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Abstract: Most of the conventional anomaly detectors only take advantage of the spectral information
and do not consider the spatial information within neighboring pixels. Recently, the spectral-spatial
based local summation anomaly detection (LSAD) algorithm has achieved excellent detection
performances. In order to obtain various local spatial distributions with the neighboring pixels
of the pixels under test, the LSAD algorithm exploits a multiple-window sliding filter, which can
be computationally expensive and time-consuming. In this paper, to address these issues, two
modified LSAD-based methods are proposed. The first method, called local summation unsupervised
nearest regularized subspace with an outlier removal anomaly detector (LSUNRSORAD), is based
on the concept that each pixel in the background can be approximately represented by its spatial
neighborhood. The second method, called local summation anomaly detection based on collaborative
representation and inverse distance weight (LSAD-CR-IDW), uses the surrounding pixels collected
inside the outer window, while outside the inner window, to linearly represent the test pixel
and introduces collaborative representation and inverse distance weight to further improve the
computational speed and detection precision, respectively. The proposed methods were applied to a
synthetic dataset and three real datasets. The experimental results show that the proposed methods
have a better detection accuracy and computational speed when compared with the LSAD algorithm
and others.

Keywords: anomaly detection; hyperspectral imagery; collaborative representation; unsupervised
nearest regularized subspace; local summation

1. Introduction

Hyperspectral remote sensing images have a high spectral resolution and their hundreds of
narrow contiguous bands, of about 10 nm wide, can be used to obtain a wealth of spectral information
about target objects. Thus, hyperspectral remote sensing images are widely used in the field of
target detection. Since it is difficult to obtain enough prior knowledge to characterize the statistical
information of target categories, detection without a prior spectral information of the target, which is
called “anomaly detection”, has been of significant interest [1,2]. Anomaly detection involves modeling
the background and using the difference between the pixels and the background to detect anomalous
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pixels. In the field of hyperspectral remote sensing, anomaly detection has been widely applied to
detect the locations of crop stress in precision farming [3,4], to locate scarce minerals [5], to analyze oil
and environmental pollution [6], and to detect landmines for public safety [5].

Many different anomaly detection algorithms have been proposed. The classical detection
algorithm, known as the Reed-Xiaoli (RX) [7] detector, was developed by Reed and Xiaoli in 1990 and
can be considered as the benchmark for the performance evaluation of hyperspectral anomaly detectors.
The RX detector is a second-order matched filtering algorithm that calculates the Mahalanobis distance
of a test pixel and the background. When the entire image is considered for background modeling,
this is known as global RX (GRX). If the RX detector estimates the background using local statistics,
it is referred to as local RX (LRX) [8–10]. In real hyperspectral imagery, the background information
is very complicated and cannot be described with just a multivariate normal distribution and it can
be difficult to use the estimated covariance and mean vector to represent the background statistics,
because of the existence of noise and anomalies. Under such circumstances, improved algorithms,
such as weighted RX (W-RXD) [11] and linear filter based RXD (LF-RXD) [11], aim at increasing the
probability of anomaly detection by improving the estimation of the background statistics. Some
kernel-based detection algorithms, such as the classical nonlinear kernel RX [12] detection algorithm,
have also achieved better anomaly detection performances than the conventional algorithms.

In recent years, methods based on sparse representation of signals have been applied to
hyperspectral image target detection [13–15]. These methods aim to use as few background and target
signals as possible to concisely represent the entire image information in an overcomplete dictionary
composed of the background information and target information [16]. However, these methods
only consider the spectral information and do not consider the spatial information, which makes
it difficult to obtain a satisfactory detection performance. The collaborative-representation-based
detector (CRD) [17] for hyperspectral anomaly detection is directly based on the concept that each
background pixel can be approximately represented by its spatial neighborhood, whereas anomalies
cannot, and has achieved satisfactory detection performances. Compared with the CRD algorithm, the
collaborative representation-based with outlier removal anomaly detector (CRBORAD) [18] method,
which removes outlier pixels that are significantly different from the majority of pixels, has further
improved the detection accuracy. Liu et al. developed a multiple-window anomaly detector [19] to
capture different levels of local spectral variations. It makes use of multiple windows with varying
sizes to characterize and interpret the anomalous targets of various sizes. It adopts a successive
nested-anomaly detector with windows nested in its preceding window. Different from the model,
the local summation anomaly detection (LSAD) [20] method, proposed by Du et al., makes full use of
the various local spatial distribution information of the neighboring pixels of a test pixel by using the
local-window summation strategy, which greatly improves the detection accuracy. However, there
are still some shortcomings. Firstly, the statistics of the background information are vulnerable to
anomalous targets when using a single local window, which leads to a high false alarm rate. Secondly,
the LSAD algorithm has the drawback of high computational complexity.

To solve these problems, we propose the local summation unsupervised nearest regularized
subspace with an outlier removal anomaly detector (LSUNRSORAD) and the local summation anomaly
detection based on collaborative representation and inverse distance weight (LSAD-CR-IDW) methods
to improve the detection accuracy and the computational speed of the LSAD method, respectively.

In the LSAD algorithm, a covariance matrix is used to represent the correlation information
between different background pixels and covariance inversion is used in the operation. However, the
computation cost of matrix inversion is relatively high. In this paper, we propose two methods which
use the linear combination of vector addition and multiplication to replace the complex matrix inversion.
The proposed LSUNRSORAD method uses an outlier removal strategy to eliminate the influence of
anomalous targets, and adopts an unsupervised nearest regularized subspace method to approximately
represent its test pixels. Different from the CRBORAD algorithm, in the LSUNRSORAD method, we
use the unsupervised nearest regularized subspace (UNRS) algorithm instead of the CRD algorithm to
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solve the convex optimization problem, and use the dual-window local summation strategy to make
full use of the local background statistics information. This strategy is different from the single window
local summation strategy in the LSAD [20] algorithm, in which, when the anomalous object is larger,
the inner window can be used as a guardian window to restrict the contamination of the background
pixel by the anomalous object. In the proposed LSAD-CR-IDW method, the local summation strategy is
also used to make full use of the various local spatial distribution information of the neighboring pixels
of the pixels under test. Meanwhile, in order to make full use of the spectral similarity information
between the local background pixels, we try to introduce the inverse distance weight (IDW) [21] of
surveying and the Tikhonov regularization [17,22] into collaborative representation method to improve
the accuracy of linear representation.

The residual image is generated by subtracting the predicted background from the original image,
and the anomalies can then be detected in the residual image. The detection results can be assessed
using receiver operating characteristic (ROC) [23] curves and area under curve (AUC) [23] values.
We evaluated and compared the proposed methods using a synthetic dataset and three real datasets.
The results show that the proposed methods provide higher detection accuracies than the traditional
methods. The rest of this paper is organized as follows. In Section 2, the proposed methods and the
main concepts are presented. Section 3 describes the experiments undertaken to evaluate the proposed
methods. Finally, Section 4 draws our conclusions.

2. Proposed Methods

In this section, we introduce the proposed LSUNRSORAD and LSAD-CR-IDW methods.
In Section 2.1, we provide a short review of the UNRS [22] algorithm and the collaborative representation
(CR) [17] algorithm, which are important techniques used in the proposed approach. We then explain
the proposed methods in detail in Section 2.2.

2.1. The Unsupervised Nearest Regularized Subspace (UNRS) Algorithm

We let a given hyperspectral image dataset X ∈ Rd×N be expressed as follows:

X = {xi}
N
i=1, (1)

where N is the total number of image pixels and each i-th column of X corresponding to xi is a
d-dimensional vector in the image. For each test pixel, y ∈ Rd, which is a d-dimensional column vector,
we assume that an approximation y′ calculated via the linear combination of the surrounding selected
data can be expressed as follows:

y′ = Xsα, (2)

where Xs is the surrounding background pixels and α is the weight vector. The equation Xs = {xi}
s
i=1 ∈

Rd×s represents the surrounding background pixels collected inside the outer window while outside
the inner window, in which each i-th column of Xs corresponds to xi and s is the number of chosen
surrounding background pixels between the dual windows, which can be calculated by the following:

s = winout ×winout −winin ×winin, (3)

where winout denotes the size of the outer window and winin denotes the size of the inner window.
In Equation (2), α ∈ Rs×1 is the weight vector. If we want to calculate y′, the weight vector αmust be
known. Therefore, Equation (2) is converted to find the sum-to-one constraint weight vector α, which
minimizes the objective function [22] as follows:

f (α) = ‖y−Xsα‖
2
2 = ‖y−

∑s

i=1
αixi‖

2
2, (4)
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where αi is a i-th element of vector α and ‖*‖22 denotes the square of 2-norm. The original space is
then “shifted” via centering y to mean zero. The objective function f (α) can then be calculated by the
following:

f (α) = ‖
∑s

i=1
αi(xi − y)‖22 = ‖

∑s

i=1
αizi‖

2
2 = αTZZTα, (5)

where zi = xi − y ∈ Rd×1, Z ∈ Rs×d, and ZZT
∈ Rs×s is a symmetric matrix called the Gram matrix,

denoted by G. In order to estimate the weight vector α, we use a Lagrange multiplier to solve
the function under the sum-to-one constraint condition. Hence, the cost function can be expressed
as follows:

L(α,λ0) = α
TGα− λ0

(
1Tα− 1

)
, (6)

where 1 is the s × 1 vector, in which all the elements are equal to 1, and it satisfies the constraint
condition 1Tα = 1. The value λ0 is a constant. We further derive the α and λ0 in Equation (6). We can
then find the value of αwith the sum-to-one constraint.

α =

∑s
j=1 G−1∑s

i=1
∑s

j=1 G−1
, (7)

where i, j is the rows and columns of the matrix index. Note that matrix G−1
∈ Rs×s. We apply this

technique by adding the regularized term to the objective function f (α). Equation (5) can then be
modified as follows:

f (α,λ) = αTGα+ λαTα, (8)

where λ is a constant. Thus, we convert the above problem to an equivalent problem, solved using the
Lagrange multiplier method. Taking the derivative, we can obtain the value of α, which minimizes the
new cost function as follows:

α =

∑s
j=1(G + λI)−1∑s

i=1
∑s

j=1(G + λI)−1
, (9)

where I is an identity matrix.

2.2. Collaborative Representation (CR)

We adopt collaborative representation [17] to linearly represent the test pixel, instead of using
UNRS. Therefore, the problem of solving the weight vector α becomes the following:

L(α,λ1) = arg minα‖y−Xsα‖
2
2 + λ1‖α‖

2
2, (10)

where λ1 is the Lagrange multiplier. We also use a Lagrange multiplier to solve the objective function.
Hence, Equation (10) is changed to the following:

L(α,λ1) = arg minα
[
αT

(
XT

s Xs + λ1I
)
α− 2αTXT

s y
]
, (11)

and the solution is as follows:
α =

(
XT

s Xs + λ1I
)−1

XT
s y. (12)

We control the weight of the penalty norm by adjusting parameter λ1. However, in the background
pixels, some of the pixels will be very similar to the test pixel. Therefore, the weight should be increased
in the linear representation and the weight should be reduced for dissimilar pixels. Tikhonov
regularization [17,18,22,24] is introduced to adjust the weight as follows:

Γy =


‖y− x1‖2 · · · 0

...
. . .

...
0 · · · ‖y− xs‖2

. (13)
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The objective function after adding the Tikhonov regularization can be converted to the following:

L(α,λ1) = argminα‖y−Xsα‖
2
2 + λ1‖Γyα‖

2
2. (14)

The final solution is obtained by the Lagrange multiplier, as follows:

α =
(
XT

s Xs + λ1ΓT
y Γy

)−1
XT

s y. (15)

Under the sum-to-one constraint condition, Equation (15) is converted to the following:

L(α,λ1) = argminα‖y2 −X′sα‖
2
2 + λ1‖Γyα‖

2
2, (16)

where y2 = [y; 1], X′s = [Xs; 1]. In the vector y2 and matrix X′s, 1 is a row vector with all elements equal
to 1. By using the Lagrange multiplier method, the final solution can be obtained as follows:

α =
(
X′Ts X′s + λ1ΓT

y Γy
)−1

X′Ts y2. (17)

We can obtain the residual image by Equation (17) after the representation process is completed.

2.3. Local Summation Unsupervised Nearest Regularized Subspace with an Outlier Removal Anomaly Detector
(LSUNRSORAD)

The presence of outliers affects the detection accuracy and the outliers cannot be represented by
neighboring pixels. In order to further improve the detection accuracy, we introduce an outlier removal
strategy to the UNRS algorithm. Pixels with intensity values greater than the maximum threshold or
smaller than the minimum threshold are considered to be outliers (e.g., the pink square in Figure 1a).
The outliers in the dual windows that are clearly different from the other pixels are removed based
on certain thresholds [18], which are constructed by using the mean and standard deviation of the
intensity values of the pixels within the dual windows. The intensity values here are obtained by
accumulating the radiance values of all bands in the hyperspectral image. The setting of threshold
is based on the knowledge of mathematical statistics. It is assumed that the background of imagery
obeys the normal distribution and, when the confidence interval is 95%, we can get the threshold, as
presented in Equations (18) and (19).

τmax = µ+ 2× σ, (18)

τmin = µ− 2× σ, (19)

where µ and σ are the mean and standard deviation of the background pixels Xs, and τmax and τmin
represent the maximum and minimum of the background pixels’ intensities, respectively. Pixels with
intensity values greater than τmax or less than τmin are removed. Therefore, Xs can be replaced by X′s,
in which s′ is the number of background pixels after outlier removal and X′s is used to predict the test
pixel y′. Once the representation process (Figure 1b) is completed, we can obtain the residual image by:

r1 = ‖y− y′‖2 = ‖y−X′s α
′
‖2, (20)

where α′ is the new weight vector after removing the outliers and r1 is the distance value. If the
distance r1 is larger than the threshold, then y is declared an anomalous pixel. For a test pixel, the
traditional detection algorithms exploit only one local window to estimate the local background
statistics. Du et al. [20] put forward a local summation single-window sliding strategy (in Figure 2),
which can take full advantage of the local background statistics. We borrow from this idea and put
forward the local summation dual-window sliding strategy shown in Figure 3. When the inner window
size is three and the outer window size is five, we need to calculate a nine (winin ×winin) times linear
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representation (Figure 1b) after the sliding window operation is completed. We then need to calculate
the result by the following:

r =
∑winin×winin

i=1
ri. (21)
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The surrounding pixels collected inside the outer window while outside the inner window are
used for estimating the local background statistics information, while the inner window is used to
constrain anomalous targets. Meanwhile, the sliding strategy is used to accurately represent the local
background statistics by local dual-window summation.

As shown in Figure 4, the light blue square represents the anomalous pixel. If we use only one
dual window to estimate the test pixel and we assume that the weights of each surrounding pixel are
the same (all 1/16), then the probability of whether the test pixel is an anomalous pixel is determined
by its surrounding pixels. If all surrounding pixels are anomalous pixels, the probability of the test
pixel being anomalous pixel is 1 (16× 1/16) and if 8 surrounding pixels are anomalous pixels, then the
probability of the test pixel is 1/2 (8× 1/16), so the probability of a test pixel with 1/16 is determined
as an anomalous pixel. However, the proposed local summation dual-window sliding strategy can
make full use of the background distribution information around the test pixel. As shown in Figure 5,
when the inner window size is three and the outer window size is five, we can obtain nine dual
windows after the window sliding is completed, of which only three dual windows contain anomalous
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pixels. Therefore, 1/3 of the windows contain an anomalous pixel. The probability of a test pixel
with 1/16 is determined as an anomalous pixel in each window, so the testing pixel is the probability
of an anomalous pixel to 1/48 (1/3× 1/16), in our proposed method. The overall description of the
LSUNRSORAD method is given in Algorithm 1.

Algorithm 1: The LSUNRSORAD Algorithm.

Input: Hyperspectral data X = {xi}
N
i=1, window size (winout, winin), and parameter λ

for all pixels do
for each window do

(1) For each test pixel y, a 2D matrix is constructed based on the pixels within the dual window by
Xs = {xi}

s
i=1;

(2) Remove outlier pixels in matrix Xs according to Equation (18) and Equation (19);
(3) Calculate the weight vector α′ by Equation (9);
(4) Calculate the detection result of each window measurement by Equation (20);

end for
(5) Calculate the final detection result by Equation (21);

end for
Output: Anomaly detection map
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2.4. Local Summation Anomaly Detection Based on Collaborative Representation and Inverse Distance Weight
(LSAD-CR-IDW)

In order to make full use of the local background statistics information, the local summation
dual-window sliding strategy is used. The traditional local RX algorithm [8–10] exploits only one local
window to estimate the local background statistics, which cannot suppress the global background.
However, the LSAD algorithm, proposed by Du et al. [20], exploits a local summation single-window
sliding strategy to suppress the global background. The strategy is shown in Figure 2. We take a 3× 3
size single window for illustration purposes. For each test pixel, we can obtain nine windows using
the single-window sliding strategy. The nine local windows are then used for implementation of the
second-order Mahalanobis distance features of the test pixel as follows:

disMi = (y− µi)
T
∑k×k

i=1
(y− µi), (22)

where y is the test pixel, µi is the i-th mean vector of Xsi (i = 1, 2, · · · , k× k), and Xsi is the local
background pixels of local sliding windows. The value k is the size of the inner window and k× k is
the number of local sliding windows. Finally, all of the Mahalanobis distances disM are summed as the
detected values of the test pixel as follows:

rLSAD =
∑k×k

i=1
disMi , (23)

where rLSAD is the final detection result. Differing from the local summation single-window sliding
strategy, we propose the local summation dual-window sliding strategy shown in Figure 3. In Figure 2,
for each test pixel, we can obtain k × k windows using the local summation single-window sliding
strategy. However, when the neighboring pixels contain an anomalous target and more than one pixel,
the background statistics are easily contaminated when using only a single local window for anomaly
detection, which leads to a high false alarm rate.

As shown in Figure 3, through the local summation dual-window sliding strategy, the surrounding
pixels collected inside the outer window while outside the inner window are used for estimating the
local background statistics information of the test pixel, while the inner window as a guard window
is used to constrain the anomalous targets, so as not to take into account potential anomalous target
pixels in the local background characterization. With respect to the size of the internal window, it is
usually set to the maximum radius of the anomalous targets, in the case of prior knowledge, so that the
anomalous targets can be included in the inner window, as much as possible, to exclude their influence
on the surrounding pixels. As shown in Figure 3, we adopt the local summation dual-window sliding
strategy to accurately represent the local background statistics of the test pixel. In order to improve the
speed of computational speed, we adopt collaborative representation [17] to linearly represent the
test pixel, instead of using UNRS. Considering that the closer the test pixel is the higher the similarity
between the background pixel and the test pixel will be, the inverse distance weight (IDW) [21] is
selected to make the most of the space-varying information. The relatively pure background pixel can
be obtained using the CRD method. Then, we add the IDW to the representation process, replacing the
weight Γy in Equation (14) with W1.

W1 = Γy × IDW, (24)

where y and ξ denote the test pixel (i, j) and any pixel (k, l) of Xs, respectively, then the IDW can be
expressed by the following:

IDW(x, ξ) =
hi
−p∑s

i=1 hi
−p , (25)

hi =

√
(i− k)2 + ( j− l)2, (26)
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where hi represents the Euclidean distance of geometric coordinates and p is a constant that is set to be
2. Then, we can also employ the technique to obtain the weight vector α. We can get the final weight
vector α by solving Equation (16):

α =
(
X′Ts X′s + λ1W1

TW1
)−1

X′Ts y2. (27)

Finally, we can obtain the residual image by Equation (20) after the representation process is
completed. As in the LSUNRSORAD method, we use the local summation dual-window sliding
strategy. Finally, we can obtain the detection result by summing the results of each window by
Equation (21). The description of the LSAD-CR-IDW method is given in Algorithm 2.

Algorithm 2: LSAD-CR-IDW Algorithm

Input: Three-dimensional hyperspectral cube X ∈ Rd, window size (winout , winin), and parameter λ;
for all pixels do

for each window do
(1) For each test pixel y, a 2D matrix is constructed based on the pixels within the dual window by

Xs = {xi}
s
i=1;

(2) Calculate the weight vector α for each window by Equation (27);
(3) Calculate the detection result of each window by Equation (20);

end for
Calculate the final detection result by Equation (21);

end for
Output: Anomaly detection map

3. Experiments and Analysis

In this section, in order to evaluate the effectiveness of the proposed methods, we compare
the results derived by the proposed methods with those derived by five other methods, as follows:
GRX, LRX, UNRS, CRD, and LSAD. We conducted experiments on four hyperspectral images. One
experiment based on a real hyperspectral imagery dataset was used as a simulated experiment to
analyze the property of the proposed methods, and the other experiments were real data experiments
to demonstrate the effectiveness of the different methods. It is worth noting that these first three
datasets were obtained after preprocessing, including atmospheric correction, and the first three
datasets are widely used in the field of anomaly detection. The fourth dataset obtained was after
MODTRAN atmospheric correction. 2-D binary plots are used to illustrate the detection results. For a
numerical comparison, we use the ROC curves and AUC values as the main criteria to evaluate the
detection results.

3.1. Synthetic Data Experiment

3.1.1. Synthetic Data Description

The first hyperspectral dataset is synthetic data that were generated based on an Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) [25] data from the Salinas Valley, CA, USA. It can
be downloaded from the GIC website [26]. The original data set (Figure 6a), comprising vegetables,
bare soil, and vineyard fields, consists of 512 × 217 pixels with 224 bands, with a spatial resolution
of 3.7 m. After removing 20 atmospheric and water vapor absorption bands (108–112, 154–167, and
224), sub-images of size 120× 120 were cropped (Samples: 1 to 120, Lines: 1 to 120), as depicted by
the red square frames in Figure 6b. The target implantation method [27] was applied to implant
anomalous targets into the AVIRIS Salinas sub-images (Figure 6c). We employed RX detection of the
whole-image to find the pixels which were different from the others as the anomalous target spectra of
the synthetic data. By detecting the whole image with the RX detector, we have found that the most
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prominent objects are buildings, so we set the building spectral as the anomalous spectral in Figure 6e.
The performance of the detectors could be evaluated in a fully controlled environment through the
method of target embedding. The buried target spectra needed to have a large difference from the
background spectra of the cropped area. Figure 6e shows the spectral curves of the anomalous targets
and the spectral curves of the main objects in the background (Figure 6c). In this simulated experiment,
in order to be similar to the anomalous target distribution of a real image, 25 pixels were randomly
selected as the anomalous target distribution points. Based on the linear mixing model, a synthetic
subpixel anomaly target was generated as follows:

z = f × t + (1− f ) × b (28)

where z is the spectrum of the synthetic subpixel anomaly target, f is the specified abundance fraction,
ranging from 0.04 to 1 with a step size of 0.04, t is the anomalous spectra, and b is the background spectra.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 22 

 

 

 

 
(b)  

 

(a)  (c) 

 

  

(d) (e) 

Figure 6. Salinas dataset: (a) Pseudo-color image; (b) Sub-image; (c) Synthetic image; (d) Anomaly 
location; (e) Spectral curves of the main ground objects and anomalies. 

3.1.2. Parameter Analysis 

The initial choices of various parameters are important for the proposed algorithms. For this 
simulated dataset, we adopt the target embedding method to fully control the generating 
environment of sub-pixel anomalous targets. In the UNRS, CRD and two proposed methods, the 
constant 𝜆 is a tradeoff parameter. In order to find the suitable 𝜆 , we first fix the other parameters 
(e.g., 𝑤𝑖𝑛 = 5 and 𝑤𝑖𝑛 = 3) and merely adjust the value of 𝜆. As shown in Figure 7, when the 
value of 𝜆  varies from 0.01 to 100, the detection results of different methods can be seen. The 
comparison results show that the two proposed methods have apparently better detection results 
than other methods, regardless of the value of 𝜆. Table 1 reveals that the detection results of different 
methods are optimal when parameter 𝜆 equals to 0.01. 

Figure 6. Salinas dataset: (a) Pseudo-color image; (b) Sub-image; (c) Synthetic image; (d) Anomaly
location; (e) Spectral curves of the main ground objects and anomalies.



Remote Sens. 2019, 11, 1318 11 of 23

3.1.2. Parameter Analysis

The initial choices of various parameters are important for the proposed algorithms. For this
simulated dataset, we adopt the target embedding method to fully control the generating environment
of sub-pixel anomalous targets. In the UNRS, CRD and two proposed methods, the constant λ is a
tradeoff parameter. In order to find the suitable λ , we first fix the other parameters (e.g., winout = 5
and winin = 3) and merely adjust the value of λ. As shown in Figure 7, when the value of λ varies from
0.01 to 100, the detection results of different methods can be seen. The comparison results show that
the two proposed methods have apparently better detection results than other methods, regardless
of the value of λ. Table 1 reveals that the detection results of different methods are optimal when
parameter λ equals to 0.01.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 22 
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Table 1. The AUC values in the Salinas dataset with different λ parameters.

λ

Methods
UNRS CRD LSUNRSORAD LSAD-CR-IDW

0.01 0.92497 0.92712 0.99999 0.99998
0.1 0.92497 0.92712 0.99996 0.99998
1 0.92496 0.92712 0.99985 0.99994
10 0.92496 0.92712 0.99952 0.99993

100 0.92491 0.92712 0.99925 0.99988

Since the choice of internal and external window sizes has an enormous impact on the results, we
first set parameter λ = 0.01 and set different window sizes to explore the optimal window size to show
the superiority and fully excavate the potential of the proposed methods. In order to obtain the optimal
window size, the AUCs are calculated under different window sizes with the synthetic dataset, as
shown in Figure 8. We can conclude that the proposed LSUNRSORAD method is the most robust and
the accuracy of the proposed two methods is generally higher than that of other detection methods.
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3.1.3. Detection Performance

To verify the effectiveness of the proposed methods, we compared the proposed methods with GRX,
LRX, UNRS, CRD, and LSAD. For a numerical comparison, we use receiver operating characteristic
(ROC) [23] curves and area under the curve (AUC) [23] values as the main criteria to evaluate the
detection results. In the experiment, we used a notebook computer with Windows 7 OS, an Intel
Core(TM) i3-2350 CPU @ 2.30 GHz, and 4 GB RAM. The codes are run by MATLAB® 2016b. In different
methods, the choice of initial parameters is very important.

The window size has a great influence on the operation time of different detection algorithms.
In order to highlight the superiority of the proposed algorithms in the computational cost, we try to
set the window size to be the same in different methods to ensure that the algorithms are at the same
condition. The parameters used in these methods are shown in Table 2. It is worth noting that we
adopt the edge expansion method [20] to fill the boundary in order to ensure no absence of detection
on the edge of image.

Table 2. Parameters of different detection methods.

Methods Parameters

GRX —
LRX winout = 5, winin = 3

UNRS winout = 5, winin = 3, and λ = 0.01
CRD winout = 5, winin = 3, and λ = 0.01

LSAD win = 5
LSUNRSORAD winout = 5, winin = 3, and λ = 0.01
LSAD-CR-IDW winout = 5, winin = 3, and λ = 0.01

For the Salinas dataset, the detection results of the different methods are displayed as 3D images in
Figure 9. Figure 10a shows the separability [25,28–30] between anomalous targets and the background,
and the output value range of the different detection methods. In each group, the first bar is a red
target bar representing the range of the anomalous targets and the second is a cyan background
bar representing the range of the background. The interval between the red box and the cyan box
represents the separability between anomalous target pixels and background pixels. As shown in
Figure 10a, the UNRS, CRD, LSAD, LSUNRSORAD, and LSAD-CR-IDW methods show the better
separability between anomalies and background, while the ranges of the background for LSAD are
larger than the ranges of the others. It indicates that the two proposed methods can restrict the range
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of the background to a smaller range, which enables the anomalies to be clearer in the detection map.
In Figure 10, compared with the LSAD method, the proposed methods are more capable of identifying
the synthetic subpixel anomalous targets, which makes it easier to find a suitable threshold and use
threshold segmentation method to convert grayscale images to binary images.
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As shown in Figure 10b and Table 3. Comparing the ROC curves in Figure 10b and the AUC
values in Table 3, we can see that the proposed methods obtain better results than the other methods.
The LSAD method is more accurate than the GRX, LRX, UNRS, and CRD methods, but it takes the
longest time to calculate. The LSUNRSORAD and LSAD-CR-IDW methods offer better results than
LSAD and the computational cost is relatively low compared to the LSAD method.

Table 3. Comparison of AUC and execution times using the Salinas dataset.

Method GRX LRX UNRS CRD LSAD LSUNRSORAD LSAD-CR-IDW

AUC 0.80732 0.99160 0.92497 0.92712 0.99987 0.99999 0.99998
Time/s 0.59 190.01 8.7 11.7 2603.4 76.08 65.15

For the simulated dataset, we adopt the target embedding method to fully control the generating
environment of sub-pixel anomalous targets. The detection results indicate that the proposed methods
show better performances in the subpixel targets’ detection.
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3.2. Real Data Experiments

3.2.1. Real Datasets Description

The second datum is a real hyperspectral image used in the experiments, which featured a part of
San Diego airport in the USA. This image was acquired by the AVIRIS sensor [16,29,31–34], with a
spatial resolution of 3.5 m. In the experiment, 189 bands of the raw data were retained after removing
the corresponding water vapor bands and low signal-to-noise ratio (SNR) bands. The whole image
size is 400 rows × 400 columns × 189 bands, and a 170 × 170 × 189 region (samples: 42 to 211, lines:
1 to 170) was cropped for the experiment. The whole image and the target map of the anomalies in the
test region [18,35] are shown in Figure 11. The sub-image contains 4 airplanes with 106 anomalous
pixels, and it comes from Reference [36].
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bridge with 43 pixels. The anomaly map comes from Reference [37].
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The last dataset used in the real-world experiments was a HySpex hyperspectral dataset obtained
from an aircraft platform in November 2014. This is a strip image covering an agricultural area of the
Quanshan District of Xuzhou, China, including 160 visible wave bands and 288 shortwave infrared
spectral bands ranging from 415 nm to 2508 nm, with a spatial resolution of 0.73 m. After spectral and
spatial resampling, the number of spectral bands was 200 and the spatial resolution was 1.5 m. The
sub-images of size 170× 130 were cropped from the strip image and the outliers in the sub-images
mainly come from the colored steel roofs. The scene and the ground truth of the anomalies are shown
in Figure 13.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 22 

 

infrared spectral bands ranging from 415 nm to 2508 nm, with a spatial resolution of 0.73 m. After 
spectral and spatial resampling, the number of spectral bands was 200 and the spatial resolution was 
1.5 m. The sub-images of size 170 × 130 were cropped from the strip image and the outliers in the 
sub-images mainly come from the colored steel roofs. The scene and the ground truth of the 
anomalies are shown in Figure 13. 

  
(a) San Diego dataset (b) Anomaly location 

Figure 11. The San Diego airport hyperspectral data, showing the test region and the target map. 

  
(a) Pavia Centra dataset (b) Anomaly location 

Figure 12. The Pavia Centra dataset and the anomaly target map. 

  
(a) HySpex dataset (b) Anomaly location 

Figure 13. The HySpex dataset and the anomaly target map. Figure 13. The HySpex dataset and the anomaly target map.

3.2.2. Parameter Analysis

As previously mentioned, as the initial choices of various parameters are important for these
methods, we use trial-and-error method to find the optimal parameters of different methods. To find
the suitable λ, we first fix winout = 5 and winin = 3 and merely adjust the value of λ. As shown in
Figure 14, the detection results of four methods are listed, in which we can find the optimal λ values
of different detection methods. From Figure 14, we can conclude that the proposed LSAD-CR-IDW
method is sensitive to parameter λ, while the proposed LSUNRSORAD method is the most robust.
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Similarly, we set the optimal parameter λ for different methods as shown in Table 4 and then set the
different window sizes to explore the optimal window size to show the superiority and fully excavate
the potential of the proposed methods. The Figures 15–17 shows the AUC values of different methods
under different window sizes. It is worth noting that the proposed two methods have approximate
detection results, so the curves used to represent the two methods in Figure 16 almost coincide.
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Therefore, from these figures we can conclude that the proposed LSUNRSORAD and LSAD-CR-IDW
methods are the most robust and the accuracies of the proposed two methods are higher than that of
other detection methods.

Table 4. The optimal parameter λ of different detection methods.

Datasets
Method

UNRS CRD LSUNRSORAD LSAD-CR-IDW

San Diego λ 0.01 100 100 100
Pavia λ 100 100 100 100

Hyspex λ 0.01 0.01 0.1 100
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3.2.3. Detection Performance

From the numerical value of the ordinate axis, in this synthetic data experiment, the parameter λ
has little effect on the detection results of the UNRS, CRD, LSUNRSORAD and LSAD-CR-IDW. However,
in the real hyperspectral images, the parameter λ has an enormous influence on LSAD-CR-IDW method.
When the anomalous object is large, the parameter λ needs to be set a larger value to balance the
influence of penalty item. So, we set the empirical parameter here. The empirical value of parameter λ
is 100 in the LSAD-CR-IDW. To effectively evaluate the computational cost of the proposed methods,
we try to keep all the parameters the same in different methods and the others parameters are shown in
Table 2. It is worth noting that these parameters are not optimal. We only use these same parameters
to evaluate the computational cost of different methods.

The 3D detection results for the three real datasets (the San Diego, the Pavia Centra and the
Hyspex datasets) are shown in Figure 18, Figures 20 and 22. Figure 19, Figures 21 and 23 show the
statistical separability analyses and the ROC curves of the corresponding datasets. Table 5 lists the
AUC values and the execution time of the different methods for the real datasets.
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Table 5. Comparison of AUC values and execution times of the different methods for the three
real datasets.

Dataset GRX LRX UNRS CRD LSAD Method1 Method2

San
Diego

AUC 0.73369 0.71684 0.8173 0.77195 0.79681 0.91284 0.9073
Time /(s) 1.15 336.03 13.81 14.28 5120.27 154.02 133.74

Pavia
AUC 0.99553 0.94957 0.98489 0.97960 0.95954 0.99862 0.99931

Time /(s) 0.53 71.78 9.42 9.41 1178.55 125.49 106.17

HySpex AUC 0.83484 0.76179 0.74988 0.81177 0.73731 0.83955 0.86486
Time /(s) 0.86 257.99 10.19 10.62 3996.17 161.60 122.07

As shown in Figure 19a, the separability between anomalous targets and the background indicate
that both the proposed methods and others cannot effectively separate the background and anomalous
features, which compress background and anomalous targets in a narrow range under complex
background conditions. So, in Figure 18, the detection results of the San Diego dataset contain a
large background.

As shown in Figure 18, under the same condition, we can find that GRX, LSUNRSORAD, and
LSAD-CR-IDW methods can suppress the background better than others. Combined with Figure 19b,
it can be seen that the detection accuracy of the GRX algorithm is relatively low. It indicates that the
two proposed methods can separate background and anomalous objects better, which also enable the
anomalies to be clearer in the detection map. Comparing the ROC curves in Figure 19b, we can also
clearly find that the two proposed methods have better capabilities for identifying the anomalous
targets than the other methods.

In the case of the Pavia Centra dataset, Figure 21a shows that the GRX, LRX, UNRS, and the
two proposed methods can effectively limit the background value to a small interval, while the CRD
and LSAD methods cannot. However, the LRX and UNRS methods cannot effectively separate the
background and anomalous objects. The remaining three methods show a better separation between
anomalies and backgrounds.

From Figure 20, we can clearly find that the proposed LSUNRSORAD and LSAD-CR-IDW
methods can detect more pixels in the detection results and, compared with GRX, these two methods
have relatively low false alarm rates. Figure 21b also illustrates that the proposed LSUNRSORAD and
LSAD-CR-IDW methods have better results than the others.
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Figure 21. Pavia Centra dataset: (a) Statistical separability analysis: Method1 represents the
LSUNRSORAD method and method2 represents the LSAD-CR-IDW method; (b) ROC curves.

As mentioned earlier, under complex background objects, it is not effective to recognize anomalous
objects only by binary image, but we can see the suppression of the background by different detectors
in the 3D detection results. In the experiment of Hyspex dataset, from Figure 22 and the Figure 23a, we
can find that the GRX, LRX, and the proposed methods show better separability than the others. The
ROC curve shows that the GRX and the proposed LSUNRSORAD and LSAD-CR-IDW methods have a
better detection performance than the other methods.
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 Figure 23. Hyspex dataset: (a) Statistical separability analysis: Method1 represents the LSUNRSORAD
method and method2 represents the LSAD-CR-IDW method; (b) ROC curves.

It should be emphasized that in the three real hyperspectral images, we use the same window
size and these parameters are not optimal. We only use these same parameters to evaluate the
computational cost of different methods. For a numerical comparison, we use area under the curve
(AUC) values as the main criteria to evaluate the detection results, as shown in Table 5. As can be
seen from Table 5, the two proposed methods offer better results than the LSAD method, with less
computational costs in the three real datasets.

By using this local summation dual-window sliding strategy, we can effectively utilize the
surrounding spatial information around the test pixels. When the window size remains the same, the
proposed method can often achieve better detection results than the traditional methods. Compared
with the LSAD method, the improved methods have higher precision and shorter running time, while
keeping the same external window size.

Overall, the proposed methods show a better performance than the other methods. Compared
with the LSAD method, the two proposed methods provide better results in anomaly detection accuracy.
The proposed LSUNRSORAD and LSAD-CR-IDW methods reduce the calculation cost and improve
the operation speed, while ensuring the accuracy of the detection results. Therefore, the proposed
LSUNRSORAD and LSAD-CR-IDW methods will be of practical use in real applications.

4. Discussion

In this paper, the potential gain of the proposed methods in Table 1 is low when the value of
λ varies from 0.01 to 100. The reason for the low gain is related to the synthesis of an anomalous
image. Since the background features of the images are relatively simple, the anomalous targets we
selected are relatively prominent, and the synthesized anomalous targets are pixel-level small target.
Therefore, the detection accuracy of various algorithms for anomalies is relatively high, which weakens
the influence of regularization parameters on detection results.

By analyzing the results of four groups of experimental data, we have found the fact that, in our
proposed two methods, the influence of parameter λ on detection algorithms may be related to the size
of anomalous targets. When the size of anomalous targets is larger, the detection results will be better
only when the regularization parameters become larger. Under different regularization parameters,
the detection performance of the proposed two methods is still better than that of the UNRS and CRD
algorithms, which also show the stability of the proposed methods relative to parameter λ.
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5. Conclusions

In this paper, we have proposed the LSUNRSORAD and LSAD-CR-IDW methods of anomaly
detection for hyperspectral imagery, which take full advantage of the local background distribution of
every local window for the test pixel of the hyperspectral image. We adopt the UNRS method to obtain
the weight vector in the LSUNRSORAD method and we use an outlier removal strategy to alleviate the
interference of outliers. In the proposed LSAD-CR-IDW method, we propose a dual-window sliding
strategy to reduce the probability of contamination of the test pixel and we introduce collaborative
representation to improve the speed of operation. Furthermore, in order to make the most of the
space-varying information, we introduce the inverse distance weight commonly used in surveying
and mapping.

The experiments undertaken in this study confirm that the proposed methods have a better
performance than the traditional anomaly detection methods. However, the computational cost of the
proposed LSUNRSORAD and LSAD-CR-IDW methods are still enormous, which will be the focus of
our future work.
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