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Abstract: Evapotranspiration (ET) plays a crucial role in integrated water resources planning,
development and management, especially in tropical and arid regions. Determining ET is not
straightforward due to the heterogeneity and complexity found in real-world hydrological basins.
This situation is often compounded in regions with limited hydro-meteorological data that are facing
rapid development of irrigated agriculture. Remote sensing (RS) techniques have proven useful in
this regard. In this study, we compared the daily actual ET estimates derived from 3 remotely-sensed
surface energy balance (SEB) models, namely, the Surface Energy Balance Algorithm for Land (SEBAL)
model, the Operational Simplified Surface Energy Balance (SSEBop) model, and the Simplified Surface
Balance Index (S-SEBI) model. These products were generated using the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite imagery for a total of 44 satellite overpasses in 2005, 2010, and
2015 in the heterogeneous, highly-utilized, rapidly-developing and data-limited Kilombero Valley
(KV) river basin in Tanzania, eastern Africa. Our results revealed that the SEBAL model had a
relatively high ET compared to other models and the SSEBop model had relatively low ET compared
to the other models. In addition, we found that the S-SEBI model had a statistically similar ET as
the ensemble mean of all models. Further comparison of SEB models’ ET estimates across different
land cover classes and different spatial scales revealed that almost all models’ ET estimates were
statistically comparable (based on the Wilcoxon’s test and the Levene’s test at a 95% confidence
level), which implies fidelity between and reliability of the ET estimates. Moreover, all SEB models
managed to capture the two spatially-distinct ET regimes in KV: the stable/permanent ET regime on
the mountainous parts of the KV and the seasonally varied ET over the floodplain which contains a
Ramsar site (Kilombero Valley Floodplain). Our results have the potential to be used in hydrological
modelling to explore and develop integrated water resources management in the valley. We believe
that our approach can be applied elsewhere in the world especially where observed meteorological
variables are limited.
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1. Introduction

Evapotranspiration (ET) is the term used to represent the combined flux from two different
pathways of water vaporization in environmental systems, namely, abiotic water evaporation from
open water bodies (e.g., ocean, lakes, and swamps), soil pores, and surfaces of leaves (cuticle), and
biotic leaf transpiration due to diffusion of water molecules from leaf chloroplasts to the atmosphere
through stomata [1]. ET is a key component of the hydrological cycle [2] and an important part of
the energy and water balance in agricultural ecosystems [3]. For example, land surface ET accounts
for approximately 60% of the mean annual land precipitation in the global hydrological cycle [2].
Studies of ET in irrigated agricultural areas have reported the mean annual (actual) ET to accounts for
more than 60% of the mean annual precipitation [4,5].

Accurate information on the spatial and temporal variability of ET can be useful in water resource
management. For example, it can help to improve water use efficiency for agricultural crops, better
allocate water resources in a river basin, constrain the hydrological model, provide boundary conditions
for numerical weather forecasting, and detect forest health and its vulnerability to fire [6,7]. However,
getting accurate information on ET is not a straightforward process due to the natural heterogeneity
and complexity of ET and other hydrological processes. ET is characterized by complex spatiotemporal
changes due to the wide spatial variability of precipitation (in terms of frequency and/or intensity),
vegetation types and densities, and hydraulic characteristics of soils, and the wide temporal variability
of climate [8]. Human-induced climate change and intensified human activities make ET estimation
even more complex [9,10]. Traditional methods (in-situ measurements) used to estimate ET include:
weighing Lysimeters, Eddy Covariance (EC) systems, evaporation pans, and Bowen ratio techniques.
All these methods provide point estimates which are mainly applicable (reliable/representative) at a
field/local scale [11–13], and their application beyond this scale (such as the river basin scale) requires
a good number of measurements (e.g., many weighing lysimeters). Obtaining several measurements
is in most cases prohibitively expensive, especially in developing countries typically found in the
so-called Global South. These traditional ET estimation methods become (practically) inapplicable
when resource management scales get large (such as regional or basin-wide scales), mainly due to the
heterogeneity of the land surfaces, and the complex nature of heat transfer processes governing the
ET [14].

Development of remote sensing (RS) techniques has now enabled researchers to implement
various ET estimation algorithms as an alternative approach for estimating ET over large areas (from
the river basin scale up to the global scale) where the applicability of traditional methods could be
limited [15]. Typical RS-based ET estimation algorithms include the Surface Energy Balance Algorithm
for Land (SEBAL) model [16], Operational Simplified Surface Energy Balance (SSEBop) model [17],
Surface Energy Balance System (SEBS) model [14], Mapping Evapotranspiration at a high-Resolution
with Internalized Calibration (METRIC) model [18], and Simplified Surface Energy Balance Index
(S-SEBI) model [19]. These RS-based ET estimation algorithms utilize land surface characteristics
derived from the remotely sensed multi-spectral data from visible to thermal infrared bands of the
electromagnetic spectrum to estimate ET [15]. Different remote sensing sensors onboard different
satellites/platforms have the capability of providing these multi-spectral data in various temporal and
spatial resolutions. These satellite platforms include Landsat, Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), Advanced Very High-Resolution Radiometer (AVHRR), Visible
Infrared Imaging Radiometer Suite (VIIRS), and the Moderate Resolution Imaging Spectroradiometer
(MODIS).

One of the major advantages of the RS-based ET estimation algorithms is their capability of
estimating ET without quantifying other complex hydrological processes [7]. Review studies on the
accuracy of ET estimated by these algorithms have reported accuracies that vary from 67% to 97%
for daily ET estimates, and rise above 94% for seasonal ET estimates [20,21]. These accuracies were
achieved by comparing the ET derived from the RS-based ET estimation algorithms against ET derived
from the traditional methods of estimating ET (e.g., weighing lysimeters, and eddy covariance (EC)



Remote Sens. 2019, 11, 1289 3 of 33

systems). An overview of the advantages, limitations, and uncertainties of the widely used RS-based
ET estimation algorithms can be found in Li et al. [15].

Each approach has certain benefits and potential limitations. The Surface Energy Balance Algorithm
for Land (SEBAL), for example, is a physically based thermal infrared RS-based ET estimation model
developed by Bastiaanssen et al. [16], mainly, for the purpose of estimating the actual ET (AET) for the
cloud-free (clear-sky) days across different ecosystems. The cloud-free day is a requirement of any
thermal infrared RS-based ET estimation algorithm [21]. The main advantages of the SEBAL model
are the following: it requires minimum ground measurements (mainly wind speed), it has automatic
internal calibration via Monin-Obukhov schemes [22], and it does not need accurate atmospheric
corrections [15,23].

There are still open questions around the robustness of any of these RS-based models and which can
be considered the “best” or at least useful in more applied settings. This question comes to the forefront
in regions where large seasonal variations exist; where there are limited data for estimating ET using
traditional approaches; and where water resources are rapidly developing in connection to population
growth and agricultural intensification. For example, the Kilombero Valley (KV) river basin located
in the south-central part of Tanzania, in East Africa (Figure 1) is currently facing rapid development
of dry land irrigated agriculture following the implementation of the Southern Agricultural Growth
Corridor of Tanzania (SAGCOT) initiative. SAGCOT is an inclusive, multi-stakeholder partnership
launched in 2010 with the aim of improving agricultural productivity, food security, and livelihoods in
Tanzania through small-scale and large-scale irrigation schemes [24]. Water abstractions from the river
system for irrigation and changing the landscape water use patterns through the conversion of other
land use/covers into agriculture not only affect water availability and quality [25] in the KV basin,
but also has an impact on the proposed Stiegler’s Gorge dam. The dam is targeted for hydroelectric
power generation (2100 megawatts) downstream of the basin. Therefore, an accurate estimation of the
actual ET is certainly crucial for the sustainability of integrated water resources management (IWRM)
in the KV basin, the sustainability of the Ramsar site (Kilombero Valley Floodplain) located in the
vicinity of the floodplain in the KV basin (Figure 1), and the operation of the proposed Stiegler’s
Gorge hydroelectric power generation. Unfortunately (or perhaps problematically), the basin has poor
coverage of the hydro-meteorological network [24,26–28] layering additional challenges on those faced
to achieve sustainable development in SAGCOT. Understanding the basic patterns of ET and how
these vary seasonally and interannually—and in response to coupled land-water use changes—would
be a huge step towards the sustainable development and management of KV’s water resources.

To address the need for understanding, this study compared the actual ET estimates computed
using 3 surface energy balance (SEB) models, namely, the SEBAL model [16], the SSEBop model [17],
and the S-SEBI model [19] in the heterogeneous, data-scarce, and highly utilized KV river basin using
250 m, 8-day MODIS land products for the three distinct years of 2005 (five years before SAGCOT),
2010 (beginning of the SAGCOT), and 2015 (five years after SAGCOT). We hypothesized that contrasting
ET estimates obtained from 3 distinct years (each with a different degree of land management practices)
for model comparison provides more insight on similarities (congruence) and differences among
models than using consecutive years where the trend of changes in land management practices is more
less gradual (or zero). Our motivation is an attempt to leverage RS-based ET estimation techniques
in a heterogeneous, data-limited, and highly utilized setting to improve the understanding of ET
spatial variations.
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Figure 1. The study area map of Kilombero Valley (KV) river basin located in southern central 
Tanzania. (a) the stream network, climatic stations and wetland valley (floodplain). (b) Land cover 
classes of the Kilombero Valley (KV) river basin based on the 300 m spatial resolution global land 
cover map for the year 2015 provided by the European Space Agency (ESA) Climate Change Initiative 
(CCI). 

2. Materials and Methods  

This section briefly covers the description of the study area (Kilombero Valley (KV) river basin), 
together with the sources of/and different types of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) datasets and other ancillary datasets used in this study. Lastly, the brief 

Figure 1. The study area map of Kilombero Valley (KV) river basin located in southern central Tanzania.
(a) the stream network, climatic stations and wetland valley (floodplain). (b) Land cover classes of the
Kilombero Valley (KV) river basin based on the 300 m spatial resolution global land cover map for the
year 2015 provided by the European Space Agency (ESA) Climate Change Initiative (CCI).

2. Materials and Methods

This section briefly covers the description of the study area (Kilombero Valley (KV) river basin),
together with the sources of/and different types of the Moderate Resolution Imaging Spectroradiometer
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(MODIS) datasets and other ancillary datasets used in this study. Lastly, the brief descriptions and
applications of the Surface Energy Balance Algorithm for the Land (SEBAL) model [16], the Operational
Simplified Surface Energy Balance (SSEBop) model [17], and the Simplified Surface Energy Balance
Index (S-SEBI) model [19] will be given together with the approach used to compare models in
this study.

2.1. Kilombero Valley (KV) River Basin: Site Description and Ancillary Datasets

This study was undertaken in the Kilombero Valley (KV) river basin (Figure 1) located in the
southern central part of Tanzanian country in East Africa. The Valley is situated between 34◦33′

and 37◦20′ east of the Greenwich meridian (i.e., Longitudes) and between 7◦39′ and 10◦01′ south
of the equator (i.e., Latitudes). The KV covers an approximate area of 34,000 km2 (up to Swero
river gauging station) and forms one of the four principal sub-basins of the Rufiji River Basin (RRB).
Udzungwa Mountains (2576 m high) border the KV river basin in the north-western part, and Mbarika
Mountains (1516 m high) and Mahenge escarpment form the south-eastern border of the basin [29].
These mountains (Udzungwa and Mbarika) form the headwaters of the KV river system through their
dense network of tributaries. The main river, namely, the Kilombero river, becomes a braided river
when it gets to the central part of the valley. The whole valley is characterized by a complex system of
perennial and seasonal river networks, with several numbers of ponds, oxbow lakes, swamps, and
wetlands [30]. The Kilombero Valley Floodplain has an approximate surface area of 7,967 km2 and
was designated as a Ramsar site (i.e., the wetland of international environmental importance) in 2002
(http://www.ramsar.org).

The KV river basin experiences a sub-tropical climate with the mean annual precipitation (during
the period 1998–2010) ranging from 1200 mm to 1400 mm in the valley bottom, and from 1500 mm
to 2100 mm in the mountainous parts of the KV basin [26]. More than 55% of the total mean annual
precipitation goes back to the atmosphere as Evapotranspiration [28,31]. The mean daily temperature
is around 24 ◦C in the valley bottom and decreases to around 17 ◦C in the mountainous parts of the
basin. The KV basin is part of the East African Rift Valley formed by Pliocene faulting. While the
highlands parts of the basin are rich of crystalline limestone, schists, graphite, and gneisses, the lower
parts are underlain by Karoo sediments (sandstones, conglomerates and shales), and the valley bottom
is characterized by alluvial fans and Miombo plains [32]. Climate, geology and geomorphology are
the main controllers of groundwater recharge which mainly originates from the rainwater infiltration
from the high altitudes. The basin has an average aquifer transmissivity of 0.18 m2/min [33] and the
mean annual flow of 13.8 billion cubic meters [34]. Recent studies by Koutsouris and Lyon [27] and
Burghof et al. [35] have revealed the significant contribution of groundwater discharge to the seasonal
streamflow variability in the KV basin.

A total of 5 climatic stations from Rufiji Basin Water Office (RBWO) were used in this study
(Figure 1) to provide time series of air temperature (Maximum and Minimum), wind speed, and
relative humidity (Table 1). All time series were screened for potential inaccuracies and all suspicious
data (less than 2%) were removed and replaced by their corresponding long-term averages (2005–2015).
The Inverse Distance Weighting (IDW) interpolation method was used to interpolate these climatic
data (a lapse of 6.5 ◦C/km was used when interpolating the time series of air temperature) to cover the
entire spatial extent of the KV basin. Climatic stations are not spatially distributed over the KV basin;
therefore, the interpolated time series remains one of the potential sources of uncertainty in the final
actual evapotranspiration (ET) estimates. It is noteworthy that neither of the SEB models used in this
study utilizes precipitation (P) data, therefore, precipitation data were used only to assess the reliability
of the ET estimates because precipitation is one of the key factors that control the spatiotemporal
dynamics of ET. Other factors include land cover, soil type, water availability from other sources (such
as irrigation), climatic conditions, elevation, and solar radiation [23].

http://www.ramsar.org
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Table 1. Topography (elevation) and meteorological data used in this study. SRTM (Shuttle Radar
Topography Mission); RBWO (Rufiji Basin Water Office).

Data
Properties and Source

Spatial Resolution Temporal Resolution Units Period of Record Source

Digital Elevation Model (DEM) 90 m Not applicable m 2005, 2010, 2015 SRTM
Max and Min air temperature Points Daily ◦C 2005, 2010, 2015 RBWO

Relative humidity Points Instantaneous * % 2005, 2010, 2015 RBWO
Wind speed Points Instantaneous * m/s 2005, 2010, 2015 RBWO
Precipitation Points Daily * mm 2005, 2010, 2015 RBWO

* Readings were taken around 09:00 local hour.

In 2005, KV river basin had a relatively low annual precipitation (P = 791 mm) compared to other
years (i.e., 2010 (P = 1089 mm/year) and 2015 (P = 922 mm/year)) (Figure 2). In addition to climatic
data, a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) with a 90 m raster
Resolution was used to delineate the catchment (Figure 1) and to provide other topographic information
(such as the slope and aspect). Vegetation coverage and soil information (Table 2) were accessed from
the global land cover map for the year 2015 provided by the European Space Agency (ESA) Climate
Change Initiative (CCI) project (CCI-LC project) (http://maps.elie.ucl.ac.be/CCI/viewer/download.php,
accessed on 11 February 2019) and the Harmonized World Soil Database (HWSD) [36] respectively.
Spatial resolutions of these spatial datasets ranged from 1:100000 to 1:300000. This study divided the
basin into two parts—the uplands (Mountain-forests) with an elevation greater than about 670 m
and the wetland-valley (Floodplain) with elevation equal to or less than about 670 m—based on the
topography (Table 2). The uplands have relatively more proportions of forested lands and Acrisol soils.
The wetland-valley, on the other hand, has relatively more proportions of herbaceous and Fluvisol
soils. Forest and Acrisol are the main vegetation and soil types (respectively) over the entire basin.
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Figure 2. The monthly average precipitation over the Kilombero Valley (KV) river basin based on the
arithmetic mean of five precipitation stations. (a) Monthly average precipitation in 2005, (b) Monthly
average precipitation in 2010, (c) Monthly average precipitation in 2015, and (d) Monthly average
precipitation for all three years (i.e., 2005, 2010, and 2015).

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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Table 2. The catchment characteristics in the Kilombero Valley (KV) river basin. Vegetation information
was extracted from the 300 m spatial resolution global land cover map for the year 2015 provided by
the European Space Agency (ESA) Climate Change Initiative (CCI), and soil information was extracted
from the global harmonized soil database provided by Food and Agriculture Organization (FAO).

Features Characteristics/Types Catchment Name

Entire
Basin Uplands (Mountain-Forests) Wetland-Valley (Floodplain)

Topographic Area (km2) 34,285 18,267 16,018
Average slope (%) 13 18 7

Vegetation Forest (%) 55 30 25
Shrubs (%) 10 8 2

Herbaceous (%) 21 8 13
Soil Nitisols (%) 15 12 3

Acrisols (%) 46 24 22
Fluvisols (%) 18 1 17
Others * (%) 21 16 5

* Includes small proportions of Arenosols, Cambisols, Lixisols, and Leptosols.

The land cover classes for the KV river basin were extracted from the High-Resolution (HR) Land
Cover (LC) map (global land cover map) for the year 2015 provided by the European Space Agency
(ESA) Climate Change Initiative (CCI) project (CCI-LC project) (http://maps.elie.ucl.ac.be/CCI/viewer/
download.php, accessed on 11 February 2019). The CCI-LC project provides consistent annually global
land cover maps at 300 m spatial resolution from 1992 to 2015. More details about this project and how
these land cover maps were prepared can be accessed through the aforementioned website. For this
study, ESA-CCI land cover classes for the KV river basin were reclassified to 14 classes (Figure 1) and
used to aggregate the daily ET per land cover class (see subsequent section). Most of the study area
was covered by the broadleaved deciduous forest (around 38% of the total area) followed by flooded
herbaceous cover (11%) (Table 3). Urban areas and Water bodies each occupied less than 1% of the
total study area. It is noteworthy to point out that a large part of the broadleaf deciduous forest is
locally known as the ‘Miombo woodland’.

Table 3. The land cover classes of the Kilombero Valley (KV) river basin based on the 300 m spatial
resolution global land cover map for the year 2015 provided by the European Space Agency (ESA)
Climate Change Initiative (CCI).

Value Land Cover Classes Area (km2)

10 Cropland 411.8
11 Herbaceous cover 3005.0
20 Post-flooding cropland 2371.3
30 Mosaic cropland 1425.2
50 Broadleaved evergreen forest 2696.6
60 Broadleaved deciduous forest 12,555.1
90 Mixed leaf forest 2158.7
110 Mosaic herbaceous cover 963.6
120 Shrubland 2567.8
130 Grassland 545.4
160 Flooded tree cover 348.8
180 Flooded herbaceous cover 3716.0
190 Urban areas 11.7
210 Water bodies 22.5

2.2. Overview of Remotely-Sensed Surface Energy Balance Products

Different studies have been undertaken to compare the robustness (in terms of performance) of
various RS-based ET estimation models [37–40]. Interestingly, no specific model has been declared
to be the most robust of all because different studies have reported different ranks of best models.
Specifically, we find that a particular model can be ranked (in descending order of robustness) first in

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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one study and ranked in other positions in another study which compares almost the same group of
models. This inconsistency has been associated with different factors which among others, include
climate, the season of the year, and the type of the ecosystem where the study is conducted. In this
study, we selected three SEB models, namely, the SEBAL, SSEBop, and S-SEBI models because: they
require minimum climatic data, the SEBAL and the SSEBop models have previously been successfully
used in Tanzania [4,5] and all of these models (i.e., SEBAL, SSEBop, and S-SEBI models) have been
applied and validated across different scales (temporal and spatial) in a wide range of climatological
conditions, and ecosystems (e.g., agroecosystems) almost all over the world. For example, the SEBAL
model has been applied and validated in different hydrological basins (including data scarce basins in
Africa) in more than 30 countries [23]. Some of these hydrological basins and their respective countries
include the upper Pangani river basin in Tanzania/Kenya [4], the Gediz basin in Turkey [41], the Sudd,
Sobat and Ghazal basins in Sudan [42], the Kingdom of Saudi Arabia (the entire country) [43], the
Yakima river basin in the United States of America [23], and the Nansi Lake Wetland in China [44].
We recommend readers to refer to these pieces of literature for more details on the type of data used in
the validation process and the accuracies of the validation results. More lists of validation studies can
be found in Karimi and Bastiaanssen [21] and Bastiaanssen et al. [23].

2.2.1. MODIS Program

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (sensor) has the
capability of measuring 36 spectral bands between 0.405 µm and 14.385 µm (i.e., from the visible to
thermal-infrared regions of electromagnetic spectrum) at three spatial resolutions: 250 m, 500 m, and
1000 m. It has a viewing swath width of 2330 km and a revisit time of one to two days. It is operated by
the National Aeronautics and Space Administration’s (NASA) Earth Observing System (EOS) program.
The MODIS instrument operates on two satellites (spacecraft), namely, Terra (launched on 18 December
1999) and Aqua (launched on 04 May 2002). The MODIS instruments on both Terra and Aqua image
(view) the same area on the earth at approximately 10:30 AM (on the Terra) and 1:30 PM (on the Aqua)
local time. They provide a comprehensive series of global observations of the land, oceans, and the
atmosphere. MODIS land (MODLand) products, in particular, are available through the Land Processes
Distributed Active Archive Center (LPDAAC) at the U. S. Geological Survey (USGS) Earth Resources
Observation and Science (EROS) Data Center (EDC). An overview of MODLand products processing
and status is given by Justice at al. [45]. The latest version of MODIS land products is MODIS Version
6 (V006). All MODIS land products used in this manuscript (Table 4) belong to this version (V006).
These products were downloaded for free from NASA’s LPDAAC website (https://lpdaac.usgs.gov/).

Table 4. The Moderate Resolution Imaging Spectroradiometer (MODIS) Satellite Images used in this
study. LST stands for Land Surface Temperature, NDVI stands for Normalized Difference Vegetation
Index, and LAI stands for Leaf Area Index. All Product names such as MOD11A2 are standard product
short names (as per MODIS naming conventions) used in the Land Processes Distributed Active
Archive Center (LPDAAC) website (https://lpdaac.usgs.gov/, accessed on 16 December 2018).

Satellite Imagery Product (Sensor) Spatial Scale Temporal Scale Scaling Factor

LST/Emissivity MOD11A2 (Terra) and MYD11A2 (Aqua) 1 km 8-day 0.02/0.002
NDVI MOD13Q1 (Terra) and MYD13Q1 (Aqua) 250 m 16-day 0.0001
LAI MOD15A2H (Terra) and MYD15A2H (Aqua) 500 m 8-day 0.1

Albedo MCD43A3 (combined Terra and Aqua) 500 m Daily 0.001

2.2.2. Preprocessing of MODIS Land Products

The MODIS Land Products required for the SEBAL model include Land Surface Temperature
and Emissivity (LST/EMM), Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI),
and short-wave broadband surface albedo (BRDF-albedo) (Table 4). Preprocessing of MODIS satellite
images was done primarily to render them ready (mainly in terms of format, and validity) to be used

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
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in the SEBAL model. The whole concept of preprocessing can be grouped into two parts: scaling
and resampling of retrieved MODIS images, and correction of invalid pixels in the MODIS images.
Invalid pixels in the MODIS images might be due to cloud cover, aerosol content, processing failures,
atmospheric disturbances, and/or estimation errors [46]. We used two 16-day NDVI images, namely,
MOD13Q1 (from Terra satellite), and MYD13Q1 (from Aqua satellite), which start on day 1 and day 9
of the year respectively, to create 8-day 250 m NDVI images for three years, 2005, 2010 and 2015.
This approach is similar to the approach used by Kiptala et al. [4] to generate 8-day 250m NDVI images
for subsequent use in the SEBAL model application in Pangani river basin (a transboundary basin
between Tanzania and Kenya). We acquired and resampled the other MODIS datasets (Table 4) based
on these NDVI images. We scaled all MODIS products using their respective scaling factors to unit
conversion the values downloaded directly from the MODIS server (Table 4).

Land Surface Temperature (LST) is the major input variable in all thermal infrared ET estimation
algorithms [21] including the SEBAL, SSEBop and S-SEBI models. Therefore, the quality of the LST
product is highly important [47]. Therefore, only LST images with valid (good quality) temperature
data were selected for at least 90% of pixels covering the study area. This was achieved through
analysis of the Quality Assessment Science Data Sets (QA-SDS) which is included in all NASA’s
MODIS Land Products. QA-SDS considers the atmospheric conditions in terms of cloud cover, aerosol
content, processing failures, algorithm choices, and estimation errors [46,48]. We selected 90% as the
minimum threshold for the total number of pixels with valid data to minimize uncertainty especially
when filling the missing values (correcting the invalid pixels) to produce continuous satellite data.
Different thresholds have been used to select LST images; for example, 95% [10], 80% [49], and 75% [50].
We defined a pixel to have valid data if and only if it has the quality flag of 0 (cloud-free) and/or an
accuracy level within ±1 K. Similar criterion was used by Alemayehu et al. [5] to select images with
valid surface temperature data from the MODIS LST images for subsequent use in the ET estimation
using the operational simplified surface energy balance (SSEBop) algorithm [17] for the Mara River
Basin (Kenya/Tanzania). We assigned all the invalid pixels in the images as the missing values using
the R raster package [51] in the R program. We ended up with 18, 14 and 12 sets of good quality images
(based on 90% criterion) for the years 2005, 2010, and 2015, respectively (Table 5).

Table 5. The Day of the Year (DOY) for the MODIS satellite images with at least 90% cloud-free overpass
over the Kilombero Valley (KV) river basin for the years 2005 (DOY 2005), 2010 (DOY 2010), and 2015
(DOY 2015). Common DOY for 2005 (five years before implementation of SAGCOT initiative) and
2015 (five years after the implementation of SAGCOT initiative) are shown in bolded font. SAGCOT,
Southern Agricultural Corridor of Tanzania.

DOY 2005 DOY 2010 DOY 2015

17 97 153
121 129 161
129 185 185
161 225 193
193 233 225
233 249 233
241 265 249
249 273 257
257 281 265
265 289 281
273 297 321
281 305 337
289 329
313 345
321
329
337
353
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To ensure continuous satellite data, all the missing values in the images were filled using the focal
mean of a 3 by 3-pixel window (i.e., the pixel with a missing value is filled by the mean of the 8 pixels’
values surrounding it). The approach of filling the missing values using the descriptive statistics (e.g.,
mean, maximum, and minimum) of the pixels in the neighborhood has been common in the studies
which utilized remotely sensed images [4,5]. We defined this focal mean function (i.e., user-defined
function) in the R program and applied it to fill the missing values in the MODIS images using the R
raster package [51]. It is noteworthy to point out that we deliberately downloaded (all) the MODIS
images for the area which extend beyond the KV river basin (Figure 1) for twofold: first, to ensure
that every pixel along the border of the KV river basin is surrounded by six pixels (i.e., to maximize
the number of pixels with valid data in the 3 by 3 pixel window in case a pixel with a missing value
is located along the border), and second, to maximize the possibility of having representative hot
and cold pixels (‘anchor pixels’) which are a necessary condition required by the SEBAL model [16]
application. Interestingly, even with this design, there were no valid pixels available within a 3 by
3-pixel window in some of the images. Therefore, we used a temporal interpolation technique proposed
by Weiss et al. [52] to fill those missing values. The temporal interpolation has been used in several
studies to fill the missing values in remotely sensed images [53–55].

The average surface emissivity was computed as the average of Em_31 (from band 31) and Em_32
(from band 32) of the MOD11A2 for the day of the year which has an NDVI image from Terra (i.e.,
MOD13Q1), and as the average of Em_31 (from band 31) and Em_32 (from band 32) of the MYD11A2
for the day of the year which has an NDVI image from Aqua (i.e., MYD13Q1). This approach of
considering surface emissivity as the average of Em_31 (from band 31) and Em_32 (from band 32) has
been used in several SEBAL model applications which utilized MODIS images as input datasets (e.g.,
in Mahmoud and Alazba [43] and Kiptala et al. [4]). It is worth noting that the ‘effective’ emissivity
can be greater than 1.0, depending on the vertical temperature and moisture structure near the surface.

2.3. The Surface Energy Balance Algorithm for Land model

The Surface Energy Balance Algorithm for the Land (SEBAL) model [16] is a satellite-based
image-processing model which estimates the (instantaneous) actual evapotranspiration (ET) for every
individual pixel (cell) of the remote sensing image in terms of the instantaneous latent heat flux (LE).
The later (LE) is computed for every individual pixel (i.e., on a pixel-by-pixel basis) of the remote
sensing image as a residual of the surface energy balance/budget (SEB) equation (Equation (1)) at the
moment of the satellite overpass. Therefore, in general terms, the SEBAL model can be considered as the
model which estimates spatially explicit actual evapotranspiration based on the surface energy balance
and satellite remote sensing techniques [44]. The model computes a complete surface radiation balance
(Equation (2)) and surface energy balance (Equation (1)) along with the resistances for momentum,
heat and water vapor transport for every individual pixel of the remote sensing image [56].

LE = Rn −G−H (1)

where: LE is the latent heat flux (W/m2), Rn is the net radiant flux at the surface (W/m2), G is the soil
heat flux (W/m2), and H is the sensible heat flux to the air (W/m2).

The SEBAL model computes each of the components of Equation (1) using land surface
characteristics such as surface temperature (Ts), normalized vegetation index (NDVI), leaf area index
(LAI), surface albedo (α), and emissivity (ε). These land surface characteristics are derived from satellite
radiances in the visible, near infrared, and thermal infrared part of the electromagnetic spectrum (EM).
It is noteworthy to point out that, different types of satellites such as the Moderate Resolution Imaging
Spectroradiometer (MODIS), Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Advanced Very High-Resolution Radiometer (AVHRR), and Landsat have been used to derive
the land surface characteristics needed by the SEBAL model [57–60]. Additionally, it is important to
comment that, during the course of computation of H (Equation (1)), SEBAL model computes resistances
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for momentum, heat and water vapor transport as a function of wind speed and air temperature.
Wind speed is obtained from the routine weather data, and air temperature is approximated to be
equal to the surface temperature (derived from the satellite image) at the cold pixel [23].

A comprehensive theory of the SEBAL model including standard equations and assumptions
used to derive the actual ET (starting from satellite radiances to the instantaneous actual ET and
subsequent scaling up of instantaneous AET to 24 hours and/or longer periods) are given in different
papers [16,23,61]. Therefore, in this manuscript, we will not replicate those equations. However, we
will only provide the key equation for each of the components of the surface energy balance equation
(Equation (1)). We recommend readers to refer to the listed pieces of literature above for the standard
equations used to compute any of the variables expressed in these key equations (i.e., Equation (2) to
Equation (4)).

2.3.1. Net Radiation (Rn)

Net radiation at the surface Rn represents the actual rate of radiant energy at the surface, partitioned
into G, H and LE. Mathematically, it is expressed as the difference of all incoming radiant fluxes to all
outgoing radiant fluxes (Equation (2)). Equation (2) is commonly known as the land surface radiation
balance equation [62].

Rn = (1− α)RS↓ + RL↓ + RL↑ + (1− εs)RL↓ (2)

where RS↓ is the incoming short-wave radiation (W/m2), α is the surface short-wave albedo
(dimensionless), RL↓ and RL↑ are incoming and outgoing long-wave radiations (W/m2) respectively,
and εs is the surface emissivity (dimensionless).

We used albedo (α) and surface emissivity (εs) derived from the MODIS satellite (Table 4).
We computed RS↓, RL↓, and RL↑ using standard equations/algorithms and/or land surface
parameterization schemes as given in Allen et al. [61]. We recommend readers to refer to Allen et al. [61]
for detailed information about these equations and parameterization schemes.

2.3.2. Soil Heat Flux (G)

Soil heat flux (G) is defined as the rate of heat storage in the soil and vegetation by conduction.
We estimated G using a standard empirical equation (Equation (3)) proposed by Bastiaanssen [63].
We recommend readers to refer to Allen et al. [61] for detailed information on the applicability of
Equation (3), and the other alternative equations which would also be used to compute G.

G
Rn

= (Ts − 273.15)(0.0038 + 0.0074α)
(
1− 0.98NDVI4

)
(3)

where G is soil heat flux (W/m2), Rn is the net radiation flux (W/m2), Ts is surface temperature (K), α is
the surface short-wave albedo (dimensionless), and NDVI is the Normalized Difference Vegetation
Index (dimensionless).

2.3.3. Sensible Heat Flux (H)

Sensible heat flux (H) is defined as the rate of heat loss to the air as a result of a temperature
gradient. Mathematically, it is expressed as the function of temperature gradient and surface roughness.
The later (surface roughness) is the function of wind speed (u). We computed H using classical
expression (Equation (4)) given by Farah and Bastiaanssen [64]. Equation (4) is commonly known as
the aerodynamic function (or equation of heat transport) [18].

H =
ρaircpdT

rah
(4)
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where ρair is the air density (kg/m3), cp is the air specific heat (J/kg/K) at constant pressure, dT is the
near-surface temperature difference (K) between two near-surface heights (0.1 m and 2 m above the
zero-plane displacement), and rah is the aerodynamic resistance (s/m) to heat transport between two
near-surface heights (0.1 m and 2 m above the zero-plane displacement).

It is noteworthy to point out that the procedures used by the SEBAL model to estimate the two
unknowns and interrelated variables (dT and rah) in Equation (4), are very crucial and they might
be (in cases when they are not well implemented) one of the sources of uncertainty (the list of other
possible uncertainties are given in Allen et al. [61]) in the final estimated actual ET. For example,
to estimate dT in Equation (4), the user/operator has to identify and select two ‘anchor’ pixels (hot
and cold pixels) where reliable values for H can be predicted. These pixels represent the extreme
conditions of temperature and humidity. SEBAL assumes the cold pixel to be in open water bodies or a
well-irrigated crop field, full covered having the surface temperature (Ts) approximately equal to the
air temperature (Ta). On the other hand, the hot pixel is assumed to be a dry bare agricultural field
where latent heat flux (LE) is assumed to be equal to zero [23]. Manual identification and selection of
these pixels are subjected to subjectivity because there is a possibility of two different users to identify
and select two different pair of anchor pixels for the same image using the same criteria and procedures
used to select the anchor pixels. Moreover, manual identification and selection of these pixels is a
time-consuming process especially when many images (satellite overpasses) need to be analyzed.

To eliminate this subjectivity inherent in the manual identification and selection of the anchor
pixels, we used the raster package [51] in the R program to semi-automate the process. We specified
all criteria needed for the identification and selection of the anchor pixels. Locations of irrigated
and non-irrigated agriculture fields (potential candidates for the anchor pixels) were extracted from
Senkondo et al. (2018) [24]. Our approach is conceptually the same as that used by Owusu [65] in
the R sebkc package in the R program. The sebkc package [65] has two functions (coldTs () and hotTs
() for the identification and selection of cold and hot pixels respectively) which identify and select
these anchor pixels automatically for any given pair of Ts, albedo, and NDVI images. Our approach
included the boundary conditions for the Leaf Area Index (LAI) (i.e., 0.1 to 0.4 (dimensionless) for the
hot pixels, and 4 to 6 (dimensionless) for the cold pixels) on top of the boundary conditions for NDVI
and albedo. Boundary conditions (ranges) for NDVI, and albedo, and other important information to
be considered during identification and selection of anchor pixels can be found elsewhere [66,67].

We calculated rah based on standard procedures (applied in the SEBAL model) used to estimate
rah. These procedures can be grouped twofold: first is the extrapolation of wind speed from a blending
height (normally assumed to be 200 m) above the ground surface, and second is an iterative stability
correction scheme based on the Monin–Obukhov [22] functions/schemes [16]. The comprehensive
details on these procedures can be found in Allen et al. [61] and Allen et al. [18].

2.3.4. Instantaneous Evaporative Fraction (Λ)

An instantaneous evaporative fraction (Λ) can be defined as the ratio of the instantaneous latent
heat flux (LE) to the net available energy (Equation (5)). It expresses the ratio of the actual evaporative
demand to the potential evaporative demand when the moisture conditions in the soil are in equilibrium
with the moisture conditions in the atmosphere [44].

Λ =
LE

LE + H
=

LE
Rn −G

(5)

Brutsaert and Sugita [68] and Farah et al. [69] have demonstrated that, during the daytime hours,
the values of Λ are almost constant, therefore, Λ can be used as a temporal integration parameter (i.e., a
time-based transfer mechanism to extrapolate ET from the satellite overpass time to periods of 24-hour
(daily) or longer). The validity of this assumption is also supported by a study on the evaporative
fraction across a wide range of ecosystems and climates conducted by Peng et al. [70]. Their findings
revealed that instantaneous evaporative fractions, especially between 11:00 AM to 14:00 PM local time,
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could be used to represent a daytime evaporative fraction. This holds true for our study because
the local overpass time (10:30 AM and 13:30 PM) for the MODIS images fall almost within this time
range. On top of that, this assumption is widely used among SEBAL model applications [42,57,71],
and various other remote sensing-based ET estimation algorithms [14,72,73].

2.3.5. The Daily (24-Hour) Actual ET (ET24)

For timescales of one day or longer (e.g., monthly, seasonal, and yearly), the soil heat flux (G) can be
ignored [7], which means, the net available energy (Rn −G) in the denominator of Equation (5) reduces
to the net radiation (Rn). Therefore, at daily timescale, the actual evapotranspiration (ET24) can be
estimated by rearranging Equation (5) and converting latent heat flux (W/m2) into evapotranspiration
(mm/day) as shown in Equation (6).

ET24 =
86, 400× 103

λρw
ΛRn,24 (6)

where Rn,24 is daily average net radiation (W/m2), ρw is the density of water (1000 kg/m3), Λ is the
evaporative fraction (dimensionless), 86, 400× 103 converts from meters per second (m/s) to millimeters
per day (mm/day), and λ is the latent heat of vaporization (J/kg) which represents the amount of heat
absorbed when one kilogram of water evaporates. We computed λ as a function of surface temperature
(Ts) using a standard equation given by Allen et al. [18] and repeated in Allen et al. [61].

2.4. The Operational Simplified Surface Energy Balance Model

The Operational Simplified Surface Energy Balance (SSEBop) model [17] is a satellite-based
image-processing model that computes the actual ET at the Earth’s surface using satellite-derived
surface temperature images and meteorological data. The SSEBop model unlike the SEBAL model [16]
does not require computation of the sensible heat flux (H), therefore it can be categorized as partial
energy balance model [38]. Additionally, unlike the SEBAL model which estimates the daily actual ET
from the instantaneous (at satellite overpass) latent heat flux (LE), the SSEBop model estimates the daily
actual ET directly from the satellite-derived surface temperature images. The SSEBop model computes
the evaporative fraction (ETrF) as the ratio of the difference between the extreme surface temperature
at the hypothetical hot pixel (Thot) and the satellite-derived surface temperature (Ts) to the difference
between Thot and the extreme surface temperature at the hypothetical cold pixel (Tcold). The SSEBop
model uses a predefined near surface temperature difference (dT) for each pixel to estimate Thot. Tcold
is estimated as a product of the daily maximum air temperature (Tmax) and a correction coefficient (c)
(Table 6). c is calibrated locally as the ratio of the Ts at the cold pixel where NDVI (dimensionless) is
greater than 0.8 to the corresponding Tmax. One of the most interesting features of the SSEBop model is
its simplified computation of dT. The model computes dT as the function of the daily net radiation
(Rn24) under clear sky conditions and aerodynamic resistance to heat transport (rah) (Table 6). Unlike
the SEBAL model which uses Monin-Obukhuv schemes [22] to correct for atmospheric stability during
computation of dT and rah, the SSEBop model fixes the rah value to 110 s/m. It is noteworthy to point
out that this simplified computation of dT in the SSEBop model is one of the potential sources of
uncertainty in the final estimated daily actual ET. We recommend readers to refer to Chen at al. [74]
for other potential sources of uncertainty in the SSEBop parameterization. Finally, the SSEBop model
estimates the daily actual ET as the product of the evaporative fraction (ETrF), scaling factor (kmax), and
the daily grass reference evapotranspiration (ET0) (Table 6). Senay et al. [17] recommended the values
of kmax to be between 1.0 and 1.2 (we used kmax = 1.2). In this study, we used the standard procedure
given by ASCE-EWRI [75] and Allen et al. [76] to estimate Rn24 and ET0. We recommend readers to
refer to Senay et al. [17] for the detailed theoretical and computational basis of the SSEBop model.
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Table 6. The mathematical expressions used to compute the evaporative fraction and the daily actual
evapotranspiration (ET) for the SEBAL, S-SEBI, and SSEBop models.

Model (References) Evaporative Fraction (-) Daily Actual ET

SEBAL (Bastiaanssen et al., 1998) Λ = LE/(Rn −G) (86, 400×Λ ×Rn24)/λ
S-SEBI (Roerink et al., 2000) Λ = (Thot − Ts)/(Thot − Tcold) (86, 400×Λ ×Rn24)/λ

Thot = a1 + b1α
Tcold = a2 + b2α

SSEBop (Senay et al., 2013) ETrF = (Thot − Ts)/(Thot − Tcold) ETrF× kmax × ET0
Tcold = c× Tmax

Thot = Tcold + dT
dT = (Rn24 × rah)/

(
ρa × cp

)
2.5. The Simplified Surface Energy Balance Index Model

The Simplified Surface Energy Balance Index (S-SEBI) model [19] is the image-processing tool that
calculates the actual ET at the Earth’s surface based on the satellite-derived observations. The S-SEBI
model has a similar structure to that of the SSEBop model [17]. It also computes an evaporative
fraction (Λ) as the ratio of the difference between hot temperature (Thot) and satellite-derived surface
temperature (Ts) to the difference between (Thot) and cold temperature (Tcold). However, the S-SEBI
model does not use the predefined dT to determine the two extreme surface temperatures (i.e., Thot
and Tcold) as the SSEBop model does, instead, the S-SEBI model defines Thot and Tcold based on the
linear regression of Ts and surface albedo (α) (Table 6). It is noteworthy to point out that in S-SEBI,
Thot represents the hot edge (where all available energy (Rn −G) is assumed to be equal to H), and
Tcold on the other hand, represents the cold edge (where H = 0). These two edges (i.e., the hot and
cold edges) form a trapezoidal space. We recommend readers to refer to Roerink et al. [19] for more
details on the trapezoidal space on how to establish linear regression (i.e., Ts ∼ α) between Ts and α,
and on how to determine the coefficients of regression lines representing hot and cold edges (Table 6).
Unlike the SSEBop model which computes the evaporative fraction (ETrF) directly on a daily basis,
the S-SEBI model computes the instantaneous (i.e., at satellite overpass) evaporative fraction (Λ)
like the SEBAL model. An assumption is then made that Λ is constant for the day under clear-sky
conditions. This assumption is supported by findings from different studies which include Brutsaert
and Sugita [68], and Peng et al. [70]. Lastly, the daily actual ET is computed as the function of Λ
and Rn24 (Table 6). We recommend readers to refer to Roerink et al. [19] for a more theoretical and
computational basis of the S-SEBI model.

2.6. Model Implementation and Comparison

All SEB models were coded/scripted and implemented in the R programming environment.
Following the absence of the directly measured ET in the KV basin, ET estimates derived from one SEB
model were compared to ET estimates derived from other SEB models together with their ensemble
mean. It is important to note that there were 25 unique days of the year (DOYs) obtained by combining
DOYs of 2005, 2010, and 2015 (Table 5). The pixel by pixel average was computed for DOY that
occurred in more than one year (i.e., has satellite overpass in more than one year such as DOY = 233).
Prior to model comparison, ET estimates (from each model) were aggregated per each land cover
(LC) class and per each catchment boundary such that a single ET value was obtained per each LC
class and per each catchment boundary per each unique day of the satellite overpass. Two widely
accepted model performance metrics (goodness-of-fit statistics)—coefficient of correlation (r) which
measures similarity in temporal or spatial pattern between two datasets, and Percent Bias (Pbias) which
measures systematic overestimation or underestimation of a dataset—were used to evaluate the model
performance. We recommend readers to refer to Moriasi et al. [77] for more information about model
performance metrics.
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Uncertainty assessment of ET estimates using the nonparametric statistical inference for mean
difference (Wilcoxon’s test) and variance (Levene’s test) at a 95% confidence level was also carried out
to add more insight on model performance. The Wilcoxon’s test (i.e., Wilcoxon rank sum method) was
used to test the difference of the means between two estimates. The Levene’s test, on the other hand,
was used to test the significance of variance of these two estimates by considering the distances from
their medians rather than their means [78]. Both of these tests use a hypothesis p-value (p) for a given
confidence level (95% for this study) such that, if p > 0.05, then the null hypothesis (i.e., there is no
significant difference between the means of the two estimates for the Wilcoxon’s test, and there is no
significant difference between the variances of the two estimates for the Levene’s test) is accepted, and
the null hypothesis is rejected if p ≤ 0.05. When Wilcoxon’s test and the Levene’s test give two opposite
outcomes then Levene’s result is considered because the test results for the variance are more robust
compared to those of mean [79]. It is noteworthy to point out that the decision to use the nonparametric
statistical inference was reached after performing a normality test using the Shapiro–Wilk test [80].
The Shapiro–Wilk test resulted in p-values below 0.05 (95% confidence level) for all ET estimates,
something which confirmed that the distribution of ET estimates did not follow a normal distribution
and, therefore, nonparametric significance tests were the best options

3. Results

3.1. Actual ET Comparisons Based on Land Cover Classes

The ensemble mean of all Surface Energy Balance (SEB) models showed similar patterns in the
mean daily evapotranspiration (ET) across all land cover classes (Figure 3). For example, mosaic
herbaceous cover and broadleaved evergreen forest had the largest mean daily ET (Table 7). The higher
mean daily ET for the evergreen forest was partly due to the relatively high moisture received
by evergreen forest (regardless of the season) from the dense network of tributaries draining the
mountains (both Udzungwa and Mbarika mountain ranges) where most of the evergreen forest is
located. This finding was in line with Munishi-Kongo [81], who computed the daily ET across KV basin
using the SEBS model [14] for four MODIS satellite overpasses (136th, 184th, 228th, and 303rd) during
the dry season in 2010. S/he found that the evergreen forest had daily ET ranging between 6–8 mm
regardless of the season. The relatively high ET over the mosaic herbaceous cover, which consists
of large proportions of Miombo woodland, was attributed to the fact that the Miombo woodland
maintains high ET rates due to its nature of maintaining leaves almost throughout the year, and starts
leaf emergency some weeks before the rainfall onset [81]. These results suggest that all SEB models
have managed to capture the actual ET ranges over these land cover classes.
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Figure 3. The boxplots showing variations of actual evapotranspiration (ET) estimates for 25 satellite
overpasses (i.e., image acquisition dates) computed by Surface Energy Balance (SEB) models, and their
ensemble mean across different land cover classes in the Kilombero Valley (KV) river basin. The height
of the box indicates the Interquartile range (IQR) of ET values, the horizontal line inside the box indicates
the median ET value, the upper box level indicates the upper quartile (75th percentile), the lower box
level indicates the lower quartile (25th percentile), bars (whiskers) indicate the minimum and maximum
ET values, a filled circle indicates the mean ET value, and an open circle indicates the outlier. SBL,
Surface Energy Balance Algorithm for Land (SEBAL) model; SOP, Operational Simplified Surface Energy
Balance (SSEBop) model; SSB, Simplified Surface Energy Balance Index; lc, land cover. The number after
prefix ‘lc’ in the abscissa is the standard value for a given land cover class provided by the European Space
Agency (ESA) Climate Change Initiative (CCI) (http://maps.elie.ucl.ac.be/CCI/viewer/download.php,
accessed on 14th January 2019). (a) ET estimated using the SEBAL model (b) ET estimated using the
SSEBop model (c) ET estimated using the S-SEBI model, and (d) ET estimated using the ensemble mean
of the three models.

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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Table 7. The descriptive statistics derived from the daily evapotranspiration estimates computed using
the Surface Energy Balance (SEB) model (for total 25 MODIS satellite overpasses) for different land
cover classes in the Kilombero Valley river basin. SEBAL, Surface Energy Balance Algorithm for Land;
SSEBop, Operational Simplified Surface Energy Balance Algorithm; S-SEBI, Simplified Surface Energy
Balance Index, Ensemble mean, the mean of daily ET estimates from the three models (SEBAL, SSEBop,
and S-SEBI); Stdev, sample standard deviation.

Land Cover Classes Parameter
Models

SEBAL SSEBop S-SEBI Ensemble Mean

Cropland Mean (mm/day) 6.3 6.4 6.4 6.4
Stdev (mm/day) 1.0 0.8 0.7 0.7

Herbaceous cover
Mean (mm/day) 5.6 5.6 5.7 5.6
Stdev (mm/day) 1.0 0.8 0.7 0.7

Post-flooding
cropland

Mean (mm/day) 3.5 3.1 3.8 3.5
Stdev (mm/day) 0.8 1.1 0.7 0.7

Mosaic cropland Mean (mm/day) 6.2 6.3 6.2 6.2
Stdev (mm/day) 1.0 0.8 0.7 0.7

Broadleaved
evergreen forest

Mean (mm/day) 6.7 7.0 6.9 6.9
Stdev (mm/day) 1.1 0.9 0.9 0.9

Broadleaved
deciduous forest

Mean (mm/day) 5.8 5.6 5.8 5.7
Stdev (mm/day) 1.0 0.7 0.7 0.6

Mixed Leaf forest
Mean (mm/day) 6.4 6.5 6.4 6.4
Stdev (mm/day) 1.0 0.7 0.7 0.7

Mosaic herbaceous
cover

Mean (mm/day) 6.8 7.1 6.9 6.9
Stdev (mm/day) 1.1 0.9 0.8 0.8

Shrubland
Mean (mm/day) 6.5 6.6 6.5 6.5
Stdev (mm/day) 1.1 0.8 0.8 0.8

Grassland
Mean (mm/day) 6.3 6.3 6.3 6.3
Stdev (mm/day) 1.0 0.8 0.7 0.7

Flooded tree cover
Mean (mm/day) 4.6 4.0 4.6 4.4
Stdev (mm/day) 0.9 0.9 0.6 0.6

Flooded herbaceous
cover

Mean (mm/day) 3.7 3.0 3.8 3.5
Stdev (mm/day) 0.8 1.3 0.7 0.7

Urban areas
Mean (mm/day) 5.1 5.2 5.3 5.2
Stdev (mm/day) 1.1 0.9 0.8 0.8

Water bodies
Mean (mm/day) 5.9 5.4 5.7 5.6
Stdev (mm/day) 0.8 0.9 0.8 0.7

All land cover classes located over the floodplain (post-flooding cropland, flooded tree cover, and
flooded herbaceous cover) have a relatively low mean daily ET across all SEB models (Table 7). This was
partly attributed by low soil moisture over the floodplain during the dry season. This suggestion is
supported by Mombo et al. [82] who highlighted the dryness of the KV floodplain especially at the
peak of the hot dry season in October. Fascinatingly, all models have managed to capture the expected
relatively high ET (6.4 mm/day) over the cropland (Table 7). Cropland was expected to have higher ET
due to dryland irrigation practiced in the area [24]. This result suggests the reliability of capturing
real-life processes with the ET estimates derived by the SEB models used in this study.

The Wilcoxon’s test results (Table 8) show that the means of different pairs of SEB models across
most of the land cover classes were statistically comparable (p-value > 0.05) with exception to land
cover classes located over the flooded areas (land cover classes’ values 20, 160, and 180) and the water
bodies (land cover class’s value 210) for the pairs of SEBAL vs. SSEBop, SSEBop vs. S-SEBI, and
SSEBop vs. Ensemble Mean. The Levene’s test results (Table 8), on the other hand, show that the
variances of different pairs of SEB models across different land cover classes were comparable (p-value
> 0.05). Interestingly, the pairs of SEBAL vs. S-SEBI and SEBAL vs. Ensemble mean have p-values
greater than 0.05 across all land cover classes, something which suggests the comparability of their ET
estimates. It is noteworthy that whenever the Wilcoxon’ test and the Levene’s test give the opposite
results (i.e., only one gives a p-value > 0.05), the test result for the variance (i.e., Levene’s test) is more
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robust than the test result for the mean (i.e., Wilcoxon’s test), therefore, a conclusion is made based on
the Levene’s test [79].

Table 8. The nonparametric significance test (at a 95% confidence) (derived from the daily
evapotranspiration estimates computed using Surface Energy Balance (SEB) model for a total of
25 MODIS satellite overpasses) for each pair of SEB models comparison for different land cover classes
in the Kilombero Valley (KV) river basin. SBL, Surface Energy Balance Algorithm for Land (SEBAL)
model; SOP, Operational Simplified Surface Energy Balance (SSEBop) model; SSB, Simplified Surface
Energy Balance Index (S-SEBI) model; ESB, ensemble mean of daily ET estimates from the three models;
ESA-CCI, European Space Agency Climate Change Initiative. The land cover classes’ values represent
the standard values for land cover classes provided by ESA-CCI (refer to Table 3).

Pair of Model Comparison Land Cover Classes

10 11 20 30 50 60 90 110 120 130 160 180 190 210

Wilcoxon’s test p-values (at 95% confidence)
(SBL vs SOP) 0.98 0.66 0.01 0.88 0.38 0.25 0.95 0.48 0.91 0.71 0.02 0.01 0.89 0.07
(SBL vs SSB) 0.83 0.84 0.68 0.63 0.63 0.70 0.88 0.83 0.80 0.45 0.55 0.82 0.81 0.21
(SOP vs SSB) 0.95 0.53 0.00 0.83 0.68 0.07 0.81 0.59 0.88 0.98 0.00 0.00 0.50 0.03
(SBL vs ESB) 0.91 0.89 0.14 0.70 0.64 0.43 0.95 0.76 0.93 0.73 0.15 0.11 0.90 0.17
(SOP vs ESB) 0.98 0.66 0.00 0.84 0.62 0.19 0.95 0.69 1.00 0.79 0.00 0.01 0.74 0.06
(SSB vs ESB) 0.83 0.88 0.02 0.85 0.97 0.76 0.95 0.79 0.82 0.65 0.08 0.03 0.73 0.95

Levene’s test p-values (at 95% confidence)
(SBL vs SOP) 0.23 0.48 0.43 0.27 0.24 0.33 0.21 0.22 0.13 0.27 0.97 0.14 0.49 0.79
(SBL vs SSB) 0.07 0.15 0.35 0.07 0.38 0.21 0.13 0.14 0.12 0.05 0.27 0.53 0.16 0.49
(SOP vs SSB) 0.39 0.43 0.14 0.36 0.78 0.81 0.64 0.72 0.84 0.27 0.33 0.06 0.43 0.76
(SBL vs ESB) 0.09 0.27 0.27 0.08 0.36 0.19 0.17 0.21 0.17 0.10 0.21 0.56 0.26 0.37
(SOP vs ESB) 0.52 0.70 0.11 0.42 0.80 0.75 0.81 0.95 0.95 0.52 0.27 0.07 0.64 0.65
(SSB vs ESB) 0.83 0.64 0.82 0.89 0.97 0.93 0.82 0.77 0.81 0.65 0.82 1.00 0.73 0.87

By looking at performance metrics across different land use classes for different pairs of SEB model
comparisons (Table 9), it is clear that all pairs of model comparisons performed reasonable well (r > 0.5)
with the exception to the pair of SEBAL vs. SSEBop which have a relatively poor performance (r < 0.5)
across most of the land cover classes. Fascinatingly, the pair of SEBAL vs. SSEBop performed well
for the broadleaved evergreen (r = 0.68), mosaic herbaceous cover (r = 0.60) and shrubland (r = 0.54).
Overall performance shows that all pair of models have biases less than 10% (Pbias < 10%) across
all land cover classes with the exception to some of the pairs which contain the SSEBop model (e.g.
SEBAL vs. SSEBop, SSEBop vs. S-SEBI, and SSEBop vs. Ensemble) for the land cover classes located
over the flooded areas, namely, post-flooding cropland, flooded tree cover, and flooded herbaceous
cover, respectively. Bhattarai et al. [38] reported the relatively poor performance of the SSEBop model
compared to the SEBAL model over the marsh site (i.e., flooded area) in the humid (subtropical climate)
southeastern United States.
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Table 9. The model performance metrics (derived from the daily evapotranspiration estimates computed using Surface Energy Balance (SEB) model for a total of 25
MODIS satellite overpasses) for each pair of SEB models comparison over different land cover classes in the Kilombero Valley (KV) river basin. SBL, Surface Energy
Balance Algorithm for Land (SEBAL) model; SOP, Operational Simplified Surface Energy Balance (SSEBop) model; SSB, Simplified Surface Energy Balance Index
(S-SEBI) model; ESB, ensemble mean of daily ET estimates from the three models (SEBAL, SSEBop, and S-SEBI); r, coefficient of correlation; and Pbias, Percent Bias.

Land Cover Classes Criteria
Pair of Model Comparison

(SBL vs SOP) (SBL vs SSB) (SOP vs SSB) (SBL vs ESB) (SOP vs ESB) (SSB vs ESB)

Cropland r 0.35 0.79 0.69 0.87 0.75 0.95
Pbias (%) 2.00 1.00 −1.00 1.00 −1.00 0.00

Herbaceous cover
r 0.34 0.78 0.73 0.84 0.78 0.96

Pbias (%) 0.00 1.00 1.00 1.00 0.00 −1.00

Post-flooding cropland r 0.02 0.52 0.71 0.59 0.78 0.95
Pbias (%) −14.00 6.00 24.00 −3.00 13.00 −8.00

Mosaic cropland r 0.25 0.75 0.67 0.84 0.72 0.96
Pbias (%) 1.00 0.00 −1.00 0.00 −1.00 0.00

Broadleaved evergreen forest r 0.68 0.90 0.86 0.93 0.89 0.98
Pbias (%) 5.00 3.00 −2.00 2.00 −2.00 0.00

Broadleaved deciduous forest
r 0.21 0.75 0.67 0.83 0.70 0.96

Pbias (%) −2.00 0.00 3.00 −1.00 2.00 −1.00

Mixed Leaf forest
r 0.37 0.82 0.69 0.88 0.75 0.96

Pbias (%) 2.00 1.00 −1.00 1.00 −1.00 0.00

Mosaic herbaceous cover
r 0.60 0.90 0.79 0.92 0.85 0.98

Pbias (%) 4.00 2.00 −2.00 2.00 −2.00 0.00

Shrubland
r 0.54 0.86 0.80 0.91 0.82 0.98

Pbias (%) 2.00 1.00 −1.00 1.00 −1.00 0.00

Grassland
r 0.38 0.82 0.70 0.87 0.76 0.96

Pbias (%) 1.00 0.00 −1.00 0.00 −1.00 0.00

Flooded tree cover
r 0.07 0.57 0.64 0.66 0.69 0.95

Pbias (%) −12.00 1.00 14.00 −4.00 9.00 −5.00

Flooded herbaceous cover
r 0.04 0.46 0.82 0.52 0.86 0.96

Pbias (%) −18.00 4.00 26.00 −5.00 16.00 −8.00

Urban areas
r 0.41 0.80 0.75 0.86 0.81 0.96

Pbias (%) 1.00 2.00 2.00 1.00 0.00 −1.00

Water bodies
r 0.32 0.69 0.81 0.77 0.84 0.97

Pbias (%) −8.00 −3.00 6.00 −4.00 5.00 −1.00
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3.2. Graphical and Visual Comparisons of the Actual ET

All the SEB models were able to capture the two distinct ET regimes over the KV basin (Figure 4).
The two distinct ET regimes can be distinguished as the relatively high ET regime over the mountainous
parts of the basin and the areas across the periphery of the Valley bottom and the relatively low ET
regime over the floodplain which comprises the Ramsar site (Kilombero Valley Floodplain). The two
distinct ET regimes found in this study were in line with the findings from Munishi-Kongo [81] who
performed snapshots (for the 136th, 184th, 228th, and 303rd days of the year in 2010) estimation
of ET using MODIS satellite imagery and the Surface Energy Balance System (SEBS) model [14].
As aforementioned in Section 3.1, the relatively high ET regime over the mountainous area, in
particular, can be partly attributed by the presence of the forests which receive moisture from the dense
network of tributaries draining the mountains (both Udzungwa, and Mbarika mountain ranges) and
orographic rainfall. On the other hand, the relatively low ET regime experienced by the floodplain
was partly attributed by the dryness of the area (during the dry period) which partly, brought by
seasonal crops which became dormant (i.e., low ET) after being harvested at the beginning of the dry
season. This suggestion is supported by Mombo et al. [82] who attributed the dryness of wetlands in
the Ramsar site with the high utilization of the wetlands in the KV basin.

Looking at the temporal dynamics of daily ET in the KV basin, it is clear that all the SEB models
captured similar patterns of ET (Figure 5). Further exploration shows that the SEBAL model and
the SSEBop model have relative larger variations of ET compared to the S-SEBI model and the
ensemble mean of the three models. Interestingly, while the SEBAL model had a relatively low ET
in the first data point compared to others, the SSEBop model had the highest ET. It is noteworthy
that the temporal dynamics of ET shown in Figure 5 mimic the temporal dynamics of precipitation
shown in Figure 2. This suggests that the temporal dynamics of ET in the KV river basin is partly
controlled by the water availability in the basin. The temporal dynamics of ET estimates also captured
the two distinct ET patterns (mountain-forests and wetland-valley) similar to those captured by the
spatial dynamics in Figure 4. A close look at the temporal dynamics shows that the SSEBop model
expresses the wet and dry seasons (Figure 5b). The overall trends of temporal dynamics show that
there is no sharp boundary between the wet and the dry seasons in the basin. A similar pattern was
reported by Koutsouris et al. [26] in their comparison of the global precipitation datasets across the
Kilombero Valley.

3.3. Pre-Post SAGCOT Comparisons of the Actual ET

In 2010, the Tanzanian Government under the ‘Kilimo Kwanza’ (Agriculture first) policy launched
an initiative entitled Southern Agriculture Corridor of Tanzania (SAGCOT) which aimed to ensure food
security, and to improve the livelihood of people in Tanzania through expansion and intensification of
agriculture in the southern parts of Tanzania which include the KV river basin [24]. As mentioned in
the introduction, it becomes important to compare the ET estimates five years before and after the
implementation of SAGCOT initiative to understand the impact of the SAGCOT initiative on the water
consumption (via ET) in the basin.
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the actual ET derived by the ensemble mean of all 3 Models. 
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river basin for the 25 MODIS satellite overpasses. (a) the actual ET derived by the SEBAL model, (b)
the actual ET derived by the SSEBop model, (c) the actual ET derived by the S-SEBI model, and (d) the
actual ET derived by the ensemble mean of all 3 Models.
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Figure 5. The daily basin average dynamics of evapotranspiration (ET) over the Kilombero Valley 
(KV) river basin for 25 days of the year (i.e., MODIS satellite overpasses). The dashed vertical lines 
represent the boundary between the wet season (Wet) and the dry season (Dry), open triangles 
represent the uplands (mountain-forests), open circles represent the entire basin, and filled rectangles 
represent the wetland-valley (Floodplain). (a) ET derived using the SEBAL model, (b) ET derived 
using the SSEBop model, (c) ET derived using the S-SEBI model, and (d) ET derived using the 
ensemble mean of the three models. It should be noted that this figure composites daily results from 
3 separate years. 

Pre-post SAGCOT Comparisons across Land Cover Classes 

There were relatively small decreases in the mean daily ET across all models for the land cover 
classes located over the floodplain (i.e., post-flooding cropland, flooded tree cover, and flooded 
herbaceous cover) (Table 10). The fact that the rest of the land cover classes showed a slight increase 
in the mean daily ET suggests that the decreased ET estimates over these land cover classes could 
partly be attributed by the expansion of cropland over these areas (i.e., between 2005 and 2015) which 

Figure 5. The daily basin average dynamics of evapotranspiration (ET) over the Kilombero Valley (KV)
river basin for 25 days of the year (i.e., MODIS satellite overpasses). The dashed vertical lines represent
the boundary between the wet season (Wet) and the dry season (Dry), open triangles represent the
uplands (mountain-forests), open circles represent the entire basin, and filled rectangles represent the
wetland-valley (Floodplain). (a) ET derived using the SEBAL model, (b) ET derived using the SSEBop
model, (c) ET derived using the S-SEBI model, and (d) ET derived using the ensemble mean of the
three models. It should be noted that this figure composites daily results from 3 separate years.

Pre-post SAGCOT Comparisons across Land Cover Classes

There were relatively small decreases in the mean daily ET across all models for the land cover
classes located over the floodplain (i.e., post-flooding cropland, flooded tree cover, and flooded
herbaceous cover) (Table 10). The fact that the rest of the land cover classes showed a slight increase
in the mean daily ET suggests that the decreased ET estimates over these land cover classes could
partly be attributed by the expansion of cropland over these areas (i.e., between 2005 and 2015) which
became dormant (i.e., low ET) after being harvested during the dry season of the year 2015 when the
MODIS satellite overpasses were taken. When considering the magnitude of changes in ET across
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different models over these land cover classes, the SEBAL model had the lowest changes (−0.1 mm/day
across all three land cover classes), and the SSEBop model had the highest changes (−0.5, −0.2, and
−0.4 mm/day over the post-flooding cropland, flooded tree cover, and flooded herbaceous cover
respectively). Exploration over the land cover classes with a slight increase in the ET estimates between
2005 and 2015 show the opposite trends (i.e., the SEBAL model had a relatively high ET and the SSEBop
model had relatively low ET).

Table 10. The comparison of daily evapotranspiration (ET) (computed using Surface Energy Balance
(SEB) models) for different land cover classes in the Kilombero Valley (KV) river basin between 2005
(five years before implementation of SAGCOT initiative) and 2015 (five years after implementation
of SAGCOT initiative) for 9 common MODIS satellite overpasses (i.e., 9 MODIS images in 2005 and
9 MODIS images in 2015). SAGCOT, Southern Agricultural Corridor of Tanzania; SEBAL, Surface
Energy Balance Algorithm for Land; SSEBop, Operational Simplified Surface Energy Balance Algorithm;
S-SEBI, Simplified Surface Energy Balance Index, Ensemble mean, the mean of daily ET estimates from
the three models; Stdev, sample standard deviation.

Land Cover Classes Parameter
Model/Year

SEBAL SSEBop S-SEBI Ensemble Mean

2005 2015 2005 2015 2005 2015 2005 2015

Cropland (lc10)

Mean (mm/day) 6.1 6.3 6.0 6.1 6.1 6.2 6.1 6.2
Stdev (mm/day) 1.0 1.1 0.7 0.8 0.8 0.8 0.7 0.8

Wilcoxon’s p-value 0.69 0.60 0.72 0.66
Levene’s p-value 0.93 1.00 0.77 0.93

Herbaceous cover
(lc11)

Mean (mm/day) 5.2 5.7 5.1 5.3 5.3 5.4 5.2 5.5
Stdev (mm/day) 0.9 1.0 0.6 0.9 0.6 0.6 0.6 0.7

Wilcoxon’s p-value 0.31 1.00 0.54 0.54
Levene’s p-value 0.65 0.35 0.82 0.56

Post-flooding cropland
(lc20)

Mean (mm/day) 3.4 3.3 2.8 2.3 3.6 3.2 3.3 2.9
Stdev (mm/day) 0.6 0.8 0.7 0.6 0.5 0.4 0.4 0.4

Wilcoxon’s p-value 0.79 0.11 0.15 0.23
Levene’s p-value 0.13 0.96 0.88 0.24

Mosaic cropland (lc30)

Mean (mm/day) 5.9 6.2 5.8 5.9 5.9 6.1 5.9 6.1
Stdev (mm/day) 1.0 1.1 0.7 0.8 0.7 0.8 0.7 0.8

Wilcoxon’s p-value 0.60 0.57 0.54 0.53
Levene’s p-value 0.84 0.82 0.89 0.96

Broadleaved evergreen
forest (lc50)

Mean (mm/day) 6.5 6.6 6.7 6.7 6.8 6.7 6.7 6.6
Stdev (mm/day) 1.1 1.1 0.8 1.0 1.0 1.0 0.9 1.0

Wilcoxon’s p-value 0.93 1.00 0.66 1.00
Levene’s p-value 0.94 0.44 0.83 0.92

Broadleaved
deciduous forest (lc60)

Mean (mm/day) 5.5 5.7 5.2 5.2 5.5 5.5 5.4 5.5
Stdev (mm/day) 0.9 1.0 0.5 0.7 0.7 0.7 0.6 0.7

Wilcoxon’s p-value 0.48 0.86 0.89 0.79
Levene’s p-value 0.64 0.22 0.61 0.53

Mixed Leaf forest (lc90)

Mean (mm/day) 6.1 6.3 6.1 6.1 6.3 6.3 6.2 6.3
Stdev (mm/day) 1.0 1.1 0.7 0.8 0.8 0.8 0.7 0.8

Wilcoxon’s p-value 0.63 0.72 0.96 0.76
Levene’s p-value 0.87 0.82 0.75 0.93

Mosaic herbaceous
cover (lc110)

Mean (mm/day) 6.6 6.7 6.7 6.7 6.7 6.8 6.7 6.7
Stdev (mm/day) 1.1 1.1 0.7 1.0 0.8 0.8 0.8 0.9

Wilcoxon’s p-value 0.72 0.79 0.93 0.76
Levene’s p-value 0.93 0.52 0.86 0.75

Shrubland (lc120)

Mean (mm/day) 6.2 6.4 6.2 6.2 6.3 6.3 6.2 6.3
Stdev (mm/day) 1.1 1.2 0.8 0.9 0.9 0.9 0.8 0.9

Wilcoxon’s p-value 0.66 0.96 0.96 0.86
Levene’s p-value 0.91 0.70 0.80 0.84

Grassland (lc130)

Mean (mm/day) 5.9 6.4 5.7 6.1 5.8 6.2 5.8 6.2
Stdev (mm/day) 1.0 1.2 0.6 1.0 0.7 0.8 0.7 0.9

Wilcoxon’s p-value 0.21 0.43 0.15 0.23
Levene’s p-value 0.72 0.35 0.52 0.38

Flooded tree cover
(lc160)

Mean (mm/day) 4.4 4.4 3.7 3.5 4.4 4.2 4.2 4.0
Stdev (mm/day) 0.7 0.9 0.6 0.7 0.5 0.6 0.4 0.6

Wilcoxon’s p-value 0.96 0.42 0.59 0.42
Levene’s p-value 0.17 0.47 0.64 0.17

Flooded herbaceous
cover (lc180)

Mean (mm/day) 3.5 3.4 2.7 2.3 3.6 3.2 3.3 3.0
Stdev (mm/day) 0.5 0.8 0.8 0.7 0.4 0.5 0.3 0.4

Wilcoxon’s p-value 0.86 0.13 0.20 0.18
Levene’s p-value 0.22 0.96 0.89 0.28

Urban areas (lc190)

Mean (mm/day) 4.8 5.2 4.8 4.8 4.9 5.0 4.9 5.0
Stdev (mm/day) 0.9 1.1 0.6 0.9 0.7 0.6 0.7 0.8

Wilcoxon’s p-value 0.45 0.86 0.79 0.79
Levene’s p-value 0.54 0.23 0.91 0.55

Water bodies (lc210)

Mean (mm/day) 5.5 5.8 4.9 5.1 5.2 5.5 5.2 5.5
Stdev (mm/day) 0.6 0.9 0.5 0.8 0.4 0.7 0.4 0.7

Wilcoxon’s p-value 0.40 0.59 0.21 0.27
Levene’s p-value 0.29 0.32 0.32 0.16
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However, both the Wilcoxon’s test (which test differences in means) and the Levene’s test (which
test differences in variances) results showed that any change in ET estimates across any land cover
class for any SEB model was not statistically significant (i.e., p-value > 0.05) (Table 10). This suggests
that the means and variances of ET estimates produced by either of the SEB models between 2005 and
2015 were statistically comparable. That is to say, the impact of implementing the SAGCOT initiative
(in the mean daily actual ET estimates over different land cover classes) in the KV river basin was
negligible based on these data.

4. Discussion

4.1. Implications for Sustainability of a Ramsar site (Kilombero Valley Floodplain)

Our results showing low actual ET estimates over the Kilombero floodplain are in line with the
results obtained by Munishi-Kongo [81] that the floodplain actual ET is progressively declining in time
as the season (of the year) changed from rainy (i.e., wet season) to dry (i.e., dry season). This partly
implies the absence of actively growing vegetation over the floodplain areas towards the end of the
dry season. The fact that the Kilombero Valley Floodplain (a Ramsar site) is located in the vicinity of
the floodplain adds more concern as such a trend of ET over it during the dry season suggests the
loss of habitat (wetland habitat) and decline in soil moisture. Mombo et al. [82] partly attributed this
to the overexploitation (mainly cropland) of the Kilombero Valley Floodplain which resulted into
the changing of status (from perennial streams into seasonal streams) of the Namawala, Kiberege,
Kikwawila, Idete, and Idandu streams which used to supply water to the area, and the dry-up of
many swamps within the wetland system. Further insights were given by Munishi-Kongo [81] who
compared the daily ET over the wetland using the Landsat imagery and the SEBS model between two
dates: 5 June 1991 (when the wetland had native vegetation) and 10 May 2002 (when wetland had bare
land after the crops which replaced the native vegetation being harvested). S/he found a shift in the
actual daily average ET from 3.5 mm/day (in 1991) to 1.2 mm/day (in 2002). The fact that both years
(i.e., 1991 and 2002) had the same meteorological conditions (wet years with the mean annual rainfalls
of 1447 mm and 1530 mm respectively), and both of the analyzed dates marked the beginning of the
dry season, s/he attributed this substantial reduction of the actual ET (i.e., from 3.5 mm/day in 1991
to 1.2 mm/day in 2002) partly be due to the persistence of the former native vegetation to withstand
dry conditions (i.e., relatively high ET) compared to the bare land (low ET) brought by the harvested
crops which replaced the former native vegetation. This suggests that the extensive utilization of
the Kilombero floodplain (especially the Kilombero Valley Floodplain) by anthropogenic activities
(e.g., agriculture) might threaten the sustainability of the eco-hydrological system of the Ramsar site
(Kilombero Valley Floodplain) which is an important habitat of various species of flora and fauna
(specific names of these species can be found in Seki et al. [83]).

A study on the impact of land use and cover change (LULC) on biodiversity around Kilombero
Valley Floodplain done by Seki et al. [83] using forty-eight vegetation survey plots (0.08 ha) combined
with Landsat imagery (1990, 1998, and 2011) revealed a significant change in LULC in the area with
anthropogenic activities being the main trigger of such changes. They found out that a large area of open
water was covered by floating sedges coming from increased sediments into the wetland. In addition,
they found strong evidence on the modification of the structure and functioning of ecosystem services
and the loss of species due to LULC changes. They concluded that their study by underlining
the vulnerability of the wetland system due to anthropogenic degradation and recommended the
monitoring programs to ensure sustainable utilization of the Kilombero Valley Floodplain.

4.2. On the Applicability of the Approach

Our approach of evaluating estimates of hydrological variable (such as ET and precipitation)
derived from one model with the corresponding estimates derived from another model is a widely
used (as standard approach) approach, especially in the data-limited regions where information on
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hydrological variables are highly needed for informed decision making, but their availability is often
limited by scarcity, gaps, and/or discrepancies. For example, Kiptala et al. [4], and Alemayehu et al. [5]
have compared the ET estimates derived using their SEBAL and SSEBop models, respectively, with
ET estimates derived from another remote sensing based ET estimation algorithm, namely, the
MODIS 16 algorithm [53] in the Upper Pangani river basin (Tanzania/Kenya) and the Mara river
basin (Tanzania/Kenya). Alemu et al. [84] analyzed the performance of the ET estimates derived from
SSEBop model, and MODIS 16 algorithm [53] using the Tropical Rainfall Measuring Mission (TRMM)
multi-satellite precipitation analysis dataset over the Nile basin. Elsewhere Velpuri et al. [85] compared
ET estimates derived using the SSEBop model [17] to that derived via the MODIS 16 algorithm [53] over
the data-rich conterminous United States. Their study also involves a comprehensive evaluation of
these two ET estimates using point and gridded FLUXNET and water balance ET. A similar approach
has been widely used to compare global precipitation datasets. For example, Koutsouris et al. [26]
evaluated the performance of seven global precipitation data sets (GPDs) against the Tropical Rainfall
Measuring Mission (TRMM) multi-satellite precipitation analysis research-grade product v7 (TRMMv7)
in the hydro-climatic data-limited Kilombero Valley (KV) basin. Specific names of these seven GDPs
can be found in Koutsouris et al. [26]. They recommend their approach to be used to provide guidance
to the choice of GPDs for water resources management in data poor regions. Therefore, it is clear
that a similar approach can be utilized to provide guidance to the choice of ET estimates for water
resources management and to constrain (or to evaluate performance of) the hydrological model (e.g.,
in Alemayehu et al. [86], Immerzeel and Droogers [87], and Winsemius et al., 2008 [88]).

4.3. On Limitations and Potential Uncertainties of ET Estimates

Surface energy balance (SEB) ET models driven by remote sensing (RS) data and various
meteorological data have uncertainties due to inevitable input (driving/forcing) errors, poorly
defined model parameters, insufficient model structures [74,89], and the technical skills of the
operator/modeler [18]. The latter (i.e., modeler’s skills) holds true especially due to the fact that the
application of SEB to a wide heterogeneous area with a complex mixture of agricultural crops and
other vegetation involves considerable empiricism which calls for local refinement. This not only
requires a modeler with knowledge of the study area, but also a strong physics background on the
top of high-quality input data [18]. Therefore, SEB models should be operated only by people with
special skills.

As we have highlighted in the preceding section, one of the main sources of uncertainties in the
application of the SEBAL model is the selection of the cold and the hot pixels (i.e., the anchor pixels)
especially for the coarse satellite imagery such as MODIS-based images (250 m for this study compared
to 30 m of Landsat). Allen et al. [61] pointed out the difficulty in finding homogenous vegetation with
sufficient ground cover to represent the cold pixel using the MODIS image. Long et al. [90] found
that an increase in temperatures of cold and hot pixels increased LE and reduced H, and vice versa.
An approach used to estimate aerodynamic stability correction and surface roughness might also be a
source of biases in the SEBAL model [18]. An idea of ignoring the daily Soil Heat flux (G24) by assuming
the night and day balance might also lead to uncertainty. In addition, there are potential biases and
uncertainties inherent from quantification of the net radiation (Rn) and the soil heat flux (G) regardless
of the efforts made to compute each of them as unbiased and as accurately as possible [61]. Even though
the SEBAL model attempts to cancel the inherent biases to Rn and G through internal calibration using
the Monin–Obkhuv schemes when estimating the sensible heat flux (H), still several SEBAL model
studies reported an underestimation of H under dry conditions which, in turn, overestimates the
actual ET [38,40]. Gokmen et al. [91] and Van De Kwast et al. [47] also reported the same concern from
their respective ET estimation studies using the Surface Energy Balance System (SEBS) model [14].
For example, Gokmen et al. [91] attributed such an underestimation (of H) with the fact that most SEB
models do not explicitly consider the soil moisture dependency, instead, they assume that the variation
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in RS-based variables such as surface temperature (Ts) and Normalized Difference Vegetation Index
(NDVI) account for changes in soil moisture, something which causes uncertainty in the estimated H.

The sensitivity analysis performed by Chen at al. [74] found that, the SSEBop model is most
sensitive to input variables: Ts, and the reference evapotranspiration (ET0), and model parameters:
the predefined differential temperature (dT), and the maximum ET scaling factor (kmax), especially,
during the non-growing season and in dry areas. They suggested the possibility of improving the
SSEBop model ET estimates by reducing errors in these input variables (i.e., Ts and ET0) and model
parameters (i.e., dT and kmax). Bhattarai et al. [38] associated the weak performance of the SSEBop
model (as compared to the other four SEB models, namely, SEBAL, S-SEBI, SEBS, and METRIC) with
the overestimation of the hypothetical cold temperature (Tcold) which was partly attributed with the
constant calibration coefficient (c) used to estimate the Tcold. The current study adopted the approach
used by Alemayehu et al. [5] who used a seasonally-varying c as proposed by Senay et al. [17].
Like Chen et al. [74], Bhattarai et al. [38] also found uncertainty in the estimation of a predefined dT,
and they partly attributed it with the assumption adopted by the SSEBop model that surface roughness
(rah) is constant (rah = 110 s/m) for all pixels throughout the image. To encounter this shortcoming,
a local calibration or some analytical/physical formulations should be incorporated into the SSEBop
model parameterization to account for the spatial and temporal variations in rah.

Lastly, the main source of uncertainty in the model structure of the S-SEBI model [19] is the
assumption adopted in the establishment of the trapezoidal space (i.e., linearity of surface temperature
(Ts) and albedo (α)) used to define the two extreme conditions (i.e., the cold edge which determines the
cold reference temperature (Tcold), and the hot edge which determines the hot reference temperature
(Thot)). For example, to account for such uncertainty, Bhattarai et al. [38] ignored all Ts values outside
the range of Tcold,sebal − 10K and Thot,sebal + 20K, where Tcold,sebal and Thot,sebal are Ts values used for
anchor pixels in the SEBAL model. Interestingly, they did not report any improvement in the actual ET
estimates resulting from such modification.

It is noteworthy to point out that the model simplification adopted by the partial SEB models such
as the S-SEBI model does not necessarily render them to be less accurate than more complex full SEB
models such as the SEBAL model [92]. McCabe et al. [89] noted that data-intensive, physically-based
SEB models such as the SEBS model [14] are more sensitive to the quality of the input data than SEB
models with fewer inputs. For example, Wagle et al. [40] computed the daily ET estimates in the high
biomass sorghum in Oklahoma, United States (US) and found out that the S-SEBI model performed
relatively better than the SEBAL and the SEBS models. Fascinatingly, other SEB models comparison
studies by Bhattarai et al. [38] over four sites, namely, grass, citrus, marsh, and open water in the
humid southeastern US found out that the S-SEBI model came third in performance after the SEBS
and the SEBAL models. These interesting opposite results seem to support our idea of comparing ET
estimates derived from different SEB models and select ET estimates for further applications (such as
hydrological modeling) based on their similarities and contrasts.

4.4. Implications for Hydrological Modeling

Considering the difficulty of comparing snapshots of RS products to derive trends (or to see the
impacts of SAGCOT on the landscape) and the need for decision support tools to secure sustainability,
the results of this study show that the actual ET estimates derived from SEB models could be used in
both distributed and lumped hydrological models in this region. This is attributed by the consistency
of the mean of ET estimates computed by different SEB models in a given spatial scale (the entire
basin, mountain-forests, and wetland-valley). The actual ET estimates can be used either to constrain
the hydrological model or as a model evaluation variable for model calibration and/or validation.
For example, Parajuli et al. [93] used monthly ET estimates from SEBAL model using MODIS datasets
to evaluate the performance of the SWAT model in 2 sub-basins (Merigold and Sunflower) within the
Big Sunflower River Watershed (BSRW) in Northwestern, Mississippi. They obtained good model
performances with the coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE) ranging
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from 0.79 to 0.82 during model calibration, and 0.71 to 0.78 during model validation. Their study results
demonstrated the applicability of ET estimates derived from SEB models using MODIS-based remote
sensing data to evaluate the hydrological model, something which is useful in hydrological basins with
hydrometeorological data scarcity such as those located in the global south which includes the KV river
basin. Kiptala et al. [94] used remote-sensing-based ET estimates generated using MODIS satellite
datasets and the SEBAL model in a heterogeneous, heavily utilized, and data-limited upper Pangani
river basin (Tanzania/Kenya) to constrain (i.e., input data) a distributed hydrological model, namely,
the Spatial Tools for River Basin Environmental Analysis and Management (STREAM) model [95].
They calibrated their model using streamflow data at an 8-day temporal resolution and obtained a
Nash–Sutcliffe Efficiency of the natural logarithm (which emphasizes the base flow) of 0.9 at the basin’s
outlet. This good model performance signifies the applicability of the remote-sensed ET estimates to
constrain the hydrological model. Cheema et al. [96] used the actual ET estimates from ETLook to
calibrate the SWAT model parameterized using satellite-based rainfall to quantify the contribution of
groundwater (GW) use in the Indus river basin, Asia. Recently, Wambura et al. [97] used the spatial
patterns of average ET as one of the constraints (others were streamflow, shallow GW level, and
land cover change) to investigate the reduction of equifinality (i.e., multiple feasible descriptions
of hydrological processes) and prediction uncertainty in the SWAT model in the Wami river basin,
Tanzania. They found out that the incorporation of additional constraints (on top of conventional
streamflow) produced consistent performance with respect to the hydrograph than that of the classical
(conventional) hydrological modeling without additional constraints. This implies that the inclusion
of ET patterns in their distributed model (SWAT model) substantially minimizes equifinality and
prediction uncertainty in the model.

However, there are various challenges that tend to limit applications of remote sensing (RS) data
(including ET) on hydrological modeling. Some of these challenges include (a) the limited availability
of satellite data (i.e., RS data) at a reasonable scale (spatial and/or temporal) to capture dominant
hydrological processes in the hydrological basin. For example, Landsat has a high spatial resolution
(30 m), but with low temporal resolution (16-day). MODIS, on the other hand, has a high temporal
resolution (up to daily), but with a low spatial resolution (from 250 m); (b) limited flexibility to
incorporate spatially distributed RS data into the hydrological model. This holds true, especially
with the hydrological model which the user lacks control in editing the model code/structure (such
as the Systeme Hydrologique European (SHE) model [98]). This means that the user is limited to
optimize model performance using secondary data such as RS-derived ET. (c) limited technical skills by
modelers to convert RS data into hydrometeorological data [99]. This lack of technical skills suggests
the limitation of modeler/hydrologist to come up with a hydrological model capable of representing
the dominant hydrological process, like the conceptual model framework proposed by Savenije [100].
Readers are recommended to refer to Schultz [99] for more details on the opportunities and challenges
of the utilization of RS in hydrological modeling. Appropriate technical skills on how to utilize
secondary data from RS to calibrate or infer model parameters have enabled various researchers to
improve the robustness of their respective hydrological models [88,101,102].

5. Conclusions

This study has applied three different remote-sensing (RS) based Surface Energy Balance (SEB)
models—the Surface Energy Balance Algorithm for Land (SEBAL) model, the Operational Simplified
Surface Energy Balance (SSEBop) model, and the Simplified Surface Balance Index (S-SEBI) model—to
estimate spatially-distributed evapotranspiration (ET) rates across the Kilombero Valley (KV) river
basin in Tanzania for multiple days in three different years—2005, 2010, and 2015. The main purpose of
the study is to evaluate similarities and differences in the SEB models and also to evaluate differences
in time in the ET rates as irrigation and land use changed over time.

Our results show that all the SEB models showed similar patterns in the mean daily ET estimates
across all land cover classes. For example, mosaic herbaceous cover had the largest mean daily ET,
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6.8 ± 1.1 mm/day, 7.1 ± 0.9 mm/day, 6.9 ± 0.8 mm/day, and 6.9 ± 0.8 mm/day for the SEBAL, SSEBop,
S-SEBI, and the ensemble mean, respectively. All the SEB models were able to capture the two distinct
ET regimes over the study area: the relatively high ET regime over the mountainous parts of the
basin and the areas across the periphery of the Valley bottom. The SEB models could also capture the
relatively low ET regime over the floodplain which comprises a Ramsar site, namely, the Kilombero
Valley Floodplain. The relatively high ET regime over the mountainous can be partly attributed by
the presence of the forests which receive moisture from the dense network of tributaries draining the
mountains (both Udzungwa, and Mbarika mountain ranges) and orographic rainfall. The relatively
low ET regime experienced by the floodplain can be partly attributed by the dryness of the area (during
the dry period) which were partly brought by seasonal crops which became dormant (i.e., low ET)
after being harvested at the beginning of the dry season. Statistical analysis showed that the pair of the
SEBAL model versus the SSEBop model has the worst results with the correlation coefficient (r), less
than 0.5 across most of the land covers. However, the relative high correlation coefficient (r) across the
broadleaved evergreen (r = 0.68), mosaic herbaceous cover (r = 0.60) and shrubland (r = 0.54) together
with the percent bias (Pbias) of less than 10% across most of the land covers preclude disqualification
of this pair. Overall results suggest that the mean of the ensemble is a better representation of the
SEB models in the study area. It is worth noting that this suggestion may have been specific to the
circumstances (e.g., the external conditions) in which the models were being used.

The potential limitation of this present study was the absence of independent measurements
against which to compare the modeled ET rates. However, our approach of evaluating ET estimates
derived from one model with the ET estimates derived from another model is a widely used (as
standard approach) approach to tackle such limitation. This is especially true in data-limited regions
where information on hydrological variables are needed for informed decision making, but their
availability is often limited by scarcity, gaps, and/or discrepancies.
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