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Abstract: As synthetic aperture radar (SAR) is playing an increasingly important role in Earth
observations, many new methods and technologies have been proposed for change detection using
multi-temporal SAR images. Especially with the development of deep learning, numerous methods
have been proposed in recent years. However, the requirement to have a certain number of high-quality
samples has become one of the main reasons for the limited development of these methods. Thus,
in this paper, we propose an unsupervised SAR change detection method that is based on stochastic
subspace ensemble learning. The proposed method consists of two stages: The first stage involves
the automatic determination of high-confidence samples, which includes a fusion strategy and a
refinement process; and the second stage entails using the stochastic subspace ensemble learning
module, which contains three steps: obtaining the subsample sets, establishing and training a
two-channel network, and applying the prediction results and an ensemble strategy. The subsample
sets are used to solve the problem of imbalanced samples. The two-channel networks are used to
extract high-dimensional features and learn the relationship between the neighborhood of the pixels
in the original images and the labels. Finally, by using an ensemble strategy, the results predicted
by all patches reclassified in each network are integrated as the detection result. The experimental
results of different SAR datasets prove the effectiveness and the feasibility of the proposed method.

Keywords: change detection; synthetic aperture radar; two-channel network; stochastic subspace
ensemble learning

1. Introduction

Remote sensing images represent a precious source of information for earth observation
applications, such as land use classification, [1,2] target recognition [3,4] and change detection [5,6], etc.
In contrast to ordinary land use classification, change detection is actually a binary classification task.
The purpose of change detection is to identify areas that have changed between multitemporal image
acquisitions. Among them, synthetic aperture radar (SAR) change detection has been intensively studied
in the past several years, and be used in many fields, such as flood detection [7,8], urban studies [9,10],
and forest monitoring [11]. A big advantage of SAR change detection is that it can work independently
of atmospheric and sunlight conditions. This capability is even crucial in some conditions [12].
For example, bad weather (e.g., rain and clouds) often coincides with some emergency events such
as floods, landslides, and earthquakes [13]. In such circumstances, timely optical data may not be
obtained and change detection from SAR image is the only method available for utilization.

Since acquiring a certain number of high-quality samples is difficult, and human intervention is
unable to meet the need for automated change detection, unsupervised methods have become more
widely used in research and practical applications.
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After preprocessing steps, such as registration, calibration, and others, the traditional methods
of SAR change detection usually include two pivotal steps [14]: difference image (DI) generation
and DI analyses. Many research efforts have involved studying these two steps. For DI generation,
the methods can be categorized into two classes. One is the use of the detectors on the basis of a
single operation, such as log-ratio (LR) [15] and mean-ratio (MR) [16]; the MR uses neighborhood
information, and the modified LR can restrain the negative speckle noise [17]. The other class involves
a combined operation, such as the neighborhood ratio (NR) [18] and combined difference image
(CDI) [19], which is a weighted fusion of the subtraction operator and the LR operator, and the detector
considers the consistency of single-pixel differences and neighborhood differences [20] and combines
LR and Gauss-LR [21]. However, all of them have their own disadvantages. Detectors with a single
operation cannot adequately enhance the degree of differences between different classes of pixels.
The detectors that involve a combined operation can enhance the discrepancy between two classes, but
the difference value may be wrong when the degrees of the differences between two corresponding
pixels are too close. Moreover, the fusion mode of various detectors is designed by artificial means,
like a weighted sum of the two detectors et al.; it may show a good performance for the local parts, but
it is probably inappropriate for the entire image. Furthermore, whichever DI is constructed will still
lose some difference information when it is generated.

The most widely used methods for DI analysis are thresholding methods and clustering methods.
Compared with clustering methods, thresholding methods are more intuitive and efficient. The most
often used thresholding methods are Expectation–Maximization (EM), which is based on the Gaussian
distribution [22], and Kittler–Illingworth (KI) thresholds, which are based on the generalized Gaussian
distribution [23]. However, they still have their own shortcomings. They should obey different specific
distributions, which are assumed, and if the distribution assumptions introduce errors that are too large
or too small, the algorithm becomes invalid. Clustering methods have received a great deal of attention
because they need not follow those rules. Examples of clustering methods include fuzzy c-means
clustering (FCM), fuzzy local information c-means clustering (FLICM) [24], reformulated fuzzy local
information c-means clustering (RFLICM) [25], and an improved FCM algorithm based on the Markov
random field (MRFFCM) [26], among other methods. They are all based on the fuzzy theory, and all of
them are continuous improvements of FCM, which is the most classic and most widely used method.
However, ignoring information about spatial context becomes the main drawback of the algorithm.
Due to this, FLICM incorporates the neighborhood information to reduce the effect of the speckle noise,
RFLICM improves the objective function to enhance the difference degree and make the algorithm
noise insensitiveness, and MRFFCM improves FCM by combining it with the Markov random field
(MRF), so it leverages the advantages of the two individual methods at the same time.

Owing to the high power of self-learning and the ability to extract high-dimensional features,
deep learning has been successfully applied to SAR change detection in recent years. Many studies that
involve deep learning have emerged. Liu et al. proposed a dual-channel convolutional neural network
(CNN) for SAR change detection. This method uses the same operation on two original images and
generates a segmentation result after fully connecting the two results obtained from each CNN [27].
Gong et al. put forward an unsupervised method using a joint FCM method to select the samples
and a restricted Boltzmann machine network to detect the change areas in an image [28]. Gao et al.
made use of the neighborhood-based ratio and extreme learning machine (NR-ELM) [29] to find the
changed areas in an image, and it had good results. They also proposed a method based on deep
semi-nonnegative matrix factorization (Deep Semi-NMF) and SVD (singular value decomposition)
networks [30].

All SAR change detection methods face an important problem, which is the classification of
intermediate pixels. Given that lots of pixels between two images show an obvious status of changed
or unchanged, more attention should be paid to pixels that are not easily discerned as changed or
unchanged. These pixels are also the main reason for errors detected in the results. Compared with
traditional methods, deep learning methods have contributed more to solving this problem. By learning
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from high-confidence changed and unchanged samples, the algorithm can classify intermediate pixels
into the most likely classes. The information from the original images is fully used in the network.
Because of this, the need for a certain number of high-quality samples has become another issue. If the
samples are selected by artificial means, the manual workload increases and the target of automatic
change detection cannot be completely classified. On the other hand, with artificial selection, it is also
difficult to represent all types of changes with a limited number of samples.

In recent years, unsupervised SAR change detection methods based on deep learning have made
great progress, but there are still some shortcomings that need to be addressed. First, the samples
obtained from the unsupervised methods cannot satisfactorily balance between quantity and accuracy.
Secondly, with samples that are imbalanced, there may be a big difference between the number of
the changed samples and the number of the unchanged samples. Thirdly, if we train the model with
selecting an equal number of unchanged samples and changed samples, the diversity of the sample set
cannot be guaranteed.

To handle the problems mentioned above, an unsupervised change detection method based on
stochastic subspace ensemble learning is proposed in this study, in which there is no manual involvement
throughout the whole process. By using a combined strategy and a refinement process, the unchanged
samples, intermediate patches, and changed samples are obtained through the pre-classification and
sample selection steps in an unsupervised way. Then, the stochastic subspace ensemble learning
module contains the obtained subsample set and establishes and trains the two-channel network,
which predicts the results, and an ensemble strategy is applied. From the subsample sets obtained,
the problem of the imbalance between changed and unchanged samples will be solved. The networks
are used to learn the relationship between the corresponding patches and the labels. Finally, the results
predicted by all patches, which are reclassified in each network, are integrated by an ensemble strategy;
thus, the impact of error samples will be reduced.

There are three main contributions in this article:

1. To get more training samples with high accuracy, a combined strategy and a refinement process
are used to select as many high-confidence changed and unchanged samples as possible.

2. To take full advantage of the information from the samples selected while solving the problem of
sample imbalance, which often appears in SAR change detection, a stochastic subspace ensemble
learning module is proposed.

3. To correct the wrong samples selected during the unsupervised sample selection, we use all of the
patches obtained from the original images to replace the intermediate patches for classification in
the prediction phase.

The rest of this article is organized as follows: Section 2 presents the framework of the proposed
method in detail. The change detection experiments and their accuracy analyses are reported in
Section 3. In Section 4, the influence of the parameters and the comparison of the results in different
datasets are discussed in detail. Finally, the conclusions are expressed in Section 5.

2. Method

For two multitemporal co-registered SAR images I1 and I2 of the same geographical area,
after calibration, both have a size of M × N. The purpose of change detection is to generate a binary
image that can clearly distinguish between changed and unchanged areas. Overall, the proposed
method is performed in an unsupervised way, as shown in Figure 1, and it includes two main stages:

1. Pre-classification and sample selection are based on a fusion strategy and a refinement process.
The NR DI and the log-mean ratio (LMR) DI generated by the original images are segmented
separately by hierarchical FCM (H-FCM) into the changed class, unchanged class, and intermediate
class in both segmentation results. The original image is split into several image patches with a
sliding window whose step size is 1. Then, the corresponding patches in the two original images
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are combined into one image with two channels. The class of the center pixel is the class for each
image with two channels.

2. Stochastic subspace ensemble learning is performed. Firstly, the unchanged samples selected from
the pre-classification and sample selection stage are divided into several subsets stochastically,
and the quantity of each subset is about the same as the number of changed samples. Secondly,
every unchanged subsample set is combined with the changed sample set to constitute several
new subsample sets for training the two-channel networks established. Thirdly, each prediction
result obtained from the trained network is integrated by an ensemble strategy to generate the
final detection result.
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Figure 1. Flowchart of the proposed change detection method.

2.1. Pre-Classification and Sample Selection

In SAR change detection, the samples selected in an unsupervised way need to comply with two
main principles:

1. A certain number of samples needs to be reached to contain as many change types as possible.
2. Samples generation by the unsupervised method should be performed with high accuracy.

So, in this study, a combined strategy and a refinement process were used for sample selection to
meet these requirements in the pre-classification step.

The NR DI can embody different characteristics in homogeneous, heterogeneous, and edge
regions, while the LMR DI can transform the type of speckle noise from multiplicative to additive
through the logarithm operation and reflect the neighborhood difference well at the same time. Here,
H-FCM is based on the NR and LMR, which are combined to generate the initial segmentation result.
Compared with traditional FCM, H-FCM, using a hierarchical consolidation strategy, can generate
fewer intermediate pixels and more high-confidence sample pixels, which is beneficial to the processes
used for sample selection.

Using the NR DI, the gray-level and spatial structure information of neighborhood pixels can be
considered simultaneously. It can reflect the local heterogeneity and the differences in the neighborhood.
As the coefficient of variation is used as the weight to show local heterogeneity, the generated DI
shows a significant difference between homogeneous regions, heterogeneous regions, and edge regions.
The difference is defined as

DNR(p) = θ×
min

{
I1(p), I2(p)

}
max

{
I1(p), I2(p)

} + (1− θ) ×

∑
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where σ(p) and µ(p) are the variance and mean of the gray level in the neighborhood Ω. In this article,
Ω is 3 × 3, and p and q denote the pixel location in Ω.

Owing to the average in the neighborhood, the LMR is used to reduce the impact of isolated points
since the widely used LR operator cannot overcome the isolated points problem because neighborhood
information missing. The LMR operator is defined as follows:

DLMR(p) = log
(
max

(
µ(ΩI1)

µ(ΩI2)
,
µ(ΩI2)

µ(ΩI1)

))
(2)

where and µ(ΩI2) are the average values of the neighborhood in I1 and I2.
By using H-FCM, the two DIs are used to get different segmentation results separately; unchanged

pixels are labeled 0, changed pixels are labeled 255, and intermediate pixels are represented by 128.
Then, a combined strategy is used for the two segmentation results. To obtain more valid samples,
only the pixels with the same label in both segmentation results are marked with the label, and other
pixels are labeled 128. In this way, the initial segmentation result is obtained. It can be expressed as

L_init(i, j) =
{

L_NR(i, j), (L_NR(i, j) = L_LMR(i, j))

128, (L_NR(i, j) , L_LMR(i, j))
, (3)

where L_NR(i, j) is the class of (i, j) in L_NR, L_LMR(i, j) is the class of (i, j) in L_LMR, and L_init(i, j) is
the class of (i, j) in L_init, which is the result obtained by the combined strategy.

The quality of the samples is also one of the key factors in getting detection results with higher
accuracy. So, a refinement process with two steps is adopted to improve the accuracy of the samples
from the initial segmentation results.

In the first step, as the ratio operation increases the sensitivity in low backscattering areas (e.g.,
the real difference between 1 and 2 is far smaller than that of 100 and 200, although they both have the
same ratio; this situation is especially common for water regions), the high false alarm (FA) due to
the ratio operation while calculating from the two DIs must be resolved. Therefore, an appropriate
threshold t is set here. Considering the image information, the threshold of the absolute subtraction
value between the corresponding pixels is 10. When the value is less than 10, the pixel in the initial
segmentation result is labeled 0, regardless of its previous label. It can be described as the following:∣∣∣I1(p) − I2(p)

∣∣∣ < t. (4)

In the second step, a neighborhood heterogeneous coefficient is proposed to reflect the similarity
between the center pixel and its neighborhood. The objective is to reduce the impact of the
low-confidence samples. Given a pixel in the position (i, j), Ω(i, j) is the corresponding neighborhood
around it with a size of m×m in the initial segmentation result.

As shown in Figure 2, we only consider the number of unchanged pixels in the neighborhood.
In Figure 2a, the changed pixel is surrounded by intermediate pixels, and the class of the center pixel
will not change in this process, which is also applied to the condition in which the center pixel is
surrounded by changed pixels. In Figure 2b, the changed pixel is surrounded by unchanged pixels,
the class of the center pixel will be reclassified as an intermediate pixel. Figure 2c shows another
situation: there are not only unchanged pixels but also intermediate pixels in the neighborhood. In this
case, the final class of the center pixel depends on the proportional relationship between the number of
unchanged pixels and the neighborhood size. The threshold T represents the maximum number of
unchanged pixels that can be allowed in the neighborhood, and T is set to restrict the sample pixel
that has obviously different characteristics from the pixels in the neighborhood. If the number of
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unchanged pixels is not less than T, the center pixels will be reclassified as the intermediate class.
The restriction is defined as

num
(
L_init(r,l) ∼ L_init(i, j), (r, l) ∈ Ω(i, j) ∧ (r, l) , (i, j)

)
m×m

≥ T (5)

where L_init(i, j) is the class of (i, j) in the initial segmentation result, and

num
(
L_init(r,l) ∼ L_init(i, j), (r, l) ∈ Ω(i, j) ∧ (r, l) , (i, j)

)
denotes the number of pixels whose class is the

opposite of L_init(i, j) in the Ω(i, j).
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Figure 2. Examples showing the neighborhood heterogeneous coefficient. (a) The center pixel is 
surrounded by intermediate pixels. (b) The center pixel is surrounded by unchanged pixels. (c) The 
Figure 2. Examples showing the neighborhood heterogeneous coefficient. (a) The center pixel is
surrounded by intermediate pixels. (b) The center pixel is surrounded by unchanged pixels. (c) The
center pixel is surrounded by unchanged pixels and intermediate pixels. The circle pixel represents a
changed pixel in the pre-classification, the square pixel represents an unchanged pixel, and a triangle
pixel is an intermediate pixel.

When T becomes larger, the number of the samples selected will increase, whereas the accuracy
will decrease. To balance the quantity and accuracy of the sample selected, the threshold T is set to 0.5
in this article.

After all the processes mentioned, the pre-classification result is obtained. Then, the different
classes of the pixels are assigned to the corresponding sample patches. In this paper, the patches with a
size of n × n are segmented by a sliding window whose step size is 1, and the two patches in the same
position of the two original images are combined as two channels in one image. Here, n is set to 13.
Then, the label of the patches is marked as the class of the center pixel, which was classified in the
pre-classification step. Among the unchanged patches and the changed patches are the samples that
are used in the training phase. However, it is worth noting that for SAR change detection, the changed
areas usually only occupy a small portion of the image. As a result, in this stage, even ignoring the
number of intermediate pixels, the number of unchanged sample patches is still much larger than the
number of changed sample patches.

2.2. Stochastic Subspace Ensemble Learning

Ensemble learning is also referred to as the multi-classifier system, which integrates multiple
sample sets or multiple individual learners to complete the learning task [31]. There are two stages in
the learning process: first, different individual learners are generated; then, an integration strategy is
adopted for the combination. The ensemble learner often has a better learning ability when compared
with using each individual learner since it combines the advantages of all multiple learners.

There are three aspects to the differences between different ensemble learning algorithms:

1. Different training datasets.
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2. Different individual learners.
3. Different ensemble strategies for combining the results from each individual learner.

The stochastic subspace ensemble learning method [32,33] applies to aspect 1. At first, the stochastic
subspace is obtained from the original dataset by stochastically sampling in the attribute dimension.
Then, different corresponding datasets are generated by the stochastic subspaces. After that,
each subspace dataset is used in the corresponding classifier. Finally, every classifier generates a
result, and the result is integrated by using an ensemble strategy. In the proposed method, the
stochastic subspace ensemble learning module has three steps.

2.2.1. The Subsample Sets Obtained

Generally, the changed area is finite for a short time interval in SAR change detection. This leads
to a result in which the proportion between the changed samples and unchanged samples has a lot of
disparity. If we use the sample set obtained directly in the neural network (see Section 2.1), then the
predicted patches will be classified as unchanged pixels. Therefore, changing the imbalanced sample
set into several balanced subsample sets in the stochastic subspace ensemble learning module solves
the problem of imbalanced training samples and makes full use of the information from the samples.

As shown in Figure 3, all the positions of the unchanged labels in the pre-classification step are
taken as the attribute dimension. To get a sample set for training that is balanced between the changed
samples and unchanged samples, the number of unchanged labels stochastically selected in each
stochastic subspace needs to be roughly the same as the number of changed labels. Each set of the
unchanged labels’ positions is a stochastic subspace. Then, the unchanged samples that correspond to
each label’s position in every set are combined with the changed sample patches to construct several
subsample sets. Therefore, different subsample sets are used for training the two-channel network in
the training phase. Through this process, the original imbalanced sample set is divided into several
subsample sets, and each one has the same number of changed samples as unchanged samples. Thus,
the problem of imbalanced samples is solved. Also, as a result of this, almost every sample patch is
used for network training, which will make full use of the information from the samples.
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2.2.2. Two-Channel Network Establishment and Training

In DI generation, regardless of the operation used between the multitemporal images, they can
only reflect partial difference information of the corresponding pixels, thus, the DI generated would
lose some difference information. Therefore, here a neural network is built to learn the nonlinear
relationship between the original image and the labels by using the changed or unchanged sample
patches in the network for training.

A two-channel convolutional neural network is used here to calculate the similarity between the
two corresponding patches. With strong self-learning and nonlinear fitting abilities, the neural network
can extract high-dimensional features from images by using convolutional layers. The flowchart of the
two-channel neural network and the first convolutional layer used is shown in Figure 4. Each image
with 2 channels is fed into the network directly, and after the first convolutional layer, the 2 channels
are fused into one single-channel feature image. After several processes, such as the convolutional
layers, pooling layers, etc., the similarity is computed.
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Figure 4. The schematic illustration of the two-channel network.

Considering the size of the input patches, a shallow but effective neural network architecture is
used to fit the patch size. The convolutional layers and the pooling layers both make the feature image
changes in the network smaller or padded with zeros, but if the neural network is built in a deep mode,
too many zero pixels padded in the convolution will make the networks meaningless. Figure 5 shows
the architecture of the neural network. The number of unchanged sample patches and the changed
sample patches is S. The network is constituted by two convolutional layers, two pooling layers, two
fully connected layers, one dropout layer, and one flattened layer. The kernel sizes of the convolution
layer and the pooling layer are 3 × 3 and 2 × 2, respectively.
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After the network has been built, different subsample sets are fed into the network to train each
two-channel network, as described in this section. Every trained network is used to predict the result
in the next step.

2.2.3. The Prediction Results and an Ensemble Strategy Applied

After the different two-channel networks have been trained in the previous step, in the testing
phase, all the patches replace the intermediate patches as the testing samples for prediction. Then,
each network gets a corresponding result. Therefore, in this condition, the pixels that were wrongly
classified in the pre-classification step have a chance to be corrected.

However, there is still one thing worth noting: since several results are obtained from the different
trained networks, the adopted ensemble strategy also plays an important role. In the study, given that
each two-channel network has the same architecture and the subsample sets are divided in a stochastic
way, each network’s result contributes to the integrated result with the same weight. Therefore,
an averaging method is applied as the ensemble strategy here [34].

3. Experiment

There are three main parts in this section. Firstly, the three SAR datasets used in our experiment
are described. Then, we introduce the evaluation criteria used for assessing the performance of the
detection results. Finally, the experimental images and the numerical results from three different
datasets are displayed. Apart from the proposed method, three widely used typical methods, namely,
principal component analysis and k-means (PCA-KM) [35], MRFFCM [26], and Gabor feature with
two-level clustering (GaborTLC) [36], are presented as the comparative methods. Besides these three
methods, which are implemented using their publicly available codes, we also compare the results
obtained by the intermediate patches, the results obtained by one stochastic subsample set, and
the results obtained by unrefined samples. These comparisons are presented to demonstrate the
effectiveness and advantages of the proposed method.

3.1. Description of Datasets

To get more accurate detection results, the original images in the experiment were registered, and
geometric corrections were completed. Since the ground truth has a close relation to the accuracy
assessment of the results, all ground reference images for the three datasets used were acquired by
integrating prior information with the photo-interpretation. In the binary image of the detection result,
the white pixels represent the changed areas, and the unchanged pixels are displayed in black. And in
this paper, the change detected is actually the variations of SAR backscattering intensities between the
two acquisition dates, which includes both the step-change and seasonal change.
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The first dataset is a section of two SAR images acquired by the Radarsat-2 SAR sensor over the
Yellow River Estuary in China in June 2008 and June 2009. These images are shown in Figure 6a,b,
respectively. The images are 257 × 289 pixels. Between the two dates, some areas were newly irrigated,
causing backscattering changes. The ground reference shown in Figure 6c was acquired by integrating
prior information with the photo-interpretation.
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(c) The ground reference.

The second dataset consists of two SAR images acquired by the RADARSAT sensor over
Ottawa in Canada in July 1997 and August 1997, and they are shown in Figure 7a,b, respectively.
The dataset was provided by Defense Research and Development Canada Ottawa. The images are
350 × 290 pixels, and between the two dates, a flood receded in some areas, causing backscattering
changes. The ground reference shown in Figure 7c was acquired by integrating prior information with
the photo-interpretation.
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(c) The ground reference.

The third dataset is a section of two SAR images acquired by the European Remote Sensing 2 SAR
sensor over San Francisco in America in August 2003 and May 2004, and they are shown in Figure 8a,b,
respectively. The images are 256 × 256 pixels, and between the two dates, some areas were newly
irrigated, causing backscattering changes. The ground reference shown in Figure 8c was acquired by
integrating prior information with the photo-interpretation.
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3.2. Validation

Considering the images in the experiments don’t have a large size, the validation is conducted by
comparing the results with the ground reference in a pixel-by-pixel way. Several evaluation criteria for
the accuracy assessment of the detection results are as follows: false positives (FP), false negatives (FN),
true positives (TP), true negatives (TN), Overall error (OE), percentage correct classification (PCC),
and Kappa coefficient (KC) [37]; in the experiment, they are all reported as percentages. Among these
criteria, FP is the number of unchanged pixels that have been wrongly detected as changed ones.
FN denotes the number of changed pixels that have not been detected as changed. TP indicates the
number of changed pixels that have been correctly detected, and TN is the number of unchanged
pixels that have been correctly detected. OE, PCC, and KC are three overall criteria. OE represents
the number of all pixels erroneously classified, and it is the sum of FP and FN. PCC shows the ratio
between the number of pixels detected correctly to the total number of pixels. It is defined as

PCC =
TP + TN

TP + FP + TN + FN
(6)

KC is also a measure for the accuracy assessment, and its value ranges from −1 to 1, but it usually
ranges from 0 to 1. High KC values correspond to good performance according to the detection results.
Compared with PCC, KC is more persuasive and equitable for reflecting the detection accuracy since it
involves more detailed information. In our experiment, it also appears that the values of PCC are close,
while the values of KC are quite discrepant. Assuming that the number of unchanged pixels in the
ground reference is Nu and that the number of the changed pixels is Nc, then KC can be computed as

KC =
(PCC− PRE)
(1− PRE)

(7)

where

PRE =
Nc× (TP + FP) + Nu× (FN + TN)

(TP + FP + FN + TN)2 (8)

3.3. Results from Different Datasets and Analyses

The result of the proposed method is compared with three other methods that are widely used, and
some results based on the proposed network are presented from two aspects: visual and quantitative
analyses. The visual comparisons are shown in Figures 9–11, and the quantitative analyses are listed in
Tables 1–3.
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3.3.1. Results from the Yellow River dataset

In this part, the change images generated by different methods using the Yellow River dataset are
displayed in Figure 9, and the quantitative metrics computed by the different change images and the
ground reference are shown in Table 1.

As shown in Figure 9a, PCA-KM has the most pixels with noise in detection result, which means
the method is sensitive to noise. Correspondingly, the value of FP shown in Table 1 is the highest among
the three popular methods. Relatively, as shown in Figure 9b,c, the change images from MRFFCM
and GaborTLC have fewer pixels with noise, but they also missed lots of changed pixels, leading to
both methods resulting in high FN values, as shown in Table 1. In addition, we selected the change
image generated by combining the intermediate patch prediction results and the pre-classification
results (Intermediate), and this image is shown in Figure 9d. The result obtained from one stochastic
subsample set (2-channel-S1), shown in Figure 9e, and the result obtained from the unrefined samples
(Unrefined), shown in Figure 9f, are also presented for comparison. Obviously, the result achieved by
the proposed method, displayed in Figure 9g, is better than any other results generated using the same
network, as shown in Figure 9d–f. Similarly, the PCC and KC values of the proposed method listed in
Table 1 are much better than those of the other methods, leading to the same conclusion.
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Figure 9. Change detection results of the Yellow River dataset. (a) Achieved by PCA-KM. (b) 
Achieved by MRFFCM. (c) Achieved by GaborTLC. (d) Achieved by using the prediction results of 
intermediate patches and the pre-classification results. (e) Achieved by using the prediction results of 
one stochastic subsample set. (f) Achieved by using the unrefined samples. (g) Achieved by using the 
prediction results of all patches. (h) The ground reference. 

Table 1. Values of evaluation criteria of the Yellow River dataset. 

Methods FP FN OE PCC KC 
PCA-KM 2.88% 3.59% 6.46% 93.54% 77.85% 
MRFFCM 0.86% 4.00% 4.87% 95.13% 82.38% 

Figure 9. Change detection results of the Yellow River dataset. (a) Achieved by PCA-KM. (b) Achieved
by MRFFCM. (c) Achieved by GaborTLC. (d) Achieved by using the prediction results of intermediate
patches and the pre-classification results. (e) Achieved by using the prediction results of one stochastic
subsample set. (f) Achieved by using the unrefined samples. (g) Achieved by using the prediction
results of all patches. (h) The ground reference.

Table 1. Values of evaluation criteria of the Yellow River dataset.

Methods FP FN OE PCC KC

PCA-KM 2.88% 3.59% 6.46% 93.54% 77.85%
MRFFCM 0.86% 4.00% 4.87% 95.13% 82.38%
GaborTLC 1.56% 3.11% 4.67% 95.33% 83.68%

Intermediate 1.44% 3.43% 4.86% 95.14% 82.85%
2-channel-S1 1.69% 2.91% 4.60% 95.40% 84.07%

Unrefined 1.23% 2.99% 4.22% 95.78% 85.18%
Proposed method 1.97% 2.17% 4.14% 95.86% 85.98%
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3.3.2. Results from the Ottawa dataset

In this part, the change images generated by the different methods using the Ottawa dataset are
displayed in Figure 10, and the quantitative metrics computed by the different change images and the
ground reference are shown in Table 2.

Figure 10b,c show that the change image obtained by MRFFCM has the most pixels with noise,
and the change image obtained by GaborTLC detects the fewest change pixels. The result achieved
by PCA-KM, shown in Figure 10a, is more balanced in FN and FP than the two above. The results
obtained using the proposed network, shown in Figure 10d–f, are similar in terms of visual effects.
Figure 10g shows that the proposed method has a relatively smooth result. According to the quantitative
comparisons listed in Table 2, the PCC and KC of the proposed method both have the highest values
among the different results.
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Figure 10. Change detection results of Ottawa dataset. (a) Achieved by PCA-KM. (b) Achieved by 
MRFFCM. (c) Achieved by GaborTLC. (d) Achieved by using the prediction results of intermediate 
patches and the pre-classification results. (e) Achieved by using the prediction results of the stochastic 
subsample set. (f) Achieved by using the unrefined samples. (g) Achieved by using the prediction 
results of all patches. (h) The ground reference. 

Table 2. Values of evaluation criteria of Ottawa dataset. 

Methods FP FN OE PCC KC 
PCA-KM 0.95% 1.49% 2.44% 97.56% 90.43% 
MRFFCM 1.61% 0.70% 2.31% 97.69% 91.27% 
GaborTLC 0.25% 2.49% 2.74% 97.26% 88.71% 

Intermediate 0.37% 1.95% 2.31% 97.69% 90.94% 

Figure 10. Change detection results of Ottawa dataset. (a) Achieved by PCA-KM. (b) Achieved by
MRFFCM. (c) Achieved by GaborTLC. (d) Achieved by using the prediction results of intermediate
patches and the pre-classification results. (e) Achieved by using the prediction results of the stochastic
subsample set. (f) Achieved by using the unrefined samples. (g) Achieved by using the prediction
results of all patches. (h) The ground reference.

Table 2. Values of evaluation criteria of Ottawa dataset.

Methods FP FN OE PCC KC

PCA-KM 0.95% 1.49% 2.44% 97.56% 90.43%
MRFFCM 1.61% 0.70% 2.31% 97.69% 91.27%
GaborTLC 0.25% 2.49% 2.74% 97.26% 88.71%

Intermediate 0.37% 1.95% 2.31% 97.69% 90.94%
2-channel-S1 1.46% 0.98% 2.44% 97.56% 90.93%

Unrefined samples 0.30% 1.83% 2.14% 97.86% 91.64%
Proposed method 0.57% 1.31% 1.88% 98.12% 92.80%
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3.3.3. Results from the San Francisco dataset

In this part, the change images generated by different methods using the San Francisco dataset are
displayed in Figure 11, and the quantitative metrics computed by the differences between the change
images and the ground reference are shown in Table 3.
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Figure 11. Change detection results of San Francisco dataset. (a) Achieved by PCA-KM. (b) Achieved
by MRFFCM. (c) Achieved by GaborTLC. (d) Achieved by using the prediction results of intermediate
patches and the pre-classification results. (e) Achieved by using the prediction results of the stochastic
subsample set. (f) Achieved by using the unrefined samples. (g) Achieved by using the prediction
results of all patches. (h) The ground reference.

From the visual effects, Figure 11a,c show that the change images generated by the three widely
used methods have much more noise pixels than the other detection results. From the quantitative
metrics listed in Table 3, the FP values for these methods are much higher than the others, leading to
PCC and KC values that are also relatively poor. The three change images obtained by the proposed
network but not the proposed method show similar results for FP, FN, OE, PCC, and KC. Regardless of
whether we compare the visual effects or the quantitative results, the proposed method performs better
than the others.

Table 3. Values of evaluation criteria of San Francisco dataset.

Methods FP FN OE PCC KC

PCA-KM 2.47% 0.04% 2.51% 97.49% 83.68%
MRFFCM 2.31% 0.29% 2.60% 97.40% 82.69%
GaborTLC 2.10% 0.09% 2.19% 97.81% 85.39%

Intermediate 0.71% 0.49% 1.20% 98.80% 91.09%
2-channel-Sl 0.72% 0.40% 1.12% 98.88% 91.71%

Unrefined samples 0.62% 0.46% 1.09% 98.91% 91.89%
Proposed method 0.57% 0.49% 1.06% 98.94% 92.08%

4. Discussion

In this section, the description of the three parts is expanded. First, we focus on the influences of
the parameters in the refinement process. Then, we investigate the effect of patch size on PCC and KC.
Finally, the comparisons of the experiment results are discussed.
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4.1. Analysis of Refinement Process

The accuracy of the samples has a great impact on the detection results. Therefore, in
the pre-classification, a refinement process is used to acquire more samples with high accuracy.
Two parameters are involved. So, t was set to reduce the impact of wrongly changed samples, which are
often caused by the corresponding pixel-pair having a high ratio but a low value from the subtraction.
It is usually set to a small empirical value. The other parameter is T, which is used to control the
number of the heterogeneous pixels in the neighborhood, denotes the number of the pixels with a
class that is opposite of the center pixel. In the experiments, the neighborhood size was set to 3 × 3,
so except for the center pixel, there are 8 pixels in the neighborhood. Therefore, the parameter T will
range from 1 to 8. The smaller the value, the fewer the number of pixels with the opposite class of
the center pixel. When T is 1, it means that if there is at least one pixel with an opposite class of the
center pixel, then the center pixel is reclassified as an intermediate pixel. When T is 8, it means that,
in the neighborhood, if the number of the pixels with the opposite class of the center pixel is not less
than 8, then the center pixel is reset as an intermediate pixel. Because the three datasets have similar
properties, the Yellow River dataset is used as an example to analyze the impact of the parameter T on
the final detection accuracy.

First, we discuss the relationship between the parameter T and the sample attributes, including
the accuracy and the quantity. Figure 12a shows the relationship between the number of samples and
the accuracy of the samples based on different images in the sample selection. The LMR segmentation
result can generate the most pixels but has the lowest accuracy, whereas the NR segmentation result
contains fewer pixels with higher accuracy. The result after the refinement process has the fewest pixels
with the highest accuracy. Figure 12b shows the amplification of the parameter T as it ranges from 1 to
8 in Figure 12a. As T becomes larger, the number of samples becomes larger and the sample accuracy
becomes lower. It is noteworthy that when T is 4, the number of samples and the sample accuracy are
82.116% and 97.182%, and when T is 5, the number of samples and the sample accuracy change to
82.120% and 97.178%. It is unclear from the image, but they are different values. Since the value of the
increase in quantity is equal to the value of the decrease in accuracy, it indicates that the increased
samples are only the pixels that lead to a decrease in accuracy, which means that all the pixels added to
the sample selection are the false samples. Thus, 4 is the optimal value for sample selection since it the
best tradeoff between the number and the accuracy. Generally, the pixel whose class is not easy to
distinguish often appears in the intermediate parts between the changed areas and the unchanged
area. Therefore, when the number of pixels with the opposite class of the center pixel reaches half of
the neighborhood size, more attention needs to be paid to the center pixel. Here, the neighborhood
size is 9, so the parameter T set to 0.5 is equal to 4 pixels in the neighborhood. Given these values, the
number and the accuracy of the samples are the best for sample selection.

Since the changed areas are usually a small part of the whole image, the changed samples selected
by an unsupervised method are often a small portion of the samples. Thus, the accuracy of the changed
samples is even more important than that of the unchanged samples. Figure 12c shows the relationship
between the number and the accuracy of the changed samples on the basis of different images in sample
selection. In contrast to Figure 12a, the changed samples obtained by the LMR are more accurate than
those obtained by NR, but the quantity is small. Figure 12d displays the influence of the parameter T
on the selection of changed samples. When T is set to 4, the accuracy value is 99.671%, and it is 99.670%
when T changes to 5. Correspondingly, the number of the changed samples is 8.796% when T is 4,
while it is 8.797% when T is 5. It also indicates that the increased changed samples are all incorrect.
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Figure 12. The relationship between the parameter T and the sample attributes on Yellow River dataset.
(a) The number and the accuracy of the sample variety in sample selection. (b) The relationship between
T and the number of samples and sample accuracy. (c) The number and the accuracy of the changed
sample variety in the sample selection. (d) The relationship between T and the number of changed
samples and changed sample accuracy.

The relationship between the parameter T and the final detection accuracy is discussed. When T
is larger than 5, the accuracy of the samples no longer changes. Therefore, T in the range from 1 to 5 is
considered in the discussion. In Figure 13, the blue line represents the PCC values and the orange line
represents the KC values. When T is set to 4, both PCC and KC show the best performance.
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Accuracy and quantity are the two important factors in sample selection, and both of them have
an important impact on the final detection results. However, in an unsupervised method, it is difficult
to optimize both indicators at the same time. So, a combined strategy and a refinement process are
used to balance the relationship between the two indicators here.

4.2. Influence of Patch Size

In a pixel-level SAR change detection method, the patch size is a very important parameter for
training and testing. In Figure 14, the PCC and KC values are displayed as the validation criteria for
the three datasets. The solid lines represent the PCC values and the dotted lines represent the KC
values. For the Yellow River dataset, the PCC and KC values obtained by a patch size of 13 both show
an obvious improvement when compared with the other results. For the Ottawa dataset, the curve
of the KC values shows relatively pronounced volatility, while the curve of PCC values is relatively
smooth, but both values are the largest when the patch size is 13. For the San Francisco dataset, because
of the axis settings, the curve fluctuations are not obvious in the Figure. However, the values both
show a trend similar to that of the Ottawa dataset and the Yellow River dataset.
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As the network becomes deeper, the convolution and pooling operations used in the network
reduce the size of the image or need padding, so many 0 values are added to retain the size; thus, a
patch size that is too small cannot use the multi-convolution layers to reflect the difference between the
corresponding patches. However, a patch size that is too large also has issues since it results in lots
of interfering information in the patches. Considering the architecture of the two-channel network
proposed, a patch size of 13 shows the best performance.

4.3. Comparison

As shown in Tables 1–3, different methods are used for comparison to demonstrate the effectiveness
of the proposed method; these methods include PCA-KM, MRFFCM, and GaborTLC, which are widely
used. We also compare the results obtained by using another sample set in the proposed network or by
using intermediate patches with the same network architecture.

From the results based on the three different datasets, the proposed method shows the best
performance for PCC and KC. This proves that using the stochastic subspace ensemble learning with a
two-channel network method has three advantages.

1. The information from the samples is fully utilized.
2. It does not lose the information from the original images.
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3. It can also improve the accuracy of change detection, especially in the balance between FN and FP.

With the proposed network, the nonlinear relationship between the original images and the labels
was built effectively. The above-discussed widely used methods are all based on DI, which loses useful
information during generation. Thus, as reflected in the detection result, they cannot get a stable
result with high accuracy. From the results obtained by the two-channel networks, we have done a
comparison using three aspects:

1. Prediction results by the intermediate patches and all the patches. As shown in Figure 15,
the upper bound of the box is the PCC value and the lower bound of the box is the KC value;
the blue box is the result obtained by all patches while the orange one is the result by using the
intermediate patches. For both PCC and KC, using all patches for the testing results in a better
performance than using the intermediate patches. From the box figure for all three datasets, the
upper bounds and the lower bounds of the blue box are both higher than those of the orange
box. Since the accuracy of the samples selected by an unsupervised method cannot be 100%, by
reclassifying all patches, the pixels wrongly classified in during pre-classification have a chance
to be corrected.

2. Prediction results by the subsample set and the final detection result. Tables 1–3 show that the
final detection result obtained by ensemble learning is better than the result obtained by a network
trained by one subsample set. The proposed method can combine the different advantages of
every sample set.

3. Prediction results using the unrefined samples and the samples after refinement. As shown in
Tables 1–3, the proposed method can reduce the impact of noise. Meanwhile, the high-accuracy
samples can improve the accuracy of network training by using a sample set with higher accuracy.

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 21 

 

 

Figure 15. PCC and KC comparisons between the use of (1) all patches and (2) intermediate patches. 

From the results based on the three different datasets, the proposed method shows the best 
performance for PCC and KC. This proves that using the stochastic subspace ensemble learning with 
a two-channel network method has three advantages. 

1. The information from the samples is fully utilized. 
2. It does not lose the information from the original images. 
3. It can also improve the accuracy of change detection, especially in the balance between FN 

and FP. 
With the proposed network, the nonlinear relationship between the original images and the 

labels was built effectively. The above-discussed widely used methods are all based on DI, which 
loses useful information during generation. Thus, as reflected in the detection result, they cannot get 
a stable result with high accuracy. From the results obtained by the two-channel networks, we have 
done a comparison using three aspects: 

1. Prediction results by the intermediate patches and all the patches. As shown in Figure 15, 
the upper bound of the box is the PCC value and the lower bound of the box is the KC 
value; the blue box is the result obtained by all patches while the orange one is the result 
by using the intermediate patches. For both PCC and KC, using all patches for the testing 
results in a better performance than using the intermediate patches. From the box figure 
for all three datasets, the upper bounds and the lower bounds of the blue box are both 
higher than those of the orange box. Since the accuracy of the samples selected by an 
unsupervised method cannot be 100%, by reclassifying all patches, the pixels wrongly 
classified in during pre-classification have a chance to be corrected. 

2. Prediction results by the subsample set and the final detection result. Tables 1–3 show that 
the final detection result obtained by ensemble learning is better than the result obtained 
by a network trained by one subsample set. The proposed method can combine the 
different advantages of every sample set. 

3. Prediction results using the unrefined samples and the samples after refinement. As 
shown in Tables 1–3, the proposed method can reduce the impact of noise. Meanwhile, 
the high-accuracy samples can improve the accuracy of network training by using a 
sample set with higher accuracy. 

5. Conclusions 

A novel unsupervised SAR change detection method based on stochastic subspace ensemble 
learning is proposed in this paper. First, a combined strategy and a refinement process are used for 

Figure 15. PCC and KC comparisons between the use of (1) all patches and (2) intermediate patches.

5. Conclusions

A novel unsupervised SAR change detection method based on stochastic subspace ensemble
learning is proposed in this paper. First, a combined strategy and a refinement process are used for
selecting valid changed sample patches and unchanged sample patches. Then, a stochastic subspace
ensemble learning module is used to solve the problem of sample imbalance while dealing with the
problem of the classification of intermediate pixels, and the averaging method is used as the ensemble
strategy. Finally, the results obtained by all the reclassified patches in the testing phase are integrated
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as the final detection result using the ensemble strategy. Thus, pixels incorrectly classified during
pre-classification have a chance to be corrected. Our experimental results using three different SAR
image datasets demonstrate the effectiveness and feasibility of the proposed method.

For SAR change detection, the severe speckle noise and unique imaging mode, which is quite
different from the human visual mechanism, will be the main challenges going forward. However,
the deep learning or neural network shows great potential for image understanding because of its
capability for high-dimensional feature extraction and nonlinear function fitting. Thus, it is superior
to other methods for solving the problems mentioned above. However, there are still two problems
that need to be thoroughly resolved in the future. The first one is to distinguish the changes between
similar backscattering characteristics, and the other is to distinguish between the pixels that actually
changed from pixels with noise. Since using the multi-polarization images can better alleviate this
situation, in the future, we will continue our research on SAR change detection based on deep learning
and use multi-polarization images to address the problems that have not yet been well resolved.
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