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Abstract: In recent years, the acquisition of high-resolution multi-spectral images by unmanned aerial
vehicles (UAV) for quantitative remote sensing research has attracted more and more attention, and
radiometric calibration is the premise and key to the quantification of remote sensing information.
The traditional empirical linear method independently calibrates each channel, ignoring the correlation
between spectral bands. However, the correlation between spectral bands is very valuable information,
which becomes more prominent as the number of spectral channels increases. Based on the empirical
linear method, this paper introduces the constraint condition of spectral angle, and makes full use of
the information of each band for radiometric calibration. The results show that, compared with the
empirical linear method, the proposed method can effectively improve the accuracy of radiometric
calibration, with the improvement range of Mean Relative Percent Error (MRPE) being more than 3%
in the range of visible band and within 1% in the range of near-infrared band. Besides, the method
has great advantages in agricultural remote sensing quantitative inversion.

Keywords: radiometric calibration; quantitative remote sensing; unmanned aerial vehicles (UAV);
empirical linear method; spectral angle

1. Introduction

As a new multi-purpose data acquisition platform, unmanned aerial vehicles (UAV) can quickly
acquire remote sensing information about land resources, and are being applied more and more
widely. Remote sensing technology based on UAV is mainly applied in many fields, such as forest fire
monitoring [1,2], oil, gas and mineral exploration and production [3], meteorological research [4,5],
and farmland and pasture management [6–9]. However, the remote sensing images can be susceptible
to environmental conditions at the time of data acquisition [10,11]. Such as sensor noise, atmospheric
scattering and absorption, all of these will introduce noises and errors into remote sensing images [12].
On the other hand, the images obtained by the sensor are stored in the form of digital numbers (DNs),
which is not the true meaning of surface reflectance. It is not a direct measure of reflectance, which
will change with illumination condition and consistency of sensor [13,14]. Therefore, the radiometric
calibration of remote sensor is the precondition and key to the quantification of remote sensing
information [15], because it converts DNs to physical units of reflectance, and makes quantitative
analysis data from different sensors or times of the day possible [16].

With the study of radiation calibration, many methods have been developed. Most researchers
used the empirical line method (ELM) to calibrate remote sensing data to surface reflectance, assuming
that the relationship between them is linear, and established linear calibration equations by using
the calibration targets to convert DNs to reflectance for each sensor band [17–23]. Some of them
used two calibration targets of different gray levels and developed a workflow to calibrate the
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imagery [18–20], while others used more targets to improve the calibration accuracy [22]. However,
some researchers found that the relationship between DNs and surface reflectance is not always linear,
and they used a nonlinear model which conforms to the objective principles of physics to establish
the regression equation [15,24–26]. For example, Lei et al. used the power transformation relation of
visible bands and the linear transformation relation of NIR bands to fit the radiometric calibration
model [15]. Additionally, Wang et al. found that the relationship between image raw DNs and surface
reflectance in their experiment is not linear but exponential, and they used the natural log-transformed
reflectance value and DNs to build the empirical line calibration equation [24]. In these studies, whether
linear or nonlinear methods, all of these methods calibrated each band separately. However, the
regularity that the reflectance of ground object changes with wavelength is very valuable information.
The spectral curve of the ground object is the embodiment of the structure and morphology of the
ground object [27,28]. The curve formed by the reflectance of each band of the image should be
consistent with the real spectral curve of the ground object, which is very prominent in the application
of hyperspectral and multispectral remote sensing, such as spectral matching ground object recognition
and spectral similarity classification [29–34]. With the continuous progress of hyperspectral and
multispectral technology, the number of spectral channels increases gradually. If spectral regularity
can be applied to radiation calibration, the accuracy of radiation calibration will be improved.

This paper presents a method that was named Spectral Angle Constraint Method (SACM).
This method comprehensively analyzes the spectral characteristics of various typical features of
multi-spectral images, combines the characteristic information of spectral reflectance, and then adds
the constraint equation of spectral information. The radiation calibration model was optimized by
using the consistency condition of spectral information, so as to improve its precision.

The objective of this study is to establish a radiometric calibration method, which can
comprehensively consider the spectral and radiation information, so as to improve the precision of
calibration. The paper has the following structure and organization. First, the proposed calculation
process of the radiometric calibration is discussed and deduced in Section 2. The study area, the
instruments used in the experiment, and the process of data acquisition are described in Section 3.
Section 4 presents the results and precision of the radiometric calibration. Then the results achieved
are analyzed and validated in Section 5, as well as a case to validate the SACM has advantages in
agricultural application. Finally, in Section 6, we summarize our research results and look forward to
the future work.

2. Methodology

According to the empirical line method, DNs recorded by sensor and reflectance of ground targets
had a direct relationship as:

ρ = a·DN + b (1)

where ρ is the reflectance of ground targets, a and b are the calibration coefficients of each camera
channel, which are used to correct the influence of sensor noise, atmospheric scattering, and absorption.

However, for multi-spectral images, each ground target contains information of multiple channels,
which form the reference reflectance vector:

ρ =
{
ρ1,ρ2,ρ3, · · · ,ρm

}
(2)

Corresponding, the result of calibration constitute the predicted reflectance vector:

ρ̂ = {a1 ·DN1 + b1, a2 ·DN2 + b2, a3 ·DN3 + b3, · · · , am ·DNm + bm} (3)
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If the calibration is accurate, then according to the spectral angle equation, ρ and ρ̂ has the
relationship as:

cosθ =
ρ · ρ̂∣∣∣ρ∣∣∣ · ∣∣∣ρ̂∣∣∣ = 1 (4)

Combined with Equations (2), (3), and (4), the relationship of each band can be obtained as follows:

[ρ1(a2 ·DN2 + b2) − ρ2(a1 ·DN1 + b1)]
2 + [ρ1(a3 ·DN3 + b3) − ρ3(a1 ·DN1 + b1)]

2

+ · · ·+ [ρ1(am ·DNm + bm) − ρm(a1 ·DN1 + b1)]
2 + [ρ2(a3 ·DN3 + b3) − ρ3(a2 ·DN2 + b2)]

2

+ · · ·+ [ρm−1(am ·DNm + bm) − ρm(am−1 ·DNm−1 + bm−1)]
2 = 0

(5)

All the above sum terms are square terms, if the equation is true, then each sum term is zero, and
the relationship of each band can be represented by the following equation:

ρ1

a1 ·DN1 + b1
=

ρ2

a2 ·DN2 + b2
= · · · =

ρm

am ·DNm + bm
(6)

Then the spectral angle constraint was constructed as:

ρ2 =
(a2·DN2+b2)·ρ1

a1·DN1+b1

ρ3 =
(a3·DN3+b3)·ρ1

a1·DN1+b1
...

ρm =
(am·DNm+bm)·ρ1

a1·DN1+b1

(7)

Assuming that n sample points are involved in modeling, and each sample point is a vector
composed of m bands, then the calibration coefficients of each band have the relationship as:

ρ11DN21

ρ12DN22
...

ρ1nDN2n

ρ11

ρ12
...
ρ1n


(

a2

b2

)
=


ρ21DN11

ρ22DN12
...

ρ2nDN1n

ρ21

ρ22
...
ρ2n


(

a1

b1

)

...
ρ11DNm1

ρ12DNm2
...

ρ1nDNmn

ρ11

ρ12
...
ρ1n


(

am

bm

)
=


ρm1DN11

ρm2DN12
...

ρmnDN1n

ρm1

ρm2
...
ρmn


(

a1

b1

)
(8)

where ρi j represent the reflectance of i-th band of the j-th sample point, and DNi j represent the DN
value of i-th band of the j-th sample point.

According to Equation (8), let matrix Ai and Bi represent the following formula:

Ai =


ρ11DNi1
ρ12DNi2

...
ρ1nDNin

ρ11

ρ12
...
ρ1n

, Bi =


ρi1DN11

ρi2DN12
...

ρinDN1n

ρi1
ρi2
...
ρin

 (9)

Then the relation between ai, bi(i = 2, 3, · · · , m) and a1, b1 can be expressed by the
following formula: (

ai
bi

)
= (Ai

TAi)
−1
(Ai

TBi)

(
a1

b1

)
=

(
ci1 ci2

ci3 ci4

)(
a1

b1

)
(10)
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Thus, the radiometric calibration equation of each band can be converted into the form of
Equation (11), making full use of the information of all bands.

ρi j = a1 · (ci1 ·DNi j + ci3) + b1(ci2 ·DNi j + ci4) (11)

where ci1, ci2, ci3, ci4 are known values, which were calculated by (Ai
TAi)

−1
(Ai

TBi). Then all of the
sample points can construct a set of equations like Equation (11), and through the least squares to solve
the calibration coefficients a1, b1, and ai, bi(i = 2, 3, · · · , m) can be obtained in the same way.

To verify the validity of the method in this paper, the experiment will be divided into two parts:
firstly, a variety of ground targets were selected as samples, and the empirical line method (ELM) and
spectral Angle constraint method (SACM) were used for experiments, and then evaluate the calibration
precision of two methods, as well as analyze the advantages and disadvantages of SACM. Secondly,
in order to further analyze the applicability of the SACM, separate experiments were conducted on
different spectral constraint targets, and the modeling effects of different ground targets were compared
and analyzed to discuss the application scope of the method in this paper.

3. Materials

3.1. Study Area

The study area was a park, which was located in Wuhan city, Hubei, China (as shown in Figure 1).
This area was selected since it contains complex and fragmental ground object types such as plastic
track, various types of floor and vegetation, so that more experimental materials can be obtained.
Remote sensing data for this area was collected from UAV platform on September 18, 2018 when
the weather remained sunny and reflectance of ground targets changed little, and reflectance data of
ground targets were acquired at the same time.
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Figure 1. Study area in Wuhan city, China.

3.2. Instruments

The instruments employed included a multispectral camera, an UAV platform and a
spectroradiometer. The camera was used as the multispectral sensor, the UAV platform was used to carry
multispectral sensor, and the spectroradiometer was used to obtain the reflectance of ground targets.
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A Mini-MCA camera (Figure 2) was used as the multispectral sensor. The camera is light and
suitable for carrying on UAV platform. It is composed of an array of 12 independent channels, and
each channel is composed of lens, filter, memory card, and CMOS sensor. The specifications of the
Mini-MCA are shown in Table 1.
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Figure 2. Mini-MCA12 multispectral camera.

Table 1. Specifications of Mini-MCA.

Parameter Value

Number of channels 12
Weight 1300 g

Geometric resolution 1280 × 1024 pixels
Radiometric resolution RAW 8 bit/RAW 10 bit/DCM 10 bit

Speed 1.3 frames/s
Dimensions 6.66 mm × 5.32 mm

Pixel size 5.2 µm
Focal length 9.6 mm

According to the manufacturer’s data (Tetracam Inc.; Chatsworth, CA, USA), the spectral response
of the sensor is uniform with the optimal sensitivity (100%) at the range of 750–800 nm, and then
dropping in a smooth curve to 20% peak at 450 nm in the visible region and 1050 nm in near-infrared
at the limits of its range. Each channel was equipped with a specific narrow-band filter that enables the
sensor to receive information at a specific wavelength. The filters used in this study have a central
wavelength of 490, 520, 550, 570, 670, 680, 700, 720, 800, 850, 900, 950 nm, and their full width at half
maximum (FWHM) and band width range are shown in Table 2, and the responses of these filters are
defined in the following graphic (Figure 3).

The UAV platform used was a Spreading Wings S1000 (Figure 4) manufactured by DJI Innovations,
which is designed for professional aerial photography. The most relevant parameters are shown in
Table 3.
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Figure 3. The spectral response of filters.

Table 2. Characteristics of the twelve channels.

Channel Number Central Wavelength(nm) FWHM Band Width Range (nm)

1 490 10 470–510
2 520 10 500–540
3 550 10 530–570
4 570 10 550–590
5 670 10 650–690
6 680 10 660–700
7 700 10 680–720
8 720 10 700–740
9 800 10 780–820

10 850 10 830–870
11 900 20 860–940
12 950 40 870–1030
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Table 3. Characteristics of the UAV.

Parameter Value

Takeoff weight 6 kg~11 kg
Total weight 4.2 kg

Estimated flight time 15 min (@9.5 kg takeoff weight)
Power battery 10,000 mAh~20,000 mAh

The spectroradiometer used in this study was a FieldSpec4 Standard-Res produced by Analytical
Spectra Devices, Inc (Figure 5). It can be used in many fields where reflectivity, transmittance,
radiance, or radiance are measured, such as crop monitoring, forest research and mineral prospecting.
The instrument is capable of capturing visible, near-infrared and short-wave infrared spectra ranging
from 350 nm to 2500 nm, with a spectral resolution of 1 nm. It is equipped with three separate
holographic diffraction gratings and three different detectors, each covered by an appropriate sequence
of filters to eliminate the second or higher order light. The parameters of the instrument are shown in
Table 4.
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Table 4. Characteristics of the spectroradiometer.

Parameter Value

Type FieldSpec4 Standard-Res
Band width range (nm) 350–2500

Spectral sampling interval 1.4 nm(350–1000 nm); 2 nm(1001–2500 nm)
Spectral resolution 3 nm@700 nm; 10 nm@1400, 2100 nm

3.3. Data Acquisition

As the study area contains complex ground targets, a great deal of material can be acquired for the
experiment. Firstly, four calibration targets of different gray levels and ground targets were selected as
experimental materials. Since the experiment require two kinds of data sets, modeling set (MS) and
verification set (VS), the experimental materials were divided into control surfaces and check surfaces.
The control surfaces (calibration blanket, vegetation, water, plastic track, etc.) were highlighted with
red rectangles while the check surfaces (vegetation, water, plastic track, etc.) with red circles in Figure 6.
Then, the MCA camera carried by the UAV was used to acquire the image data, and the PixelWrench2
image editing software was used to perform geometric correction on the twelve-band data, so as to
export the multispectral images in TIFF format. The images of the calibration targets were selected for
analysis. To avoid the influence of the boundary effect, the DNs of each target is represented by the
mean value of the target’s center point and its neighborhood. Additionally, the spectroradiometer was
used to collect the reflectance of the ground targets.
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Figure 6. UAV image of the control and check surfaces.

To ensure the precision of the spectroradiometer measurement, the measurement was started after
30 min of preheating. To reduce the accumulated error, the calibrated white reference was measured
prior to each sample measurement. Besides, the measurement should be carried out in a steady
state of illumination, the calibration white reference was measured when the illumination changed.
When measuring the ground targets, five points of each target were measured, and five spectra were
measured for each point, and then the average result of 25 individual spectra was used as the spectral
measurement for each target.

The reflectance obtained by the spectroradiometer has a resolution of 1nm at the range of 350 nm to
2500 nm, while the Mini-MCA recorded DNs in its twelve channels with a particular response (Figure 3),
so it was necessary to adjust the reflectance according to the spectral resolution and spectral response
of the Mini-MCA. The spectroradiometer reflectance can be simulated in Mini-MCA multi-spectral
bands as:

ρ(λ) =

∫ λ2

λ1
ρt(λ)SRF(λ)dλ∫ λ2

λ1
SRF(λ)dλ

(12)

where ρ(λ) is the reflectance to be simulated in Mini-MCA’s band, ρt(λ) is the reflectance of ground
targets measured by spectroradiometer, SRF(λ) is the spectral response of the Mini-MCA. The
reflectance of control surfaces before and after simulation are shown in Figure 7.
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3.4. Validation of Agricultural Applications

For precision agriculture, radiometric calibration of images is a prerequisite. Another experimental
data was carried out to verify the advantages of SACM in agricultural application. The data set was
obtained in 2017, includes agricultural image data, surface reflectance data and leaf area index (LAI)
data acquired from EZhou, Hubei province. The agricultural image was captured by UAV equipped
with a mini-MCA camera, which consists of six channels. The surface reflectance data was obtained by
the spectroradiometer. The leaf area data was obtained by LI-3100C Leaf Area Meter, which provides
leaf area measurement or leaf-like object through electronic rectangular approximation, and it provides
a non-destructive means for environmental scientists and farmers alike to ascertain plant health, quality
and local ecological trends as reflected in the leaf’s area, length, average width and maximum width.
The surface reflectance data and LAI data were used to build the inversion model according to the
vegetation index method [35–37], and then the agricultural image data was used to verify the influence
of radiation calibration results on the inversion accuracy.

4. Results

Figure 8 shows the images before and after radiometric calibration by using ELM and SACM,
and the calibration coefficients of each band are shown in Table 5. Compare these three images, both
of the two methods can improve the image quality if looking at the visual outcome. The brightness
level of images in Figure 8b,c are obviously higher than that in Figure 8a, and it can be seen from the
comparison results of the three images, there is obvious aberration in the blue and green bands before
calibration, thus resulting in the image having a yellowish color. After radiometric calibration, this
phenomenon can be eliminated effectively by both two methods.
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Table 5. The calibration coefficients of each band.

ELM_a ELM_b SACM_a SACM_b

Band 1 1.44 * 10−3
−4.29 * 10−2 1.31 * 10−3

−2.55 * 10−2

Band 2 1.79 * 10−3
−7.19 * 10−2 1.62 * 10−3

−5.12 * 10−2

Band 3 1.35 * 10−3
−4.14 * 10−2 1.24 * 10−3

−2.58 * 10−2

Band 4 1.62 * 10−3
−3.74 * 10−2 1.46 * 10−3

−1.89 * 10−2

Band 5 1.32 * 10−3
−3.96 * 10−2 1.23 * 10−3

−2.64 * 10−2

Band 6 1.51 * 10−3
−3.82 * 10−2 1.38 * 10−3

−2.16 * 10−2

Band 7 1.81 * 10−3
−7.94 * 10−2 1.65 * 10−3

−5.84 * 10−2

Band 8 2.44 * 10−3
−4.16 * 10−2 2.21 * 10−3

−2.01 * 10−2

Band 9 2.23 * 10−3
−5.28 * 10−2 2.15 * 10−3

−4.26 * 10−2

Band 10 2.43 * 10−3
−1.11 * 10−2 2.55 * 10−3

−1.56 * 10−2

Band 11 3.44 * 10−3
−1.73 * 10−2 3.63 * 10−3

−2.30 * 10−2

Band 12 8.33 * 10−3
−7.85 * 10−2 9.03 * 10−3

−9.46 * 10−2

The precision of ELM and SACM were evaluated by comparing reference reflectance collected
by spectroradiometer at ground level for the validation samples, and some examples were shown in
Figure 9. For these samples, reflectance derived from UAV image using two radiometric calibration
methods behaved similar and close to ground-measured reflectance. And it easy to find that the
absolute error of each band is within 0.05 for all ground targets. By comparing the results of the two
methods, the reflectance obtained by SACM is closer to the ground-measured reflectance than that
obtained by ELM in most bands, especially in the visible bands.

In order to evaluate the advantages and disadvantages of the two methods, the precision results of
all the verified samples were statistically analyzed, and the Mean Absolute Error (MAE), Mean Relative
Percent Error (MRPE) and Root Mean Square Error (RMSE) were used for evaluation. The equations of
evaluation indicators are shown in Table 6, and the results are shown in Figure 10. As can be seen
from Figure 10, comparing with ELM, the method proposed in this paper can improve the precision of
the radiometric calibration, especially in the range of visible band, which can improve the precision
obviously, with the improvement range of MRPE being more than 3% of each band. However, in
the range of near-infrared band, SACM has a limited effect on the improvement of accuracy, and the
precision of MRPE is basically within 1%. The precision of MAE behaved similar to that of MRPE,
with obvious improvement in the visible range and limited improvement in the near-infrared band.
Except bands with central wavelength of 700 nm and 720 nm, the RMSE of SACM in other bands is
smaller than that of ELM, indicating that the overall precision has been improved. The results of MAE,
MRPE and RMSE show that the SACM, which was proposed in this paper can realize the radiometric
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calibration of UAV remote sensing, and has certain advantages in radiometric calibration precision
compared with the ELM.

In the formulas, Rcal,i represents the reflectance derived by ELM or SACM, Rcal,i represents the
reflectance obtained by spectroradiometer, and n represents the number of samples.
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Figure 9. Comparison of ground-measured reflectance and reflectance derived from radiometric
calibrated image using ELM and SACM in different bands for samples of (a) vegetation, (b) brick,
(c) water, (d) floor, and (e) marble slab. R_ASD represents the relectance obtain by spectroradiometer,
R_ELM and R_SACM represent the refectance derived by ELM and SACM.
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Table 6. Error equation.

Error Abbreviation Equation

Mean Absolute Error MAE 1
n

n∑
i=1

∣∣∣Rcal,i −RASD,i
∣∣∣

Mean Relative Percent Error MRPE 1
n

n∑
i=1

∣∣∣∣100× Rcal,i−RASD,i
RASD,i

∣∣∣∣
Root Mean Square Error RMSE

√
n∑

i=1
(Rcal,i−RASD,i)

2

n
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Figure 10. Precision evaluation of ELM and SACM.

In order to further analyze the applicability of the SACM, separate experiments were conducted
on different spectral constraint targets, and MAE, MRPE, and RMSE were used to verify the precision
of samples, the results are shown in Figure 11, and the average errors of all bands is shown in Table 7.
It can be seen in Figure 11a–c and Table 7, the radiometric calibration precision of the ELM and SACM
behave similar. The calibration precision of SACM is slightly better than that of ELM in some bands,
while slightly lower in other bands, and the average error of the two methods are basically consistent.
However, when using vegetation for constraint modeling, SACM has great advantages in calibration
precision, as shown in Figure 11d and Table 7. The average error of this method is about 5% higher
than that of the ELM, and for each band, the MRPE of this method is smaller than that of the ELM.
Besides, except the 8th band, the MAE and RMSE of other bands are better than that of the ELM. This
result seems to show that in practical applications, the use of vegetation constraint modeling will
be conducive to improve the precision of radiation calibration, and it also shows that the method
proposed in this paper is more suitable for multi-vegetation coverage areas.
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Figure 11. The MAE, MRPE and RMSE of the radiometric calibration using ELM and SACM for
different constraint targets of (a) MS1 (brick), (b) MS3 (water), (c) MS6 (floor) and (d) MS10 (vegetation).
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Table 7. The average error of MAE, MRPE and RMSE for different constraint targets.

Constraint Target MRPE MAE RMSE

Vegetation
ELM 18.77% 0.0328 0.0434
SACM 13.59% 0.0275 0.0391

Water
ELM 19.75% 0.0288 0.0327
SACM 19.72% 0.0288 0.0327

Brick
ELM 21.34% 0.0266 0.0298
SACM 21.08% 0.0264 0.0298

Floor
ELM 17.42% 0.0236 0.0293
SACM 16.99% 0.0232 0.0287

5. Discussion

The spectral angle constraint method proposed in this paper is different from other remote sensing
radiometric calibration methods of UAV. It makes full use of the spectral information of ground targets,
so that the radiometric calibration process is no longer an independent calibration between each band,
but combines the information of all bands to calibrate, which improves the precision of radiometric
calibration. With the increase of spectral bands, the information between spectral bands will also
increase. This method can make full use of the information of all bands, so for hyperspectral images,
the method can provide more information in radiometric calibration, which is more conducive to
improving the accuracy of radiation calibration. According to the results of separate experiments on
different spectral constraint targets, the use of vegetation constraint modeling can greatly improve the
precision of radiation calibration, while the results of other targets constraint modeling show that the
precision of two methods is basically consistent. As can be seen from Figure 7, the form of vegetation
spectral curve fluctuates greatly, while that of other ground targets is relatively flat. By using the
standard deviation (STD) to evaluate the flatness of the spectral curve shape. The smaller the standard
deviation is, the flatter the spectral curve of the ground object is. As can be seen from Table 8, with the
increase of the standard deviation, the better the effect of using this target for constraint modeling is.
Thus, it can be speculated that the ground targets with obvious fluctuation in the reflectance curves
have a better effect of radiometric calibration using SACM.

Table 8. The standard deviation and precision improve effect.

Constraint Target STD DMRPE DMAE DRMSE

Water 0.0034 0.03% 0 0
Brick 0.0081 0.26% 0.0002 0
Floor 0.0090 0.43% 0.0004 0.0006

Vegetation 0.1884 5.18% 0.0053 0.0043

DMRPE, DMAE and DRMSE respectively represent the difference between the two methods of MRPE, MAE
and RMSE.

From the method in this paper, the essence is to establish a connection between the data of other
bands and the target band according to Formula (10), and then generate constraint data according
to Formula (11), so as to increase the amount of data used for the least squares solution. As shown
in Figure 12, when the method of this paper is adopted, the number of data originally used for least
squares solution increases from several to dozens. It can be found from Figure 12 that the constraint
modeling is carried out by using ground targets with obvious fluctuation of spectral curves, can expand
the range of modeling data. In the Figure 12a–c, it can be seen that, after the constraint, the essence is
to interpolate the original sample points, which results in no improvement of calibration precision.
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While in Figure 12d, after vegetation constraints, the range of modeling data is not only interpolated
within the original range of sample points, but also stretched, which expands the applicability of the
model, and finally improves the radiation calibration precision after the constraint.
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The above results show that use vegetation for constraint modeling work better than others.
For many vegetation area, we can easily obtain the vegetation reflectance spectra. However, for
non-vegetation-covered areas, to get vegetation reflectance spectra is difficult, and the calibration
accuracy of the method in this paper is basically the same as that of the empirical linear method, but
the calibration process is too complex, which restricted the application of this method, so in these areas
the empirical linear method may be used for the calibration. Therefore, the method proposed in this
paper is more applicable to areas with multiple vegetation coverage. For agricultural remote sensing,
the method in this paper may be of great value because it focuses on crops. Therefore, the method
proposed in this paper can improve the accuracy of radiometric calibration in agricultural remote
sensing, thus affecting the application of agricultural remote sensing. In order to verify this conjecture,
the agricultural data of EZhou was used for the experiment. Firstly, the surface reflectance data and
LAI data were used to build the inversion model according to the vegetation index method [35–37].
Then, the UAV image was calibrated by the empirical linear method and the spectral Angle constraint
method respectively, and the calibrated images were used to verify the inversion accuracy of the model.
LAI images obtained by the two methods are shown in Figure 13, and their inversion accuracy is
represented by the relative error of verification points (as shown in Figure 14).
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As can be seen from the inversion results in Figure 14, the precision of image data after radiometric
calibration with SACM in inversion LAI has been improved to a certain extent, and the relative accuracy
of most verification points has been improved, with the average accuracy increased from 27% to
22%. Additionally, the standard deviation of the ELM is 0.1655, while that of the SACM is 0.1498.
It can be seen from the results of standard deviation that after calibration by SACM, the precision of
inversion can be improved and the results of inversion can be more stable and reliable. The above
experiments also confirmed that the method proposed in this paper can be more widely used in
agricultural remote sensing.

6. Conclusions

The spectral angle constraint method proposed in this paper, by introducing the spectral angle
constraint condition, makes full use of the information of each band of the multi-spectral image, and
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considers the spectral regulation of the ground targets, so that the radiometric calibration process, which
was originally solved independently for each band, can be solved as a whole. Through the research
of this paper, it is shown that applying the spectral regulation of ground targets to the radiometric
calibration process of UAV image can improve the accuracy of radiometric calibration. Additionally,
the effect of different ground targets by using SACM show great difference. When vegetation is used for
constraint modeling, the accuracy of radiation calibration can be greatly improved, while other ground
targets are used for constraint modeling, the calibration accuracy of ELM and SACM is basically the
same. Therefore, the method in this paper will have a great application prospect when it focuses on
the reflectance information of vegetation, and its application effect in agricultural remote sensing will
be very significant.
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