and 24◦28′-35◦46′N of South China [37]. The Yangtze River basin is complex in
topographic conditions, characterized by a three-stair ladder shape (Figure 1). The elevation, broadly
decreasing from west to east, varies from −142 m to 7143 m along the river network from source to
mouth. The basin is composed of the Tibet Plateau with an average elevation of over 3000 m, the central
mountainous region with an average of 1000 m, and the eastern lower plain with an average of about
100 m.

The Yangtze River basin is affected by the Asian monsoon climate, including the Indian summer
monsoon dominating the upper river region and the East Asian summer monsoon dominating the
mid–lower river region [38,39]. Precipitation patterns across the basin are highly heterogeneous, both
in space and in time, due to the various geographical conditions and climatology features. The mean
annual precipitation in the basin ranges from 270–500 mm in the western region and 1600–1900 mm
in the southeastern region, with approximately half of the annual total concentrated in the summer
season [40]. The spatio-temporal variations of precipitation are closely related to the summer monsoon
activity that transports large amounts of humid and warm air from the ocean to the land [41]. In addition,
climate change exerts extended influence on the precipitation extreme events, frequently resulting in
drought and flooding disasters. However, in the monitoring of precipitation-based ground techniques
it is very difficult to cover the whole area because of the geophysical barriers and economic cost.
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The Yangtze River basin was selected as the study area for diverse precipitation spatial-temporal
patterns due to the variety of topography and climate types included, which has a potential influence
on the hydro-meteorological processes.Remote Sens. 2019, 11, 1345 4 of 25 
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Figure 1. Geographical location of the Yangtze River basin. The upstream sub-basin, the Wujiang
catchment, was used to model the hydrological effect of bias-corrected satellite precipitation estimates.

To examine the hydrological response of bias-corrected satellite precipitation, one sub-catchment
located in the upper Yangtze River basin, the Wujiang River catchment, was simulated using a
hydrological model for streamflow. The Wujiang River catchment, with a drainage area of 80,561 km2,
is affected by a typical subtropical monsoon climate. The daily streamflow of Wulong station, where
the catchment outlet of Wujiang is located, was collected from Hydrologic Year Books published by
the Hydrologic Bureau of the Ministry of Water Resources of China. Limited by the availability of
both satellite precipitation and streamflow observation data, the daily rainfall-runoff modeling in GR6J
and CREST hydrological models was restricted to the period of 1 April 2014 to 31 December 2017.
The modeling period began from 1 April 2014, since GPM IMERG products were only available from
March 2014, while the modeling period ended on 31 December 2017, since the streamflow observations
were provided until the end of 2017.

2.2. Integrated Multi-Satellite Retrievals for GPM (IMERG) Product

IMERG provides the multi-satellite precipitation products from March 2014 using measurements of
the precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation
and geosynchronous-Earth-orbit (geo) infrared (IR) estimates. The GPM Level-3 product, IMERG,
is currently available at the NASA website [12]. IMERG data are provided at a 0.1◦ × 0.1◦ spatial
scale between 60◦S–60◦N and at several time scales including half-hourly, 3-hourly, daily, and so on.
The IMERG system releases two near-real-time products: IMERG-E, “Later” run of IMERG-L, and a
post-processed product IMERG-F. The near-real-time IMERG-E and IMERG-L products are different
from the post-real-time IMERG-F in release time and whether ground-source data are contained [14,42].
IMERG-E and IMERG-L are released 4 h and 12 h after the nominal observation time respectively, while
there is about a 2-month delay for the IMERG-F. Near-real-time IMERG-E and IMERG-L products
include estimates adjusted by climatological (fixed) precipitation, while the post-real-time IMERG-F
was calibrated with dynamically-computed (monthly) ground precipitation analyses, provided by the
Global Precipitation Climatology Centre (GPCC) [43].
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In this study, the daily near-real-time IMERG-E data and post-real-time IMERG-F during
1 April 2014 to 31 March 2018 were obtained, and about 16,000 grid cells (0.1◦ × 0.1◦) of the product
over the studied area were extracted. IMERG-F, adjusted by the ground GPCC gauge data, theoretically
was more accurate than IMERG-E. Nevertheless, IMERG-E is valuable for fields of potential flood
or landslide warnings where the quick response of real-time data is needed, although large bias and
uncertainty are inherent in IMERG-E. Furthermore, the IMERG-E used in this study was preliminarily
calibrated by climatological precipitation data when deriving the half-hour product. It should be noted
that although the IMERG-E used in this study merged with ground climatological precipitation, this
climatological gauge data was different from the observed local gauge data provided by the National
Meteorological Information Center of China Meteorological Administration (NMIC-CMA, as discussed
in 2.3). Therefore, the IMERG-E used in this study is independent of the reference data of the observed
local gauge data, and can also be reasonably bias-corrected using the observed local gauge data.

2.3. Gridded Ground Precipitation Data

The gridded daily gauge-based precipitation analysis (GDPA) product, developed by NMIC-CMA,
across the Yangtze River basin during the same period of IMERG-E was employed in this study and
used for adjusting the SPE in bias correction and for the reference dataset. The gridded dataset was
generated at a 0.5◦ × 0.5◦ spatial resolution using climatological optimal interpolation based on more
than 2000 national rain gauges [44,45]. Before the interpolation was implemented, the gauge data
underwent a thorough quality check, including an extreme value check and internal consistency,
while after the interpolation, orographic errors contained in the GDPA were corrected to maintain
spatial consistency [46]. In addition, systematical validation of GDPA revealed that this daily product
remained in good agreement with the observations over different regions of China and bias between
the values of 0.5◦ grid cells and the individual gauge observations were lower than 3.21% [47].
The spatial distributions of the daily averaged ground precipitation, GDPA, before and after correction
are presented in Figure 2a,b for comparison. In addition, the locations of the rainfall gauges used in
the optimal interpolation of GDPA are displayed in Figure 2c. The change of correction mainly focused
on the boundary of the western area in the Yangtze River basin. GDPA was frequently used as the
benchmark for satellite precipitation evaluation in both statistical and hydrologic assessments, due to
its high quality [48,49]. There were about 650 grid boxes at 0.5◦ × 0.5◦, with at least one rain gauge per
grid box over the entire basin.
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Figure 2. Spatial distribution of averaged gridded daily precipitation analysis (GDPA) (a) before check,
(b) after check with correction, and (c) of gauge intensities used in the optimal interpolation.

The improved bias correction method is implemented based on the 0.5◦ × 0.5◦ resolution of
GDPA, while the IMERG-E and IMERG-F were simply aggregated into the same resolution using a
simple algorithm considering weighted-average distance in advance. Specifically, the area of a GDPA
grid is equivalent to 25 grids of IMERG-E or IMERG-F with a 0.1◦ × 0.1◦ spatial resolution. Given a
GDPA grid therefore, the nearest 5 × 5 grid network, consisting of one central grid, 8 grids around the
central grid, and 16 grids around these 8 grids, can be found out. To aggregate SPE in the 25 grids,
different grids were set to different weight coefficients with 1/6 for the central grid, 1/24 for the 8 grids
around the center, and 1/32 for the 16 peripheral grids. IMERG-E is a raw SPE used to bias-correct
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via the improved and traditional bias correction approaches of distribution mapping, while IMERG-F
was used as a comparator of bias-corrected IMERG-E, and GDPA was used to correct IMERG-E in
constructing the transfer function as observed precipitation and to quantify evaluation metrics of SPE
(raw and corrected) as reference data.

3. Methods

The method used in this study begins with the description of traditional BerGam and improved
CSMD distribution mapping for bias correction of daily SPE, followed by three different time-window
techniques used to pool precipitation samples for one CSMD implementation, then hydrological
modeling of the GR6J and CREST models, and finally the evaluation indices for bias-corrected
precipitation and resulting streamflow simulation. A four-step flowchart of the bias correction process,
presented in Figure 3, was concentrated on estimating the parameters of mixed distribution in the
second step and the mapping of SPE in the third step. The improvement of the developed method,
which is incorporated in the deviating transfer function in Step 2 and 3 of Figure 3, focuses on the
coupling of censored shifted statistical distribution and a mixture of gamma and generalized Pareto
distributions to jointly model the probability of precipitation, precipitation intensity, and particularly
the extremes. For the purpose of sampling precipitation data used to estimate the parameter set
in BerGam or CSMD, the implementation of each bias correction is based on three time-windows,
including the whole period window, monthly period window, and sliding window (see Step 1 in
Figure 3).
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3.1. Bias Correction of SPE Based on Distribution Mapping

It is assumed that the bias of SPE to be corrected in this study is constrained to the systematic
bias resulting from, for instance, inaccurate measurement of the satellite sensor and noisy retrieval
of the inversion algorithm. As the mainstream of bias correction, distribution mapping is frequently
explored. The implementation of distribution mapping-based bias correction depends on the transfer
function, a mapping or a statistical relationship from the biased SPE to observations. Whether the
transfer function is skillful determines the efficiency of the bias correction. Therefore, the focus of the
bias correction is to develop an available and powerful transfer function.

The statistical transformation in distribution mapping attempts to find a function that matches the
IMERG-E precipitation variable Xspe, such that its new distribution approximates the distribution of
the observed ground precipitation variable Xobs (see the schematic diagram of Figure 4a). The transfer
function that controls how to obtain the corrected SPE can be formulated as:

x̃cor = F−1
obs(Fspe(xspe)) (1)

where, xspe is the raw IMERG-E data, x̃cor is the corrected SPE processed by bias correction of distribution
mapping, Fspe is the CDF of the raw IMERG-E, and F−1

obs is the inverse CDF of the observation precipitation.
In performing distribution mapping, each daily SPE value is ‘mapped’ into the corresponding quantile
in the observation CDF.

Theoretically, both empirical and parametric CDF can be used to derive the transfer function.
However, for empirical CDF, Equation (1) is only available for mapping values located in the historical
range of the existing Xspe. Some extreme values out of the historical range cannot be derived under the
context of empirical CDF. Therefore, to allow for extrapolation of the transfer function to unobserved
precipitation intensities that might occur, a parametric distribution mapping approach instead of
empirical CDF was chosen to solve the Equation (1) in this study.
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3.1.1. Bernoulli-Gamma (BerGam) Distribution of Traditional Bias Correction

Traditionally, many studies modeling daily precipitation assume the parametric distribution F is a
mixture including the Bernoulli (binomial) distribution to account for the mixed discrete/continuous
nature of precipitation. While the Bernoulli distribution models the probability of precipitation
occurrence giving a positive probability of precipitation being exactly zero, the gamma distribution is
commonly used to depict precipitation intensity of being non-zero over a continuous value range [24,25].
In this way, a precipitation process can be separated into two steps using a total of three parameters.
First, the probability of precipitation occurrence is modeled via a Bernoulli trial with the “success”
parameter, p. Second, the continuous intensity of non-zero precipitation is modeled via a two-parameter
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gamma distribution with shape parameter k and scale parameter θ. The PDF of this BerGam mixture
is defined as:

f (x) =
{

1− p, x < threshold
p× fgamma(x), x >= threshold

(2)

where, the threshold (0.1 mm/d for this study) is used to classify zero and non-zero precipitation or dry
and rainy days, and fgamma(x) denotes the PDF of the gamma distribution, given by:

fgamma(x) =

 xk−1 1
θkΓ(k)

e−
x
θ , x > 0

0, otherwise
(3)

The corresponding CDF is defined as:

F(x) =
{

1− p, x < threshold
p× Fgamma(x), x >= threshold

(4)

where, Fgamma(x) is the CDF of the gamma distribution, given by:

Fgamma(x) =

 1
Γ(k)γ(k, x

θ ), x > 0

0, otherwise
(5)

In Equation (5), the mixture distribution of BerGam is determined by evaluating the three parameters
p, k, and θ, and γ() is the lower incomplete gamma function.

3.1.2. Censored Shifted Mixture Distribution of Improved Bias Correction

A more adequate and uniform mixed parametric distribution model, the censored shifted
mixture distribution of gamma and generalized Pareto, i.e., CSMD, is proposed in this study.
The improvement of CSMD is concentrated on two aspects of uniform format and the improved capture
capability of extremely high values. Initially, CSMD allows simultaneously for model precipitation
occurrence/nonoccurrence and intensity using a left-shifted continuous distribution instead of the
multiple steps used in the BerGam mixture. Since the left-shifted gamma distribution permits negative
values, the probability of precipitation can be represented by left-censoring the left-shifted gamma
distribution at zero and replacing all negative values with zero. Specifically, an additional parameter
δ is introduced to realize the censored and shifted distribution (Figure 4b). Following the work of
Scheuerer and Hamill [26], the censored shifted CDF can be expressed as:

F̃(x) =
{

F(x + δ), x ≥ 0
0, x < 0

(6)

Denote by δ the distance of the shift of the distribution and let δ > 0 such that it ensures left shift.
The CSMD allocates F(δ) to the origin mass and can be generalized with PDF as:

f̃ (x) = I{x=0}F(δ) + I{x>0}[1− F(δ)] × f (x + δ) (7)

where IA denotes the indicator function of the set A.
Secondly, CSMD via introducing a typical extreme value distribution of generalized Pareto

distribution avoids the deterioration of extreme values, as corrected using BerGam distribution
mapping. Although the low and moderate precipitation intensities can be generally well-modeled,
the extremely high values located in the tail of the gamma distribution are usually difficult to capture
due to the highly light tails [31,50]. Therefore, the tail distribution associated with extreme values
should be paid particular attention to. An extreme value distribution of generalized Pareto was applied
to extreme values of high-precipitation intensity. Therefore, in the present study, the generalized Pareto
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is mixed with the previous gamma distribution to represent both the heavy and the low and moderate
precipitation cases [33,51]. Subsequently, the censored shifted mixture of a gamma distribution for
frequent precipitation intensities and a generalized Pareto distribution, particularly for the infrequent
precipitation extremes, was developed. Thus, for f̃ (x) in Equation (7), the shifted PDF expression of
mixture distribution can be written as:

f̃ (x + δ) =

{
(1− λ) × fgamma(x + δ) + λ× fgp(x + δ), x > 0
0, otherwise

(8)

where, λ is a weighting parameter assigned to fgp(x), and fgp(x) is the PDF of the generalized Pareto
distribution with shape parameter ξ and scale parameter σ. fgp(x) can be defined as:

fgp(x) =
1
σ
[1 +

ξx
σ
]
(− 1

ξ−1)
(9)

In summary, the CSMD approach developed above consists of a total of six parameters (two for
gamma distribution, two for generalized Pareto distribution, one weighting coefficient, and one shift
parameter) that need to be evaluated. The simulated annealing algorithm, capable of searching for
the global optimal value, was applied to evaluate the parameter sets in CSMD for each of the three
different time-window schemes (see detailed information in Albert et al. [52]).

3.2. Selection of the Time Window for Screening Precipitation Data

Three different time-windows, used to select the precipitation data pool in derivation of mixture
distribution parameters of transfer functions BerGam and CSMD, were detected in this study, including
the whole period window of the study time span, monthly period window, and sliding window.
Considering the length of the data collected in the study and according to the recommendation of
Smitha et al. [23], a 31-day sliding window technique was applied to pool precipitation data centered
on each of the 365 days over the study period for the estimation of the parameter set in each of the
BerGam and CSMD distributions. The sliding window technique facilitated the transfer function
dynamic and downscaled the correcting factor from monthly to daily scale in correction of the raw
IMERG-E. In contrast to the dynamic sliding window, the time windows screening in the whole or
monthly periods are based on yearly and monthly correcting factors, respectively. Obviously, the
sliding window is more flexible due to the evaluation of the time-varying parameters of BerGam and
CSMD distribution mapping.

3.3. Streamflow Simulation Driven by Different Precipitation Inputs

To verify the hydrological effect of the bias-corrected SPE on the rainfall-runoff process, the lumped
hydrological model GR6J (stands for mode‘le du Ge´nie Rural a‘ 6 parame‘tres Journalier) [53,54] and
distributed Coupled Routing and Excess STorage (CREST) [55] were used in this study. GR6J is one of
the conceptual rainfall-runoff models based on six free parameters (see Table 1). It was chosen because
of the simple calibration and better performance than other model structures, including the previous
versions of GR4J and GR5J models across various river-flow regimes [53].

In the model structure of GR5J, the water balance consists of a soil moisture accounting reservoir
and a conceptual water exchange function (Fwe), denoted by:

Fwe = X2 × (
R
X3
−X5) (10)

where, X2 is the “groundwater” exchange coefficient, R and X3 represent the water level and the
capacity of the routing store respectively, and X5 is a threshold parameter which accounts for the
change in groundwater exchange within a year depending on R. Le Moine [56] introduced X5 into
GR5J to improve the skill of the previous GR4J in interactions between surface and groundwater with
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regards to the low-flow simulation. Following this work, the sixth parameter X6, the coefficient for
emptying exponential store, was added into GR5J to better consider these exchanges. The modified
GR5J was called GR6J, which is used in this study. The performance of streamflow and peak-flood
simulated via GR6J driven by different precipitation inputs, including the raw and corrected IMERG-E
and ground reference precipitation, was analyzed.

Table 1. Parameter information used in the lumped GR6J and distributed CREST models.

Name Description Range Unit

GR6J

X1 Production store capacity 100–1400 mm
X2 Intercatchment exchange coefficient −4–4 mm/d
X3 Routing store capacity 0–500 mm
X4 Unit hydrograph time constant 0–10 d
X5 Intercatchment exchange threshold −4–4 –
X6 Coefficient for emptying exponential store 0–20 mm

CREST

Ksat Soil saturate hydraulic conductivity 10–3000 mm/d
WM Mean water capacity 80–200 mm

B Exponent of the variable infiltration curve 0.05–1.5 –
IM Impervious area ratio 0–0.2 –

KE Factor to convert the potential
evapotranspiration (ET) to local actual ET 0.1–1.5 –

coeM Overland runoff velocity coefficient 1.0–150 –
expM Overland flow speed exponent 0.1–2.0 –

coeR Multiplier used to convert overland flow
speed to channel flow speed 1.0–3.0 –

coeS Multiplier used to convert overland flow
speed to interflow speed 0.001–1.0 –

KS Overland reservoir discharge parameter 0–1.0 –
KI Interflow reservoir discharge parameter 0–1.0 –

As a grid-based distributed model, CREST calculates components of runoff generation using a
variable infiltration capacity curve (VIC), which was proposed in Xinanjiang Model [57] and later
incorprated in a VIC model [58]. The runoff generation components were represented by three
connected linear reservoirs. Coupling runoff generation with routing components via feedback
mechanisms facilitates a flexiable scalability in the space of the rainfall-runoff modeling, expecially
in simulations at fine spatial resoluton, which is the typical characteristic of CREST [59]. SPE with
high spatio-temporal resolution provides direct precipitation input for finely distributed modeling.
The upgraded version 2.1 of CREST was introduced in this study to verify the hydrological effect of
bias-corrected IMERG-E data in the distributed modeling case.

3.4. Evaluation Indices

In order to assess the performance of the proposed CSMD method in correcting SPE IMERG-E
data, four statistical metrics were examined to quantify the difference between the corrected IMERG-E
and the reference GDPA. These statistical metrics include mean absolute error (MAE), modified index
of agreement (MD), modified Nash–Sutcliffe efficiency (mNSE) and Kling-Gupta efficiency (KGE).
MAE is used to represent the mean residual bias between the corrected IMERG-E and the GDPA. MD
and mNSE are indexes quantifying the scaled agreement of the corrected IMERG-E relative to the
GDPA. KGE is a comprehensive measurement combining Pearson correlation and bias of both standard
deviation and mean. Also, the performance of uncorrected raw IMERG-E with respect to these three
metrics is presented for comparison. The mathematical expressions of the MAE, MD, mNSE, and KGE
are listed in Table 2.

Further, in assessing the performance of the GR6J model in transforming precipitation into
streamflow, the commonly used Nash–Sutcliffe efficiency (NSE) and relative deviation (RD) of the
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simulated to the observed streamflow were introduced. Please see Table 2 for the expression of these
two metrics. It should be noted that the perfect matches of MAE and RD are 0, while the perfect
matches of the other metrics are 1.

Table 2. Metrics used to evaluate the performance of corrected precipitation series against the reference
data GDPA.

Statistical Metric Perfect Match Equation

Precipitation

Mean absolute error
(MAE) a 0 MAE =

∑n
i=1 |Xsim,i−Xobs,i |

n

Modified index of
agreement (MD) b 1

MD

= 1−
∑n

i=1 |Xsim,i−Xobs,i |
j∑n

i=1 (|Xsim,i−Xobs |+|Xobs,i−Xobs |)
j

Modified Nash–Sutcliffe
efficiency (mNSE) 1 mNSE == 1−

∑n
i=1 |Xsim,i−Xobs,i |

j∑n
i=1 (|Xobs,i−Xobs |)

j

Kling-Gupta efficiency
(KGE) c 1

KGE = 1− ED
ED

=
√
[sr × (r− 1)]2+[ sα × (α− 1)]2 + [sβ × (β− 1)]2

α = σs
σo

, β = µs
µo

Correlation Coefficient
(CC) 1 CC =

[
∑n

i=1 (Xsim,i−Xsim)(Xobs,i−Xobs)]
2∑n

i=1 (Xsim,i−Xsim)
2∑n

i=1 (Xobs,i−Xobs)
2

Streamflow

Nash–Sutcliffe efficiency
(NSE) d 1 NSE = 1−

∑n
i=1 (Ysim,i−Yobs,i)

2∑n
i=1 (Yobs,i−Yobs,i)

2

Correlation Coefficient
(r) 1 r = [

∑n
i=1 (Ysim,i−Ysim)(Yobs,i−Yobs)]

2∑n
i=1 (Ysim,i−Ysim)

2∑n
i=1 (Yobs,i−Yobs)

2

Relative deviation (RD) 0 RD = 1
n

n∑
i=1

Ysim,i−Yobs,i
Yobs,i

a: Xsim,i is the ith raw/corrected IMERG-E, Xobs,i is the ith reference GDPA, n is the length of the series, b: j is set to
1 in MD and the following mNSE, c: ED is the Euclidian distance from the ideal point in the scaled space, sr, sα,
and sβ are used for adjusting the emphasis on different components, r is the Pearson product–moment correlation
coefficient, and µ and σ denote the mean and standard deviation respectively, d: Ysim,i and Yobs,i represent the
simulated and observed streamflow, respectively. A bar over X or Y denotes the average value.

4. Results and Discussion

Initially in this section, the spatial and temporal variation of the raw satellite precipitation
IMERG-E and IMERG-F over the Yangtze River basin was compared with ground analysis GDPA.
Secondly, the performance of bias correction using CSMD and BerGam approaches exerting on the
raw IMERG-E data was assessed using statistical metrics. Finally, the evaluation of the hydrological
response of rainfall-runoff modeling to the corrected IMERG-E forcing was carried out via the GR6J
and CREST models.

4.1. Assessment of the Raw IMERG-E and IMERG-F Against GDPA Data

The spatial distribution of the daily-averaged IMERG-E and IMERG-F against GDPA analysis over
the Yangtze River basin during 1 April 2014–31 March 2018 is displayed in the Figure 5. The distribution
pattern of IMERG-E and IMERG-F was broadly similar to that of GDPA, in which daily precipitation
gradually increased along the northwest to the southeast direction. Whereas the IMERG-E and
IMERG-F obviously underestimated the low precipitation values mainly in the west part of the
Yangtze River basin, they overestimated the high values mainly in the east part. The areal-averaged
daily mean and daily median precipitation of IMERG-E and IMERG-F during the four years from
1 April 2014–31 March 2018 were both relatively lower to GDPA (with daily mean values of 2.44 mm/d
and 2.81 mm/d versus 2.95 mm/d for IMERG-E and IMERG-F against GDPA respectively, and daily
median values of 0 mm/d and 0 mm/d versus 0.3 mm/d), while the daily standard deviation of IMERG-E
and IMERG-F were both higher than that of GDPA (8.21 mm/d and 8.53 mm/d versus 7.21 mm/d),
indicating a higher temporal variability.
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resampled GDPA, and (f) Diff. between IMERG-E and resampled GDPA. 
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IMERG-F (with range of –2.33–2.1 mm). The median and standard deviation of the daily averaged 
difference in IMERG-E and GDPA among all grids in the basin were –0.19 mm and 0.63 mm 
respectively, contrasted to those for IMERG-F with values of 0.25 mm and 0.52 mm. Smaller range 
and standard deviation associated with fluctuation of the difference in IMERG-F indicated higher 
precision of IMERG-F, due to merging with monthly GPCC gauge data, than that of IMERG-E. 
Previous studies on SPE evaluation over the Yangtze River basin demonstrated that IMERG-E 
performed better than (or comparably with) the other widely used SPE. The differences between 
GPM IMERG-F and GPM IMERG-E against ground data in this study were comparable with those 
between TMPA 3B42V7 and TMPA 3B42RT against ground data and significantly lower than those 
between CMORPH product and ground data in Li et al. [60] and Shen et al. [46]. Li et al. [61] reported 
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data over the Yangtze River basin, when compared with CMORPH and PERSIANN-CDR products. 
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Figure 5. Spatial distribution of average daily (a) ground gridded reference precipitation, GDPA at raw
0.5◦ spatial resolution, (b) GDPA resampled at 0.1◦ spatial resolution, (c) “Final” post-real-time satellite
precipitation estimates, IMERG-F, (d) raw “Early” near-real-time satellite precipitation estimates,
IMERG-E selected to bias correct in this study, (e) difference (Diff.) between IMERG-F and resampled
GDPA, and (f) Diff. between IMERG-E and resampled GDPA.

To quantitatively assess the daily averaged discrepancies between the raw IMERG-E and IMERG-F
against GDPA grid-by-grid, the differences between IMERG-E and resampled GDPA (Figure 5e) and
between IMERG-F and resampled GDPA (Figure 5f) are presented. It can be clearly observed from
Figure 5e,f that the difference of IMERG-E showed a larger range (−3.18–2.27 mm) over the basin,
especially a larger negative difference in the mid-west region, compared to IMERG-F (with range of
−2.33–2.1 mm). The median and standard deviation of the daily averaged difference in IMERG-E and
GDPA among all grids in the basin were −0.19 mm and 0.63 mm respectively, contrasted to those for
IMERG-F with values of 0.25 mm and 0.52 mm. Smaller range and standard deviation associated
with fluctuation of the difference in IMERG-F indicated higher precision of IMERG-F, due to merging
with monthly GPCC gauge data, than that of IMERG-E. Previous studies on SPE evaluation over the
Yangtze River basin demonstrated that IMERG-E performed better than (or comparably with) the other
widely used SPE. The differences between GPM IMERG-F and GPM IMERG-E against ground data in
this study were comparable with those between TMPA 3B42V7 and TMPA 3B42RT against ground data
and significantly lower than those between CMORPH product and ground data in Li et al. [60] and
Shen et al. [46]. Li et al. [61] reported that IMERG-F showed a higher Correction Coefficient and Root
Mean Square Error against ground data over the Yangtze River basin, when compared with CMORPH
and PERSIANN-CDR products.
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4.2. Performance of Corrected IMERG-E using CSMD and BerGam

4.2.1. Parameter Estimation of Two Bias Correction Approaches

For SPE to be corrected, given the definition of the transfer function of distribution mapping,
the important procedure is to estimate the parameter sets in the transfer function of traditional BerGam
and improved CSMD (see Step 2 of Figure 3). Figure 6 displays the scatters and histograms of each
optimal parameter of BerGam estimated for IMERG-E and corresponding GDPA data at all grids in
the basin. Figure 6 depicts the estimation range and degree of aggregation for each parameter over
all grids. For example, IMERG-E showed smaller shape parameter k and higher scale parameter θ in
gamma distribution, and smaller p parameter in Bernoulli distribution at most grids.
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Bernoulli and gamma distributions (BerGam), taking the whole study period time window, i.e., the
first scheme of screening time windows, as an example.

Similar with Figure 6 of the BerGam case, Figure 7 displays the estimated parameters in the
improved CSMD distribution mapping approach over all grids. The degrees of aggregation of
parameters in CSMD (Figure 7a–e) were relatively lower than those in BerGam. Furthermore,
the values of objective function (used as a criteria of optimization in the simulated annealing algorithm)
are presented in Figure 7f, which verified the effectiveness of the parameter optimization used in
this study.
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Figure 7. Scatter plot and histogram of parameter set as well as the object function (Obj. F) value
used in improved bias correction of CSMD, taking the whole study period time window, i.e., the first
scheme of screening time windows, as an example. These parameters were estimated by a simulated
annealing algorithm.

4.2.2. Comparison of CSMD Correction with BerGam Correction

To statistically quantify the bias correction effect on IMERG-E from multiple aspects,
the performance of bias-corrected IMERG-E using CSMD and BerGam methods was represented by
the metrics of MAE, MD, mNSE, and KGE mentioned above. These four indexes present an integrated
understanding of the difference in IMERG against GDPA from relative/absolute residual errors to
comprehensive evaluation. Figure 8 presents the boxplots of these metrics calculated in each grid.
It could be clearly observed that either improved CSMD correction or traditional BerGam correction
reduced the discrepancy of raw satellite precipitation and ground analysis and significantly enhanced
the precision of the precipitation series at most grids. In addition, the corrected IMERG-E via CSMD
mapping approach as a transfer function generally performed better than that via traditional BerGam
mapping. Specifically, the mean and quartile MAE values of IMERG-E corrected by CSMD were much
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lower compared to the corresponding values of BerGam. For example, the means of MAE for CSMD-
and BerGam-corrected IMERG were 2.35–2.52 mm and 2.75–2.79 mm among three time-window
schemes respectively, while the median values of MAE for CSMD- and BerGam-corrected IMERG-E
were around 2.45 mm and 2.81 mm, respectively. Similarly, the CSMD-corrected IMERG-E was superior
to the BerGam-corrected IMERG-E in terms of MD and mNSE metrics. As for IMERG-E, the KGE
exhibited unsatisfying results with values lower than 0.1, even negative, mainly over the northwest
part of the basin. For KGE, an index of comprehensive assessment, the CSMD correction performs
comparatively well overall with BerGam, with the exceptional case of taking the whole period as a time
window. The CSMD-corrected IMERG-E outperformed BerGam-corrected IMERG-E in metrics of MAE,
MD, and mNSE, while performing comparatively with BerGam-corrected IMERG-E in terms of the KGE
metric. This is associated with the different emphases of the four metrics, that MAE, MD, and mNSE aim
at the quantification of deviation between each pair of two input precipitation series and KGE aims at a
relationship of the whole trend between the two series. These results suggested that the improvement
of the CSMD correction to IMERG-E was mainly concentrated on the reduction of deviation of the
biased raw IMERG-E to the reference data. As a comparator of IMERG-E, the post-real-time IMERG-F
data performed better than the raw IMERG-E towards MD and KGE metrics, while performing worse
than IMERG-E towards MAE and mNSE metrics. On the other hand, both the BerGam-corrected and
CSMD-corrected IMERG-E performed much better than IMERG-F towards all four metrics, shown
in Figure 8. These results indicated that not only the precision of corrected IMERG-E using BerGam
and CSMD was higher than the raw IMERG-E, but also the effect that bias correction exerted on the
IMERG-E surpassed the post-processing of IMERG-F by merging monthly GPCC gauge data.
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Figure 8. Summary of four metrics in space over Yangtze River basin. (a) MAE, in which lower values
indicate better performance; and (b) MD, mNSE, and KGE, in which higher values indicate better
performance. BerGam and CSMD are the traditional and improved bias correction of distribution
mapping respectively, while whole, mon, and MW denote three different time-window selection schemes,
as discussed in Section 3.2, used to sample precipitation data for one routine. Thus BerGam–whole
denotes the traditional BerGam approach implemented using the whole period time-window scheme.
Similarly, the other five short names represent the combination of a specific approach and time
window scheme.
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The Q-Q plot of raw and corrected daily IMERG-E and IMERG-F against GDPA during the four
years of the study period at 100 randomly selected grids is shown in Figure 9a, which is a graphical
way to diagnostic agreement between satellite precipitation and ground reference. Compared to the
large divergence of the raw IMERG-E and the post-corrected IMERG-F to the 1:1 line (where the perfect
fit with GDPA is), the corrected IMERG-E including using both the CSMD and BerGam correction
kept relatively consistent with the 1:1 line. Besides, the CSMD-corrected IMERG-E was located more
closely around the 1:1 line. This also verifies the contribution of the correction, especially the CSMD
correction, to the reduction of bias in the raw satellite precipitation data. Furthermore, to investigate
the bias correction contribution to the raw IMERG-E from the frequency of the daily precipitation
distribution, the CDF of each bias-corrected daily IMERG-E during the study period was computed at
100 randomly selected grids over the basin (Figure 10). Figure 10b enlarged the top of the CDF curves
ranging from 0.91 to 1 where the difference among eight categories of precipitation was considerable.
Figure 10 shows that the bias correction adjusted the substantial underestimation of low and median
precipitation and the overestimation of high precipitation.
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post-processed IMERG-F against ground reference GDPA precipitation over (a) the whole intensity
range and (b) the extreme range. The threshold of extreme precipitation is set to the 97.5 percentile,
than which precipitation is greater was selected as extreme values.
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The difference caused by different time-window schemes was very insignificant, although a
slight improvement existed in some quantiles of IMERG-E precipitation after the CSMD and BerGam
correction. The median and 75 and 99 percentiles of MAE and MD for BerGam correction were
almost the same among the three time-window schemes, while these three quantiles in mNSE and
KGE metrics obtained a slight increase because of the introduction of the sliding window technique.
As for the case of CSMD correction, although the corrected IMERG-E obtained some improvement
in the monthly period and sliding window schemes, compared with the whole time period window
scheme, the performance in the sliding window scheme was very comparative to that using the
monthly time-window scheme. In summary, there was a slight improvement obtained by using the
dynamic sliding window scheme. This is inconsistent with the previous result that showed that
obvious improvement in the performance of corrected precipitation by introducing the sliding window
scheme was detected relative to the monthly period window [23]. This contrast may be associated
with the length limitation of the precipitation data used in this study since the robust sliding window
technique needs the support of substantial data.

4.2.3. Performance of Corrected Extreme IMERG-E against GDPA

The extremely high precipitation is one of the focuses in precipitation bias correction using
distribution mapping due to the extremely low probability of high values located in the tail of the
distribution (see Figure 4b). Therefore, the effect of bias correction on extreme precipitation attracted
particular attention. The Q-Q plot of extremely high precipitation (greater than 97.5% quantile
with threshold values ranging from 20.68–24.55 mm) for raw and corrected IMERG-E against the
corresponding extreme GDPA data was displayed in Figure 9b. For the extreme part of corrected
precipitation, the CSMD correction using the sliding window scheme generally obtained best-fitness
with the GDPA data, followed by the CSMD correction using the whole time period window scheme.
In addition to the Q-Q plot, the empirical CDF of precipitation in Figure 10b, focusing on the change of
CDF ranging 0.91–1, can also be used to analyze the goodness-of-fit for extreme precipitation correction.
From the Figure 10b, it can be observed that the corrected IMERG-E curves, especially for the result
associated with CSMD correction, keep well-consistent with the GDPA curve in the precipitation range
of greater than about 20 mm/d, although the curves of BerGam-corrected IMERG-E series performed
better than those of the CSMD correction in the range of 13–20 mm/d. In summary, the result in
Figure 10b demonstrated that the CSMD correction is more skillful in correction the extremely high
precipitation intensities.

A typical storm event occurring at a grid (116.5◦E, 29.5◦N) of eastern area during
5 June 2017–2 July 2017 was taken as an example to verify the bias correction effect on summer
heavy rainfall. Figure 11 exhibits the temporal process of bias-corrected IMERG-E, post-processed
IMERG-F, and GDPA. The CC metric of CSMD-corrected precipitation with GDPA in this storm
event was the highest (0.61), followed by BerGam (0.58). Although the CC value of IMERG-F (0.55)
was slightly higher than that of the raw IMERG-E (0.54), it was significantly lower than those of the
precipitation corrected using both BerGam (0.58) and CSMD (0.61). These results also suggested
that bias-corrected extreme precipitation outperformed the post-processed extreme precipitation in
IMERG-F. The time lag between SPE (i.e., IMERG-E and IMERG-F) from NASA and GDPA from
NMIC-CMA may result from different timing. However, the relative relations of corrected IMERG-E
with the raw IMERG-E or with IMERG-F remain unchanged, although the time lag may lead to
a systematic reduction of evaluation performance when assessing the precision for each of SPE
against GDPA.
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high intensities of precipitation series with their corresponding CDF values of 0.91–1.
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Figure 11. Performance of two bias-correction approaches on satellite precipitation IMERG-E in
a summer heavy rainfall event during 5 June 2017–2 July 2017. Values of Correlation Coefficient
(CC) metric between the raw IMERG-E, bias-corrected IMERG-E, and IMERG-F against GDPA were
displayed in the legend. To ensure the lines are clearly observed, only the monthly time window
scheme in each bias correction approach (with best performance among three time-window schemes in
each approach), i.e., BerGam_mon and CSMD_mon, was used to exhibit here.
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4.3. Evaluation of Simulated Streamflow Driven by Corrected IMERG-E

Theoretically, the improvement of SPE that resulted from bias correction can enhance the
hydrological simulation and forecast via rainfall-runoff process. Thus, the bias-corrected IMERG-E using
both CSMD and BerGam as transfer functions for distribution mapping was further used as hydrological
model input to quantify their contributions and error propagations to the streamflow simulation.

The streamflow simulation of Wulong station at the outlet of Wujiang River basin individually via
the lumped GR6J and distributed CREST forced by nine precipitation inputs including one raw and
six bias-corrected IMERG-E precipitation, post-real-time IMERG-F, and one ground reference GDPA
during 1 April 2014–31 December 2017 was evaluated. Figure 12 presents the monthly-accumulated
hydrographs of the simulated streamflow. The summary of NSE, r, and RD metrics between simulated
streamflow and observed streamflow in calibration and validation periods was listed in Table 3. NSE
and RD were used to quantify the deviation of SPE from GDPA, while r was used to depict the
global correlation between SPE and GPDA. Although there existed no completely uniform pattern
of streamflow simulation precision in BerGam and CSMD, the streamflow simulation driven by
CSMD-corrected IMERG-E outperformed that driven by BerGam-corrected IMERG-E in more cases of
calibration and validation. Specifically, taking NSE for example, the simulated streamflow of GR6J
driven by BerGam deteriorated in validation period (NSE ranging in −0.15–0.40) even obtained useless
results with negative NSE in the case of BerGam_mon, although it performed well in the calibration
period (NSE ranging from 0.47–0.62). The performance of rainfall-runoff modeling via GR6J in both
the calibration and validation periods was acceptable with NSE ranging from 0.51–0.56 and from
0.35–0.51, respectively. Similarly, with GR6J, the performance of CSMD-driven streamflow simulation
via CREST in the validation period, as indicated by the NSE index, was overall better than that of the
BerGam-driven results (0.62–0.74 versus 0.66–0.68 for the CSMD and BerGam correction respectively),
indicating the higher prediction capability of CSMD relative to BerGam. The modeling precision
associated with IMERG-F was overall slightly lower than that with CSMD-MW, which performed
best among all nine precipitation inputs. Furthermore, the simulation of CREST obtained better
performance than that of GR6J, and the unreliable modeling with negative NSE values occurred in
GR6J, demonstrating that the distributed CREST model was more robust than the lumped GR6J in
this study. If it is assumed that higher performance (shadowed numbers in Table 3) of two or three
metrics among NSE, r, and RD appeared in the same model running, then the conclusion is the same
with the evaluation using NSE only, although the order of r or RD was not completely the same as
ranked NSE in the shadow grids of Table 3. In general, the hydrological effect that the CSMD correction
exerted on IMERG-E driving GR6J and CREST rainfall-runoff modeling outperformed that of the
BerGam correction.

In addition, the performance of hydrological modeling with respect to NSE in the Wujiang River
basin is relatively low, especially for using the simulation of GR6J (NSE ≤ 0.62). The reason for low
performance may be the impact of intensive human activities, including reservoirs and dams [62],
hydroelectric power stations [63], and metal mines built in this area [64], and the specific environment
of Karst geomorphology and hydrogeology [63] in this part of the Wujiang River basin. Although these
anthropic activities and natural features potentially impact the trend of the initial streamflow and may
result in the unsatisfying hydrological modeling, this is beyond the scope of this study. Nevertheless,
the streamflow can also be used to roughly verify the bias-correction effect of satellite precipitation
on hydrology modeling. Moreover, the SPE data used in this study were from less than four years
(45 months), restricted by the availability of IMERG SPE. Therefore, the short period of hydrological
modeling corresponding to IMERG SPE may potentially exert a negative effect on the performance of
the streamflow simulation in the Wulong outlet of the Wujiang River basin. Thus, further verification
with longer data available for IMERG SPE in the near future is expected.
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Table 3. Performance of streamflow simulation driven by the raw IMERG-E, bias-corrected IMERG-E,
post-real-time IMERG-F and ground reference GDPA.

GR6J CREST

Calibration Validation Calibration Validation

NSE r RD (%) NSE r RD (%) NSE r RD (%) NSE r RD (%)
BerGam_whole 0.62 0.79 −0.70 0.30 0.66 −17.30 0.62 0.79 −4.22 0.68 0.86 −9.83
BerGam_mon 0.49 0.70 −1.70 −0.15 0.05 −20.10 0.57 0.76 −4.42 0.66 0.83 −9.06
BerGam_MW 0.47 0.69 0.30 0.40 0.63 −0.50 0.58 0.77 −4.26 0.67 0.83 −6.54
CSMD_whole 0.51 0.72 −0.50 0.51 0.74 −5.80 0.45 0.73 −10.86 0.62 0.86 −20.11
CSMD_mon 0.56 0.75 0.10 0.35 0.68 −16.60 0.58 0.78 −6.38 0.69 0.86 −12.74
CSMD_MW 0.56 0.75 0.40 0.44 0.71 −11.30 0.59 0.77 −3.39 0.74 0.87 −10.08

IMERG-E 0.45 0.68 0.80 0.48 0.69 2.80 0.52 0.72 −6.14 0.74 0.87 −9.77
IMERG-F 0.56 0.75 0.01 0.54 0.74 −4.40 0.58 0.78 −5.81 0.70 0.87 −12.40

GDPA 0.62 0.79 −1.40 0.45 0.71 −10.50 0.56 0.80 −13.72 0.17 0.79 −45.91

Shadowed numbers highlighted the first three best (for NSE and r metrics is highest, for RD is the least absolute
value) values in that column.

5. Summary and Conclusions

In the present study, with respect to the bias correction of daily satellite precipitation estimates,
an improved distribution mapping method coupling a censored shifted distribution with a mixture
of gamma and generalized Pareto distributions (CSMD) was established. The comparison of bias
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correction using CSMD as a transfer function and the traditional Bernoulli-gamma mixture distribution
(BerGam) as a transfer function was carried out by application to correct the satellite precipitation
estimates of IMERG-E over the Yangtze River basin. The performance of bias-corrected IMERG-E and
IMERG-E against ground gridded analysis (GDPA) was represented using the evaluation metrics of
MAE, MD, mNSE, and KGE. Moreover, the effect of hydrological application with bias correction was
quantified. The primary conclusions were derived as follows:

(1) Both correction approaches of the improved CSMD and the traditional BerGam can significantly
reduce the systematic bias of the satellite precipitation product IMERG-E. Furthermore, CSMD
was superior to BerGam with respect to the deviation-dependent metrics of MAE, MD, and mNSE
for precipitation assessment.

(2) CSMD performed better in correction of the extremely high precipitation, which is the difficulty
of the distribution mapping commonly used, as compared to the BerGam correction. This
improvement in extreme values is mainly due to the mixture consisting of the generalized Pareto
distribution focusing on the extreme value modeling.

(3) The IMERG-E bias correction for CSMD via the sliding window scheme obtained slight
improvement, compared to the whole period and monthly period time-window schemes,
while there was no significant change among the three time-window schemes for BerGam.

(4) The streamflow simulation driven by the CSMD-corrected IMERG-E outperformed that driven
by the BerGam-corrected IMERG-E in more cases of calibration and validation (NSE of GR6J
in validation: 0.44–0.51 versus −0.15–0.4 for CSMD and BerGam, respectively. NSE of CREST
in validation: 0.62–0.74 versus 0.66–0.68). The distributed CREST model was more robust than
the lumped GR6J in verifying the bias correction effect on satellite precipitation IMERG-E for
modeling and prediction.

Overall, the established CSMD bias correction method, featured with both jointly modeling
precipitation occurrence and intensity and with particular attention paid to the extreme modeling, is
expected to be more capable in correction of the daily satellite precipitation estimates relative to the
traditional BerGam. Further modifications of the CSMD method can consider more mixture components
of parametrical distributions and enhance the computation efficiency in parameter optimization, while
a larger dataset is needed to test the efficacy and robustness of the proposed method.

As SPE find a broad range of applications in hydrological modeling, the advanced statistical
bias correction brings a promising reduction of the systematic bias of SPE, leading to a more reliable
hydrological forecast. Thus, the CSMD method proposed in this study is recommended to test and
apply to other SPE products and other regions lacking ground precipitation measurements.
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