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Abstract: The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF
(European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised-Tiled
ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM)
estimates have been produced specifically by training a neural network with SMOS brightness
temperatures as input and H-TESSEL model SM simulations as reference. This can help the
assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM)
data have a similar climatology to the model, (2) no global bias is present with respect to the model
even if local biases can remain. Experiments performing joint data assimilation (DA) of NNSM,
2 m air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was
evaluated against a large number of in situ measurements of SM obtaining similar results to those of
the model with no assimilation, even if significant differences were found from site to site. In addition,
atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were
compared to measure of the impact of the satellite information. Although NNSM DA has an overall
neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas
and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m

DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due
to T2m and RH2m but SMOS NN DA alone also improves the forecast in July- September. In the
Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April–September,
while NNSM alone has a significant positive effect in July–September. Furthermore, forecasting skill
maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up
to 72 h lead time.
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1. Introduction

The amount of moisture in the soil is an important variable to understand the coupling of the
continental surface and the atmosphere [1,2]. Soil moisture (SM) initialization is also crucial for
seasonal forecasting studies since anomalies may persist at monthly to seasonal time-scales [3]. Local
studies have shown the interest of assimilating in situ measurements of SM [4]. However, SM in situ
measurements are too scarce at the global scale. Satellite remote sensing observations have their own
limitations such as a limited accuracy and relatively long revisit times but they allow a global coverage.

The classical way to assimilate satellite observations is to use directly the satellite
measurements [5–7]. Several experiments have been conducted to assimilate SM-related observations
such as microwave brightness temperatures (Tbs). For instance, the launch of the Soil Moisture and
Ocean Salinity (SMOS) satellite [8] in November 2009 has offered global L-band (1.4 GHz) observations
in polarimetry mode with multi-angular capabilities and a revisit time of three days or less. SMOS Tbs
are available in near-real-time (NRT) since the beginning of the mission. The assimilation of SMOS Tbs
has been used to constrain hydrological models [5,6]. The assimilation of SMOS Tbs into a numerical
weather prediction (NWP) forecasting system is however a complex task. The Tbs assimilation requires
the implementation of an observation operator going from SM to multi-angular and dual-polarization
Tbs in the top of the atmosphere using approximative radiative transfer computations [7,9,10]. In fact,
one admitted advantage of assimilating Tbs is that they have relatively well-defined associated
instrument uncertainties. However, the assimilation of Tbs requires not only the instrument noise,
but also the radiative transfer uncertainties which can be very hard to specify [11]. Another advantage
is that Tbs can be easily available in NRT, which makes their use possible in an operational system.
However, a neural network approach was implemented recently by the European Space Agency to
develop the SMOS NRT SM product [12].

The assimilation of SM instead of the Tbs has also been studied in different contexts. For instance
SMOS SMs have been assimilated into land surface-hydrological models over the Great Lakes basin [13]
and Ouémé catchment in Benin [14], into the Noah land surface model of the NASA land information
system [15], into the SVAT (Soil Vegetation Atmosphere Transfer) models [16,17], and in carbon-cycle
models [18]. The two approaches (i.e., the assimilation of Tbs or retrieved SMs) were compared using
the Variable Infiltration Capacity (VIC) hydrological model in [6]. The best results were achieved
by assimilating the SM measurements. The authors interpreted this result as a consequence of the
difficulty to model and to bias-correct the Tbs obtained from radiative transfer estimations. Assimilating
retrieved SM instead of Tbs seems therefore an interesting approach.

In an assimilation framework, the SM retrievals need to be re-scaled to remove biases
(model versus observations) and to be relatively consistent with the model. The goal is to
avoid model/observations differences that could introduce divergences in the assimilation process.
A common technique used to achieve this goal is to transform a posteriori the Cumulative Density
Function (CDF) of the retrieved SM to match the modelled SM CDF [19,20]. However, when the two
CDFs, computed at the pixel level, are matched (also at pixel level) the satellite spatial information
can be distorted significantly towards the model patterns. Alternatively, it has been proposed to
use a neural network (NN) to link observables such as microwave Tbs or backscattering coefficients
to model SM fields in particular from NWP models [21,22]. Such an approach has been developed
to retrieve SM from SMOS observations [23]. An interesting property of the NN SM trained using
modelled SM outputs is that, by construction, they share some statistical properties with the modelled
SMs. For instance, they have no global bias with the reference SM. Both SMs (model and retrieved
ones) show a similar climatology, even if they can have significant regional differences [24]. This is
due to the fact that the “NN calibration” is performed globally. In fact, once trained, the NN output
SM is driven only by the satellite observations and can be different to the SM predicted by the model.
The overall NN methodology has been proposed to compute SM fields for an efficient data assimilation
in [21,22].
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The analysis of the SM has been conducted in the past jointly with near surface variables such
as T2m and RH2m (hereafter called the “Screen Level Variables” or SLV). For instance, it has been
shown that it is possible to jointly assimilate aircraft Tbs and SLVs (T2m and RH2m), and that this
approach gives more consistent results than assimilating Tbs and SLVs separately [25]. Several
data assimilation (DA) techniques (see [26] for a general description of DA techniques) have been
compared: the optimal interpolation (OI), the two-dimensional variational assimilation (2D-VAR),
or a Simplified Extended Kalman Filter (SEKF, with constant error covariance matrix). The SEKF
technique improves the boundary layer forecasting skill [27–31] and it gives SM increments as
a function of soil depth that are more realistic than those obtained using OI. This SEKF approach also
brings a consistent improvement on SLV and SM forecasts, while allowing for an easier assimilation of
satellite observations [20,30,32]. Since T2m and RH2m are not always representative of the SM content,
it is also interesting to assimilate directly SM information to assess its individual information content.
The assimilation of TMI (TRMM Microwave Imager) SM gave accurate estimates when compared
to in situ observations and it influenced local weather parameters including the planetary boundary
layer height and cloud coverage [33]. The assimilation of ERS SM index increased the correlation (and
decreased the root mean square error) with respect to the Oklahoma Mesonet in situ measurements [34].
The corresponding forecasts for T2m and RH2m improved only marginally compared to the control
experiment. The current operational system at ECMWF uses a SEKF joint analysis of T2m, RH2m and
SM index from the Advanced Scatterometer (ASCAT) and show a neutral impact on both SM and
SLVs [20].

The goal of this study is to perform DA experiments to analyse SM using a SMOS SM dataset
obtained with a NN trained on the ECMWF land surface model and to evaluate its impact in
NWP. Three configurations were tested: (1) a control experiment with no DA (hereafter “open
loop”), (2) a configuration with NNSM-only (SMOS neural network soil moisture) data assimilation,
and (3) a joint NNSM plus SLVs data assimilation. Experiments were conducted at the global scale and
over a full year to determine where and when SMOS SM information improves the forecast.

This paper is organized as follows. Section 2 describes the remote sensing, in situ, and model
data considered in this paper. Section 3 discusses the NN approach used to obtain SM from SMOS Tbs,
the DA framework and the evaluation methodology. Section 4 presents the results of the SM analysis
using SLVs and NNSM. It also discusses the impact on atmospheric forecasts. The results are discussed
in the context of other published works in Section 5. Finally, Section 6 summarizes the results and
the conclusions.

2. Data

2.1. SMOS Level 3 Brightness Temperatures

SMOS was launched by ESA in November 2009 to monitor key elements of the water cycle [8].
It has a Y-shaped radiometer with 69 antennas that are used in interferometric mode to synthesize
an aperture of ∼7.7 m. The spatial resolution on the ground varies from ∼30 km to ∼60 km across
the field of view and it is 43 km on average. SMOS measures the thermal emission from the Earth at
1.4 GHz in full polarization and for incidence angles from 0◦ to 60◦. The revisit period is three days at
the equator and decreases with increasing latitude. Equator overpass time is 6:00 (solar local time) for
ascending overpasses and 18:00 (solar local time) for descending overpasses.
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This study made use of the L3TB brightness temperature product [35] by the French SMOS ground
segment CATDS (Centre Aval de Traitement de Données SMOS) because L3TB brightness temperatures
are provided averaged in incidence angle bins of 5◦-width and with polarizations referred to the Earth
reference system (horizontal and vertical, H and V). L3TB data are provided on a 25-km Equal Area
Scalable-Earth Grid (EASE grid) version 2 [36] as two daily products for ascending and descending
overpasses (MIR_CDF3TA and MIR_CDF3TD products, respectively). The version of the data used in
this study is version 310.

2.2. HTESSEL Model Data

The land surface model used in this study is the “Tiled ECMWF Scheme for Surface Exchanges
over Land” (TESSEL) with improved land surface hydrology (H-TESSEL) [37]. The improvements
include a new soil hydrology with more realistic runoff, a revision of the snow parametrisation and
the bare ground evaporation and a monthly varying climatology of leaf area index (LAI) based on
MODIS data [38–40]. H-TESSEL uses four soil layers. The depths of the three top soil layers are
0–7 cm, 7–28 cm, and 28–100 cm. The ECMWF Integrated Forecast System (IFS) uses a spectral
representation of meteorological fields where each field is expanded in series of spherical harmonics.
The spatial resolution is determined by the truncation of the series at a given total wavenumber. In this
study, the model was run with a spectral truncation T511, since the equivalent spatial resolution of
approximately 39 km is similar to that of SMOS. Following the ERA-Interim/Land [41] approach,
H-TESSEL was forced with the near surface atmospheric fields obtained from the ERA-Interim
re-analysis [42].

2.3. ECMWF Data Interpolated to the Grid of the SMOS Level 3 Brightness Temperatures Data Set

This study used the CATDS AUX_CDFECA and AUX_CDFECD products, which contain ECMWF
IFS data re-sampled from a Gaussian N400 grid to the EASE grid of the SMOS L3TB product using
a bilinear spatial interpolation and interpolated linearly in time to match the time of SMOS overpasses
in between two consecutive 3 h forecasts. Therefore, we used those products to extract the volumetric
moisture content in the first soil layer (0–7-cm depth; hereafter ECMWF SM1) to train the NNs.
In addition, the snow depth and the soil temperature in the first layer were used to filter out regions
with snow or frozen soils (see Section 3).

2.4. In Situ Measurements

Surface synoptic observations (SYNOP) of T2m and RH2m are used by NWP centers to analyse
SM. First, a screen level analysis is performed, which provides gridded fields of analysed T2m and
RH2m. Subsequently, these fields are used as input of the SM analysis [30,43]. This is the approach
used in this study to assimilate SLVs.

In addition to data for assimilation, in situ measurements were also used for evaluation.
The analysed SM fields discussed in this study, along with the model open loop (i.e., no DA),
were evaluated against in situ measurements of SM for a large number of sites (>800 sites, Table 1).
All of the in situ data were obtained from the International Soil Moisture Network [44]. Since the
microwave radiation detected from space comes from the first few centimeters of the soil, only SM
measurements at depth ranges from 0 to 5 cm (vertical sensors) and ∼5 ± 1 cm (horizontal sensors)
were used. The sites are located in four continents and cover a large spectrum of climate conditions.
Table 1 shows a summary of the networks used, including the depth of the measurement, the location
and the number of sensors.
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Table 1. In situ networks used in this study. The depths are quoted as two numbers: the first one
is the upper depth, and the second one is the lower depth of the sensor. Both numbers are equal
when the sensor is placed horizontally. The third column gives the number of sensors remaining for
each network after applying all of the criteria used for the evaluation that are discussed in Section 2.4.
The fourth column gives the average number of points in the time series for each network that satisfies
the evaluation criteria.

Network Depth (m) Sensors Npoints Location Reference

DAHRA 0.05–0.05 1 1137 Senegal [45]
REMEDHUS 0.00–0.05 23 1016 Spain [46]
SMOSMANIA 0.05–0.05 19 1009 France [47]
HOBE 0.00–0.05 46 687 Denmark [48]
PERUGIA 0.05–0.05 2 719 Italy [49]
FMI 0.05–0.05 8 245 Finland ...
SCAN 0.05–0.05 240 816 USA [50]
SNOTEL 0.05–0.05 347 537 USA [51]
USCRN 0.05–0.05 122 931 USA [52]
ARM 0.05–0.05 31 717 USA ...
PBO-H2O 0.00–0.05 101 206 USA [53]
CTP-SMTMN 0.00–0.05 33 365 China [54]

3. Methods

Figure 1 shows a flow chart of the SMOS NNSM data assimilation and the evaluation methodology,
which can be divided in three main blocks. First, instead of implementing an observation operator
computing the radiative transfer from SM to Tbs, here, the NN is trained to find a non-linear mapping
from Tbs to SM. This is presented in detail in Section 3.1. Second, the NNSM data, with and without
SLVs, are assimilated into H-TESSEL using the ECMWF surface-only Land Data Assimilation System
(so-LDAS) as discussed in Section 3.2. Finally, the so-LDAS analysed SM fields were used to initialise
atmospheric forecasts, allowing evaluation of the impact of SMOS NNSM DA on NWP as detailed in
Section 3.4.

3.1. Using a Neural Network to Compute a New Soil Moisture Data Set

The reference data used to train the NN is ECMWF SM1 collocated in space and time with SMOS
Tbs (Section 2). In order to maximize the swath width of the SM retrieval and the quantity of data
available for assimilation, only incidence angles from 30◦ to 45◦ were used, as for the ESA NRT SM
product [12]. Twelve quantities were used as predictors to retrieve soil moisture: six Tbs and six SM
linear expectations (index I2 in [12]) for two polarizations (H and V) and three angle bins (30–35◦,
35–40◦, 40–45◦).

The training database was constructed using data from 10 November 2010 to 31 December 2013.
The data were temporally sampled with a time step of 5 days. Finally, the data were also spatially
sampled with a step of three grid points both in latitude and longitude. ECMWF H-TESSEL model
estimations of snow depth and the temperature of the first soil layer were used to filter out regions
with snow or frozen soils. In addition, SMOS data with a probability of being affected by artificial
emission (radio frequency interferences) higher than 20% as given by the RFI_Prob parameter in SMOS
Level 3 files were also filtered out.
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Figure 1. Flow chart of the neural network data assimilation and evaluation methodology.

From the filtered data subset, 60% of the samples were used for the actual NN training, 20% were
used for evaluation of the training process and to avoid over-training, while the final 20% was used
as a test set to evaluate the performance of the trained NN a posteriori. The training was done using
gradient back-propagation and the Levenberg-Marquardt algorithm [55]. A two layer NN with one
hidden layer with 5 non-linear neurons and a second layer with one linear neuron was used as this
architecture manages to capture the relationship between the input data and the target SM dataset
while keeping the NN as simple as possible [12,23]. The training was stopped after 50 iterations
when the mean squared difference was asymptotically approaching to a minimum without significant
signs of over-training in the evaluation subset. The NN output uncertainty was computed taking
into account the radiometric noise of the Tbs and a 1% error for the extreme ECMWF SM1 values
used to compute the local SM linear expectations I2 (which is a conservative upper limit to the model
background error used for the DA, which is shown in Figure 2).

Figure 3 shows a scatter plot of the SM estimated from the NN for the test subset with respect to
ECMWF SM1. The Pearson correlation R of both data sets was 0.94, which imply a good ability of the
NN to capture the dynamics of the ECMWF SM1 dataset. The standard deviation of the difference
(STDD) was 0.054 m3m−3 and the Root Mean Square Error or Difference (RMSE) was also 0.054 m3m−3,
which implies that there is not a significant bias in between both SM datasets.

Taking into account that the model surface SM was used as reference data for the NN training,
it is pertinent to discuss whether this approach can introduce cross-correlated errors between the
observations and the model. This was actually considered since the methodology was proposed [21].
Systematic errors of the model such as a possible global SM bias with respect to ground truth will
also be present in the NN output. Nevertheless, this is not a problem since satellite data needs to be
calibrated towards the model in order to be assimilated. Another issue could be possible regional
errors (both biases and errors in the dynamics/climatology). However, Jimenez et al. [24] have
shown that these regional errors are not reproduced by the NN because they do not affect the training.
In summary, after the training stage, the NN output is a function of the input variables (satellite
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observations). Therefore, regional model errors are not reproduced since they are not present in the
satellite observations and correlations between NNSM and model SM errors are not expected.

Figure 2. (Upper left): SMOS NNSM for day 4 June 2012. (Lower left): SMOS NNSM observation
error. (Upper right): model background for the same day and first layer (ECMWF SM1). (Lower right):
Model background error (5% of the water holding capacity). Units are m3/m3.

Figure 3. Scatter plot of the SM estimated from the NN for the test sub set with respect to the reference
ECMWF SM1 data set.

3.2. Offline Surface-Only Land Data Assimilation System

The data assimilation framework used in this study is the ECMWF surface-only Land Data
Assimilation System (so-LDAS). Table 2 summarizes the main differences of the so-LDAS and the
LDAS of the Integrated Forecast System (IFS-LDAS). The so-LDAS was used for this study because it
uses a similar point-wise Simplified Extended Kalman filter scheme as the IFS-LDAS [20] to perform
a joint assimilation of analysed SLVs provided by the IFS-LDAS and remote sensing SM but allow
carrying out long surface-only DA experiments faster than the IFS-LDAS. It is worth noting that the
methodology of using NNs to link the satellite observables to model variables is independent of the
actual DA technique and therefore it could also have been used within other DA frameworks such as
Ensemble Kalman Filters or Particle Filters.
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Table 2. Comparison of the IFS Land Data Assimilation System (LDAS) and the surface-only LDAS.

IFS-LDAS so-LDAS
Assimilation technique SEKF SEKF
Assimilation window 12 h 24 h
Surface-atmosphere fully coupled uncoupled,
coupling surface forced by ERA-Interim
Observation input grid Independent of the model grid Same grid as the model grid
Analysis RH2m, T2m, SM, soil temperature, SM

snow cover and snow temperature
Observation input RH2m, T2m, ASCAT SM, LST, RH2m and T2m analysed with IFS-LDAS,

snow cover and snow temperature, ASCAT SM, SMOS SM
SMOS TBs (in development)

Increment applied analysis time Initial time step and additional trajectory
Background error 0.01 m3m−3 5% of water holding capacity

The so-LDAS relies on an offline sequential data assimilation in a 24-h window, based on the
H-TESSEL land surface model [37] with ERA-Interim atmospheric forcing [42]. The control vector
x has three elements corresponding to the SM from the three first soil layers of the model. For each
observation within the assimilation window, the observation vector yo has one element when only
NNSM is assimilated or three elements if T2m and RH2m are also assimilated. The analysis increments,
∆x, are computed as the product of the Kalman gain matrix K and the innovations or first guest departures
vector (difference of the model at time t, yt, and the observation operator h applied to the control
vector at time 0).

∆x = K(yt − h(x0)) (1)

The Kalman gain is computed as:

K = BHT(HBHT + R)−1 (2)

where B is the background error covariance matrix, R is the observation error covariance matrix and
H is the Jacobian of the observation operator, which is estimated by perturbing each component
of the control vector. The observations are assimilated over a 24 h window divided in 1-h bins.
The increments are applied at the beginning of the 24-h data assimilation window, as in the simplified
2D-VAR proposed by [29]. Following the approach of [31], for every 24-h analysis cycle, five trajectories
of H-TESSEL are produced. The first trajectory provides the model background. Three more trajectories
are produced by perturbing the soil moisture initial condition of the first, second and third layer,
respectively. In the last trajectory the analysis increments are applied at the beginning of the 24-h
window. It provides the analysed trajectory.

The matrix B is time-independent (simplified EKF). For each grid point, B is a diagonal matrix
whose non-zero elements are the errors σb of the three upper model layers, which were fixed to 5%
of the water holding capacity, which is the difference between the volumetric field capacity and the
wilting point. It is calculated for each layer and grid point as a function of soil type [56]. The model
and the DA framework use volumetric SM in m3/m3 units. Figure 2 shows a global map of the model
background error σb.

For each grid point, the observation error covariance matrix R is a diagonal matrix with elements
σT2m (set to 1 K) and σRH2m (set to 4%) and σSM. The uncertainty of the NN output (σNN) is variable in
space and time but it is a lower limit to the actual observation error [12]. Therefore, in the context of
this DA study σSM, was taken as three times the NN output error. The multiplicative factor used to
compute σSM was determined to obtain an average close to 0.05 m3/m3, which is the error used for
the operational assimilation of ASCAT in the ECMWF IFS.. Figure 2 shows an example of σSM.

Table 3 summarizes the assimilation experiments conducted for this study. The first three
experiments are the Open-Loop (OL, H-TESSEL without assimilation), “NNSM” and “NNSM-SLV”.
In addition, two other experiments were carried out to evaluate the sensitivity of the DA to the
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observation error σSM and the relative importance of NNSM and the SLVs for the assimilation: A low
weight NNSM experiment “NNSMLW” was carried out multiplying σNN by an additional factor of
3 with respect to the “NNSM” experiment. A “NNSMLW-SLV” experiment was also carried out.
As discussed in Sections 4 and 5, this experiment is close to the SLV-alone case, because the relative
weight of the SM data for the assimilation is very low. Therefore, for simplicity it will be referred to in
the following as SLV*.

Table 3. Experiments compared in this study. Experiment labels are shown in column 1. Column 2
shows if SM is assimilated or not. Column 3 shows the observation error assumed for the SM dataset
(σSM) as a function of σNN , which is provided by the retrieval algorithm. Figure 2 shows an example of
σNN . Column 4 shows if T2m and RH2m are also assimilated for each experiment.

Label SM σSM SLV

OL no ... no
NNSM yes 3 × σNN no
NNSM-SLV yes 3 × σNN yes
NNSMLW yes 9 × σNN no
SLV* yes 9 × σNN yes

3.3. Soil Moisture Analysis Evaluation against In Situ Measurements

The analysed fields and the model open loop have been evaluated against in situ measurements
using the following protocol. Sites and times covered by snow and with frozen soil (first layer
temperature lower than 274 K) were filtered out. The in situ measurements were compared to the
closest model grid point. To select a given in situ measurement, a time window of ±30 min around
the model time was used. Data from a given time are used to compute statistical metrics only if a SM
value is available for all of the datasets shown in Table 3, ensuring that all time series contain exactly
the same number of points, and there are at least 200 common points. Table 1 shows the number of
sensors that satisfied the previous criteria for each network and the mean number of points in the time
series. The STD and RMS of the difference time series were computed. The bias was computed as the
mean of the analysed (or OL) times series minus the mean of the in situ measurement times series.
Those metrics, in addition to the Pearson correlation, were computed sensor by sensor with respect to
the closest grid point. Afterwards, the metrics were analysed site per site and network per network.
The results are presented in Section 4.3.

3.4. Impact of the Soil Moisture Analysis on the Forecast

The OL and the analysed surface fields were used to initialise atmospheric forecast experiments at
a T511 resolution (39 km) for the whole 2012. To evaluate the different forecasts, the following method
was used. The analysis of the IFS that was operational in 2012 was used as reference and the different
forecasts were compared to this reference in periods of three months. In a second step, the scores
obtained for the forecast using the surface model with no DA were subtracted from the scores obtained
for the forecasts using analysed surface fields. Therefore, negative values imply that the forecast using
analysed SM are closer to the reference than the forecast with no surface assimilation. The results are
discussed in Section 4.4. It is worth noting that the evaluation statistics are very robust as the forecast
period is long and allows a detailed analysis for the different seasons.

4. Results

4.1. Observations and Model Comparison

Using the NN trained as explained in Section 3, a new SM dataset for the year 2012 was computed
specifically for this DA experiment. Figure 2 shows an example of the NNSM data. By construction,
the NNSM map is similar to the H-TESSEL map, but it shows small differences coming from the



Remote Sens. 2019, 11, 1334 10 of 23

SMOS Tbs and the trained NN. To get further insight into the data set to be assimilated, NNSM,
RH2m, and T2m were compared systematically to the model simulations. Figure 4 shows the mean
innovations (observations–model) for NNSM and RH2m for January–March (JFM) and July–September
(JAS). Figure 4 also shows the mean innovations for T2m but computed as model–observations because
the T2m and SM relationship is, in principle, inverse (the more SM the lower T2m, and conversely).
In general, the innovations for the different observables are in good agreement. For instance, in North
America, in all seasons, innovations show different signs on the west and east coasts with respect
to the central region. All innovations are generally in good agreement in South America. However,
some differences can also be seen for example in India and Australia in JFM, as they are in agreement
for NNSM and RH2m but not T2m in India and they are in agreement for T2m and RH2m but not
for NNSM in Australia. For a given observable, the sign of the innovations can change with time.
For instance, innovations are negative for NNSM in Australia in JFM and positive in April-September
(only JAS is shown in Figure 4). Innovations are also negative for NNSM and RH2m in South America
for most of the year except in JAS, when they are positive in large regions of this continent.

Figure 4. Mean innovations (observation minus model for NNSM and RH2m and model minus
observation for T2m) for two periods of three months.

4.2. Data Assimilation

Figure 5a–d show the sum of the increments in the period from July to September for the four
DA experiments. As expected, when the observation errors increase the increments decrease from
∼10 mm (NNSM) to values lower than ∼5 mm (NNSMLW) for the first model layer. For the first model
layer, the increments show clear geographical patterns, being negative in the Sahel region and from
the north of South America to the south of North America and positive elsewhere. The increments
in the second model layer are smaller but still significant close to the Equator and at high northern
latitudes. Finally, Figure 5b shows that when the observation error is high (NNSMLW), the low weight
given to NNSM data during the assimilation makes that the impact is very low.

As expected, the third model soil layer increments are mainly due to SLV DA (see Figure 5a,c),
while surface SM has more impact on the first layer (see Figure 5c,d). The effect of SLV DA is
clear in comparing the results for NNSMLW (Figure 5b) and SLV* (Figure 5d). As discussed above,
in experiment NNSMLW SM is almost not assimilated except in the Sahel and Northern Canada.
Therefore, the most significant positive increments from SLV DA are present in central Asia and North
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America, while the DA removes moisture from the model third layer in parts of India, China, Europe
and South America. It is noteworthy that the analysis of SLV gives positive increments in Asia in
areas where SMOS data is not available due to contamination by artificial emission at 1.4 GHz (radio
frequency interference, RFI).

Figure 5. Increments sum in mm for the period July-September for experiments NNSM and NNSMLW

(panels a and b) and for experiments NNSM-SLV and SLV* (panels c and d).

The seasonal behaviour of the assimilation of NNSM is shown in Figure 6 for experiment
NNSM. Cumulative increments in Australia, South Africa and parts of South America are negative in
January-March and October-December and they are positive from April to September. This behavior is
in agreement with NNSM innovations (Figure 4).
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Figure 6. Increments for the upper two model layers for experiment NNSM. (a) Sum of the increments
from January to March. (b) Sum of the increments from April to June. (c) Sum of the increments from
July to September. (d) Sum of the increments from October to December.

4.3. Evaluation of the Soil Moisture Analysis

The analysed soil moisture fields and the model open loop were compared to in situ measurements
of SM in the surface layer (∼0–5 cm) for the sites discussed in Section 2 using the protocol presented
in Section 3.3. Figures 7 and 8 summarize the results as box plots computed network by network.
On each box, the central mark indicates the median of the distribution and the bottom and top edges
of the box indicate the 25th (q25) and 75th (q75) percentiles, respectively. The results for Dahra and
Perugia are shown in Table 4 because they only have one and two sensors, respectively.

Table 4. Evaluation against in situ measurements. Mean standard deviation of the difference (STDD),
Pearson correlation (R) and bias with respect to the in situ measurements for each network of in
situ sensors.

DAHRA PERUGIA
STDD R Bias STDD R Bias

NNSM 0.048 0.71 0.112 0.057 0.79 0.079
NNSM-SLV 0.050 0.72 0.115 0.057 0.79 0.075
SLV* 0.054 0.72 0.118 0.057 0.79 0.075
OL 0.053 0.72 0.117 0.057 0.79 0.079
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Figure 7. Box plots for the STDD, the Pearson correlation R, and the bias of different experiments
with respect to in situ measurements network by network. On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th (q25) and 75th (q75) percentiles,
respectively. Points are considered as outliers if they are greater than q75 + 1.5× (q75 − q25) or less than
q25 − 1.5 × (q75 − q25). The whiskers extend to the most extreme data points not considered outliers.

NNSM degrades the SM analysis at the Finish Meteorological Institute (FMI) site (Figure 7).
The effect is seen consistently in R, which decreases, and STDD, which increases. In contrast, in the
ARM network, NNSM and NNSM-SLV give better results than OL and SLV* in terms of STDD
(lower median, q25 and q75) and R (higher median, q25 and q75) with very similar bias. For all the
other networks, including Dhara and Perugia, the distributions of STDD, R and bias for the NNSM,
NNSM-SLV and SLV* experiments are similar to those of the OL run, except for SMOSMANIA,
which shows a slightly lower median of R for NNSM and NNSM-SLV while showing also a slightly
lower dispersion. Taking into account the low impact in the surface layer found at those locations and
the low increments shown in the previous section for model layers 2 and 3 when assimilating only
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surface soil moisture, the comparison of model and in situ measurements for deeper layers was not
studied further. The impact of SLV DA for lower layers is larger but this paper is mainly devoted to
the NN approach to assimilate SMOS SM instead of SMOS Tbs. The impact of SLVs on deeper layers
has been discussed in other studies [7,20,57].

Figure 8. Same as Figure 7 for networks located in North America.

Even if the distribution of the statistical metrics network by network is very similar for the
analyzed fields with respect to the OL run, there are significant differences for some sites. Upper panel
of Figure 9 shows the difference of the correlation of the SM from the NNSM experiment with respect
to in situ measurements and the correlation of the OL experiment with respect to in situ measurements
(RNNSM_inSitu − ROL_inSitu) for the sites in North America. Points are blue when the performance
of the analysis increases (R increases). Similarly, lower panel of Figure 9 shows the difference in
RMSNNSM_inSitu − ROL_inSitu site by site in North America with an inverse colorbar so that points are
blue when the performance of the analysis increases (RMS decreases). Most of the sites in the half
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east part of the United States show a neutral impact or an increase in performance. The situation
is more complex in the half west part, where more variability was found but while for some sites
the performance increases (blue) for other sites it decreases (reddish points) making that the overall
distribution of metrics is similar to the OL as shown by the box plots of Figures 7 and 8.

Figure 9. (Upper) difference of the Pearson correlation of NNSM experiment time series with respect
to in situ measurements and the Pearson correlation of OL experiment time series with respect to in
situ measurements. (Lower) difference of the RMS of NNSM experiment time series with respect to in
situ measurements and RMS of OL experiment time series with respect to in situ measurements. In
both cases, blue points show that the analysed time series are closer to the in situ measurement (higher
correlation and lower RMS).

4.4. Sensitivity of the Atmosphere to the Soil Moisture Analysis

As explained in Section 3.4, the open loop and the analysed surface fields were used to compute
atmospheric forecast experiments for the whole year 2012, which were evaluated with respect to the
operational IFS analysis in periods of three months using several metrics as the root mean square
difference (RMS) or the standard deviation (STD). The metrics obtained for the forecasts using as input
the SM analysis from experiments NNSM, NNSM-SLV, NNSMLW and SLV* were compared to those
of the forecast using as input the SM fields with no assimilation (OL). Some of the results are shown
in Figures 10 and 11 as the difference in RMS for the forecasts using the analyzed SM fields (with
respect the 2012 IFS analysis, see Section 3.4) minus the RMS of the forecast OL SM fields (with respect
the 2012 IFS analysis). Therefore, negative scores mean that the forecast using the analysed surface
fields exhibit better performance than the forecasts using the open loop. Figure 10 shows the skill to
forecast T2m as a function of the forecast day averaged in periods of three months. Similar results were
found for RH2m or for the dew point forecast. A neutral impact was found for experiment NNSMLW ,
therefore it is not shown in Figure 10.

In the tropics (20◦S–20◦N, middle panels of Figure 10), all experiments exhibit similar performance
to the open loop, with errorbars indicating non-significant impacts. However, the experiments
NNSM-SLV and SLV* show some small improvements for October–December (not shown in Figure 10).
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In contrast, experiment NNSM might imply a slight decrease of performance in July–September (taking
into account the errorbars, the RMS difference is compatible with a neutral impact).

Left panels of Figure 10 show the results for the Southern Hemisphere extra tropics (20◦S–90◦S).
The forecasts using SM from experiments NNSM-SLV or SLV* show an improvement for all the seasons.
The improvement is higher in July–December, being significant until days 4–5 in October–December
(not shown in Figure 10). When using SM from the NNSM experiment the forecast skill improve up
to day 2–3 in July–September. It is noteworthy that in this period, the forecast skill when using the
NNSM-SLV analysis is better than that using the SLV* analysis. In conclusion, SMOS NNSM adds
significant information to the SLVs and improves the forecast in the Southern Hemisphere extra tropics
mainly in the southern spring.

Right panels of Figure 10 show the results for the Northern Hemisphere extra tropics (20◦N–90◦N).
Forecasts using NNSM-SLV and SLV* show an increase in performance in April–September (Figure 10).
As in the Southern Hemisphere, the RMS decreases more for forecasts using NNSM-SLV than for those
using only the SM analysis with SLV* DA. The forecast using the SM analysis from the NNSM NN DA
alone also has a significant positive effect in July–September.

Figure 10. Evaluation of the atmospheric forecast skill. The plots show the RMSE of the T2m forecast
for the assimilation experiments minus the RMSE for the OL experiment as a function of the forecast
day in two periods: April–June (upper panels) and July–September (lower panels). The results are
shown for three latitude ranges: [−90◦, −20◦] (left panels), [−20◦, 20◦] (middle panels), [20◦, 90◦]
(right panels).

To get further insight into the increase in forecasts skill when using the NNSM and NNSM-SLV
analyzed SM fields, it was also studied using global maps. Figure 11 shows maps of the forecast skill
for air temperature at 850 hPa averaged for the July–September period as a function of the forecast
time from 12 to 72 h. The six left panels (Figure 11a) show the results for experiment NNSM-SLV and
the six right panels (Figure 11b) show the results for experiment SLV*. The comparison of Figure 11a,b
show that NNSM-SLV improves the forecast in Canada and to a lesser extend in Northern Asia up to
72 h with respect to the SLV* analysis. Figures 4, 5a and 6c show that innovations and increments in
those regions in summer are positive, meaning that SMOS NN SM is adding moisture to the model
and this improves the atmospheric forecast for variables close to the surface such as T2m, RH2m or the
dew point.
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Figure 11. Evaluation on the forecast skill for air temperature at 850 hPa as a function of time (from
12 to 72 h). Average over July–September of the RMS difference of NNSM-SLV (a) and SLV (b) with
respect to the open loop (negative values, blue colors, indicate an improvement of the forecast skills).

5. Discussion

5.1. On the Low Impact of the Soil Moisture Analysis at Locations with In Situ Measurements

As discussed in Section 4.3, even if there are significant differences from site to site, the global
impact of the soil moisture analysis is low at the locations where in situ measurements are available.
One must bear in mind that the ratio of observation error versus model error is in principle different
for each site and it can be high in some places, giving low weight to the observations for the DA. It is
also important to remark that the regions with more SM in situ measurements (North America and
Europe) are also those were NWP models are the best constrained by a large number of conventional
observations and the models are already very good.

Blankenship et al. [15] discussed the assimilation of SMOS SM into the Noah LSM via an Ensemble
Kalman Filter within the National Aeronautics and Space Administration Land Information System.
An experiment was run for the warm season of 2011 in central and southeastern United States.
This experiment showed that SMOS DA significantly increased the correlation of Noah SM with
station measurements from 0.45 to 0.57 in the 0–10 cm layer. However, the modest contribution of the
SM DA into state-of-the-art models at the sites with in situ measurements found in this study is in
agreement with previous results from other DA experiments. The first results on the assimilation of
SMOS Tbs observations for SM analysis at ECMWF were slightly beneficial for soil moisture analysis
in a 15-days period at the location of two stations of the SCAN network, increasing the correlation
from 0.72 to 0.79 [9]. As discussed above, many sites and larger time periods must be analyzed to
obtain robust results. A more general result using tens of sites was discussed by Muñoz-Sabater et
al. [58], who presented a one-month DA experiment over North America. They obtained correlations
of 0.68, 0.64 and 0.70 against in situ measurements by the USCRN network for OL, SMOS Tbs DA and
SMOS Tbs + SLVs DA, respectively, and 0.63, 0.61 and 0.65 against in situ measurements by the SCAN
network for OL, SMOS Tbs DA and SMOS Tbs + SLVs DA, respectively.
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Lievens et al. [59] discussed the assimilation of SMOS Tbs into the GLEAM model and tested the
performance to improve SM and land evaporation estimates. They compared the analyzed SM to in
situ measurements over 358 sites finding a correlation of 0.65 for the OL and 0.68 for the SMOS Tbs
DA experiment. Similar conclusions were obtained by Kolassa et al. [60], who used NN estimates
of SM computed from Soil Moisture Active Passive (SMAP) observations for DA into the National
Aeronautics and Space Administration (NASA) Catchment model over the contiguous United States for
April 2015 to March 2017. Assimilating the NN retrievals without further bias correction improved the
correlations against in situ measurements for 14 SMAP core validation sites by 0.12, over the model-only
skill and reduced the surface SM STD by 0.005 m3m−3. Assimilating the NN retrievals after a localized
bias correction yielded slightly lower surface correlation and STD improvements. Finally, similar
results were discussed by Gevaert et al. [61] studying the joint assimilation of SM retrieved from
multiple passive microwave frequencies into the Australian Water Resources Assessment landscape
hydrology model. L- and X-band SM improved the correlation with respect to in situ measurements
by 0.11 and 0.08, while SM derived from C-band observations improved the correlation by 0.04.

The current study uses a much larger evaluation data set (more than 900 sensors) than those used
in the studies cited above and, as shown in Figure 9, at some sites the correlation improves by similar
(or higher) values to those found in previous studies [60,61]. In summary, the average low impact of
the SM analysis at the location of in situ measurement sites is in agreement with previous studies.
Of course, one must bear in mind that, even if the evaluation has been done in a large number of sites,
the conclusions are not necessarily representative for the entire globe. Furthermore, in the regions
where these in situ measurements have been acquired the models are already very good thanks to the
large number of conventional observations that are already used for assimilation and evaluation.

5.2. On the Effect for Atmospheric Forecasts

Regarding the impact of SM or Tbs data assimilation on atmospheric forecasts, there is a limited
number of studies that can be used for comparison. A first study of the impact of directly assimilating
SMOS Tbs observations on SM analysis and the atmospheric scores near the surface was presented
by Muñoz-Sabater et al. [9]. The results did not provide evidence of significant improvements of air
temperature and air humidity. In a subsequent study the sensitivity to SMOS observation errors and
model errors was studied further but the conclusion was that the atmospheric impact, limited to the
closest layer to the surface, is minimal [58]. Muñoz-Sabater et al. [7,9] used fully coupled surface and
atmosphere simulations for a one-month DA experiment over one continent. They assimilated SMOS
Tbs using a radiative transfer observation operator. In contrast, the current study used atmospheric
forecast initialized with the analyzed surface fields but it is global and it spans a complete year. Instead
of SMOS Tbs, a SM dataset obtained from SMOS observations was assimilated after using an off-line
NN as observation operator. The current study relies on a 24 h window DA, while the Muñoz-Sabater
et al. studies [9,58] used a 12 h DA window (although it is not suitable for operational applications).
The offline approach has the great advantage to enable performing, at a reasonable computing cost,
the extensive set of DA experiments required for research purposes, for instance to study the relative
impact of different observation types into the assimilation. In addition it makes it possible to run
one-year long DA experiments, which ensures the statistical robustness of the results such as the
positive impact on the atmospheric forecast discussed in Section 4.2. The offline approach used a NN
to invert the SMOS observations to compute a SM data set that is, by construction, consistent with
the global climatology of the model. In spite of the global consistency in the climatology and the
non-existence of a global bias, local bias can be present as discussed when analyzing the innovations
in Section 4. However, Kolassa et al. [60] found that an intermediate step of local bias correction after
training the NN using model fields do not change significantly the results.
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6. Summary and Conclusions

A set of SM DA experiments was presented and evaluated for NWP applications in order to
measure the information provided by the SMOS observations. The DA experiments were carried out
using the H-TESSEL land surface model and the offline so-LDAS in order to use a very computationally
efficient system for long assimilation experiments (one full year here). The analysis was done for SM
in the first three layers of the model by assimilating jointly SMOS SM retrievals and conventional
T2m and RH2m. The SM retrievals were produced specifically for this study, by training a NN using
SMOS brightness temperatures as input and H-TESSEL data as SM examples. This approach has
several advantages: (1) the SMOS information is processed in NRT since the NN processing is very fast,
(2) the SMOS retrievals share some statistical features with the model (such as global bias, or similar
climatology) to facilitate their assimilation without any CDF-matching that can distort the satellite
spatial information towards the model patterns, and (3) to avoid the use of a surface radiative transfer
that is still difficult to model and for which it is difficult to provide state-dependent uncertainties.

The different SM analyses were studied and compared for the four quarters of 2012. Some seasonal
effects and regional differences were found when using SMOS NNSM. For instance cumulative
increments for experiments using NNSM in Australia, South Africa and parts of South America
are negative in October-March, but they are positive from April to September. The increments in
the first soil layer due to the assimilation of T2m and RH2m are significant in the west of North
America, central Asia, the Sahel, South Africa, part of the Amazon region, and Australia. Furthermore,
the SLVs complement well the SMOS SM observations by better constraining the SM content of deeper
soil layers.

The different SM analyzed fields were evaluated against a large number of in situ SM
measurements. Significant differences were found from site to site but on average the SM analysis gives
similar results to the model open loop for the sites with in situ measurements. This is in agreement
with previous results in the literature, and can be understood since the models are already constrained
by many conventional observations on these locations. However, in the current study, the different
DA experiments where also evaluated by using the analysed SM fields to initialise atmospheric
forecasting experiments, to assess their impact on NWP performance. NNSM data assimilation
may slightly degrade the forecast in the Tropics in July–September. However, all experiments
using jointly NNSM and SLVs improve the forecast for all the seasons in the Southern hemisphere,
where conventional observations are lacking. The NNSM-only DA also improves the forecast in
July–September. Finally, in the Northern Hemisphere, the experiments with NNSM and SLVs improve
the forecast in April–September. NNSM-only DA also improves the forecast in July–September.
Maps of the forecasting skill with respect to the open loop experiment show that SMOS NNSM
improves the forecast in North America and to a lesser extend in Northern Asia for up to 72 h.

In conclusion, an innovative technique that uses a NN to retrieve a SMOS SM consistent with the
model (by construction) prior to the assimilation was discussed and evaluated. The results obtained
for the assimilation of SMOS NNSM are promising as they show a positive impact in the forecast.
The low computational cost of the offline NN SM retrieval with respect to an online approximative
radiative transfer observation operator and the promising results have triggered a strong interest for
operational applications.
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