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Abstract: We developed a new remote sensing method for detecting low stratus and fog (LSF)
at dawn in terms of probability index (PI) of LSF from simultaneous stereo observations of two
geostationary-orbit satellites; the Korean Communication, Ocean, and Meteorological Satellite (COMS;
128.2◦E); and the Chinese FengYun satellite (FY-2D; 86.5◦E). The algorithm was validated near the
Korean Peninsula between the months of April and August from April 2012 to June 2015, by using
surface observations at 45 meteorological stations in South Korea. The optical features of LSF
were estimated by using satellite retrievals and simulated data from the radiative transfer model.
The PI was calculated using the combination of three satellite-observed variables: (1) the reflectance
at 0.67 µm (R0.67) from COMS, and (2) the FY-2D R0.67 minus the COMS R0.67 (4R0.67) and (3) the
FY-2D-COMS difference in the brightness temperature difference between 3.7 and 11.0µm (∆BTD3.7-11).
The three variables, adopted from the top three probability of detection (POD) scores for their fog
detection thresholds: 4R0.67 (0.82) > ∆BTD3.7-11 (0.73) > R0.67 (0.70) > BTD3.7-11 (0.51). The LSF PI for
this algorithm was significantly better in the two case studies compared to that using COMS only
(i.e., R0.67 or BTD3.7-11), so that this improvement was due to 4R0.67 and ∆BTD3.7-11. Overall, PI in the
LSF spatial distribution has the merits of a high detection rate, a specific probability display, and a low
rate of seasonality and variability in detection accuracy. Therefore, PI would be useful for monitoring
LSF in near-real-time, and to further its forecast ability, using next-generation satellites.

Keywords: fog; LSF; dawn; probability index; COMS; FY-2D; remote sensing; threshold; radiative
transfer model

1. Introduction

Improved sensing of low stratus and fog (LSF) has important implications for safety in ground,
sea, and air transportation, because of reduced visibility [1]. Fog occurs frequently in South Korea,
particularly during the dawn and dusk rush hours, so that accurate fog detection is of vital importance
in risk management, to reduce potential life and economic losses. Ground-based and satellite-based
observations are commonly used for fog detection. The accuracy of ground-based observations by the
naked-eye is high (80.8%), and is at 70.5% using a visibility meter [2]. However, the range is mostly
limited to inland and coastal areas (or islands), making it difficult to monitor fog over larger areas,
such as the open sea [3,4]. To supplement the spatial limit of ground-based observations, satellite-based
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fog sensing can be introduced, since it is capable of providing a spatially uniform dataset over a wide
area. As the LSF sensing methods from satellite observations only have fundamental difficulties
in distinguishing between low stratus and fog [5], most previous studies have used the integrated
terminology of either LSF or fog and low stratus (FLS) without explicitly separating the types [2,3,6–10].
For example, the spatial and temporal gaps that are undetected by the ground-based LSF observations
have been filled by the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced
Very High Resolution Radiometer (AVHRR) [11,12]. With these sun-synchronized satellites, however,
monitoring LSF remains limited to only once a day.

Thus, observations from geostationary-orbit satellites (GEOs) are suitable for detecting and
predicting fog, because they can trace the evolution of advective fog all day long. The spatial resolution
of GEOs has substantially improved, and it is suitable for detecting LSF on 1–5 km spatial resolutions.
Cermak and Bendix [13] developed the LSF detection scheme, using the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) data onboard the Meteosat Second Generation (MSG) GEOs during the
winter months of 2004–2008, with a sequence of threshold tests, using different wavelength bands.
Their original algorithms were chosen by Egli et al. [2] for use in various spatiotemporal conditions.
The LSF information is derived from empirical thresholds after removing atmospheric signals from
satellite observations. The thresholds are statistically obtained from the frequency distributions of the
observations (i.e., the brightness temperature or visible reflectance of specified wavelengths) on the LSF
layer, possibly in the absence of higher clouds. The thresholds for the infrared brightness temperature
difference (BTD3.7–11) and the visible reflectance (R0.67) at daytime or BTD3.7-11 at nighttime have
been used in previous GEO-related studies [14–16]. BTD3.7–11 results from the fact that the emissivity
for water particles in the shortwave infrared (SWIR) brightness temperature at 3.7 µm (i.e., BT3.7) is
significantly less than in the infrared brightness temperature at 11 µm (i.e., BT11) (e.g., [11,17,18]).
However, LSF detection at dawn and dusk has not been successful, due to the reduced signal-to-noise
(SNR) ratio of visible reflectance (R0.67), in association with weak solar radiation or negligible emissivity.

To overcome the drawback of R0.67, some studies have suggested the use of different channels
in GEOs or the surface temperature information. The Korea Meteorological Administration [19]
has conducted daytime and nighttime fog detection observations near the Korean Peninsula,
utilizing Korean Communication, Ocean, and Meteorological Satellite (COMS) data since the satellite
was launched in June 2010. KMA [19] utilized the COMS L1b data to calculate the fog-related output
every 15 minutes, based on the operational fog detection algorithm of the meteorological data processing
system. The algorithm performed the other threshold tests for removing cloud contamination before
applying the fog-detection thresholds to the satellite observations. The cloud contamination in the
algorithm was removed by checking the BTD thresholds between the window channel at 11 µm (IR1)
and the water vapor channel at ~6.7 µm (i.e., BTD11−6.7) and between IR1 and the infrared channel at
12.0 µm (IR2). The ground temperature was used for additional information.

Kim et al. [20], and Shin and Kim [21] used satellite observations (COMS or Himawari-8)
for nighttime fog detection in the region, in conjunction with additional land and sea surface
temperature information. Although the BTD3.7-11 threshold is expected to be more useful for night
observations rather than dawn and dusk, the detection in their studies [20,21] was inaccurate (false alarm
ratio; FAR = 0.43 − 0.56) and requires additional information (e.g., multiple satellite observations,
more independent channels) for improvement. The inaccuracy may also be due to uncertainties
caused by using land/sea surface temperatures as low boundary conditions, and the presence of
higher clouds [22]. KMA [23] also attempted a ‘dynamic threshold value’ method to detect LSF
at dawn and dusk (SZA ≥ 60◦), which used the different threshold values at each scene [24–26].
However, this method was unable to essentially improve the fog detection at the time zone, because of
the SNR limitation [8]. Indeed, most of the single-satellite LSF sensing methods was inaccurate at
sunrise in previous studies [26–28].

Recently, Yoo et al. [8] showed that the so-called dual-satellite method (DSM) could be useful
for LSF detection at dawn. DSM uses two different satellite images observed from different viewing
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angles, so that the SNR of LSF can be amplified. Using almost simultaneous stereo observations near
the Korean Peninsula from the FY-2D and COMS GEOs, the use of the difference in R0.67 between the
two satellites, in addition to the R0.67 of COMS was found to greatly improve the LSF detection skills.
However, the merits of DSM were limited to detection in summer only (June to August) [8].

By improving the DSM of Yoo et al. [8], this study attempts to develop the probability index
(PI) of LSF, in order to provide the possibility of fog occurrences spatially in the weather map.
First, we applied DSM to the infrared channels, so that DSM is applicable to a more extended warm
period (April to August). This is because the seasonality is weaker in the infrared channels than in
the visible channels, based on the bidirectional reflectance distribution function (BRDF; Figure 9 of
Yoo et al. [8]). The strong seasonality was a main reason for why the visible information in [8] was
not applied to other seasons than summer. Radiative Transfer Model (RTM)-simulated results are
also used for insights into the satellite retrievals and the LSF optical characteristics. Satellite- and
ground-based observations, PI formulation, and LSF retrieval schemes are described in Section 2.
A case study for fog occurrences, using satellite observations and RTM simulation, is described in
Section 3. The derivation and verification of the optimum threshold are presented in this section.
While our focus is on developing LSF PI, the improved level of LSF detection is also explained and
compared to those from other operational algorithms.

2. Materials and Methods

The near-simultaneous observations of the dual satellites (COMS and FY-2D) for the LSF detection
at dawn near the Korean Peninsula are defined as the differences between their stereoscopic views.
For this study’s purpose, ‘dawn’ is within two hours after sunrise (67◦ < SZA < 86◦). Ground-based
fog observations and associated numerical experiments were used to validate the satellite-derived
LSF detections.

2.1. Satellite and Ground-Based Observations

The data from three channels (R0.67, BT3.7, and BT11) in each satellite were utilized for the LSF
detection. The satellite information is summarized in Table 1, and their locations are shown in Figure 1.
The COMS data were linearly interpolated onto the FY-2D dataset for comparison at the same spatial
resolutions. The maximum time difference allowed between COMS and FY-2D observations for
this study was 15 minutes. We derived R0.67, BTD3.7-11, ∆R0.67, and ∆BTD3.7-11 from these datasets.
The differences in R0.67 and BTD3.7-11 between the satellites can be defined as follows:

∆R0.67 = RFY−2D −RCOMS (1)

∆BTD3.7−11 = BTDFY−2D − BTDCOMS (2)

Table 1. Information about the COMS and FY-2D dual geostationary satellites used in the
nearly-simultaneous observations of low stratus and fog near the Korean Peninsula [29,30]. Please see
Table A1 for the acronyms.

Satellite Longitude
(◦E)

Altitude
(km)

Launch
Date

VIS
(µm)

SWIR
(µm) IR1 (µm) Central

Wavelength (µm)
Spatial

Resolution (km)

COMS 128.2 35,857 27 Jun
2010 0.55–0.80 3.5–4.0 10.3–11.3 0.675/3.75/10.8 1/4/4

FY-2D 86.5 35,786 15 Nov
2006 0.55–0.99 3.5–4.0 10.3–11.3 0.77/3.75/10.8 1.25/5/5
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Figure 1. Viewing zenith angles (VZAs) of the two geostationary satellites (COMS and FY-2D) available
for near-simultaneous observations of low stratus and fog (LSF) at dawn near the Korean Peninsula.
The VZA difference between the satellites is 46.5◦ in Seoul.

Here, RFY−2D and RCOMS are the R0.67 values of the FY-2D and COMS satellites, respectively.
Similarly, BTDFY−2D and BTDCOMS are the BTD3.7-11 values of the corresponding satellites. The ∆R0.67

threshold for LSF detection from the dual satellites in [8] was shown to be superior to the existing
R0.67 and BTD3.7-11 thresholds of the COMS satellite alone. In our study, we introduce ∆BTD3.7-11 as
an additional variable to improve the spring (April and May) and summer LSF detection accuracy.
The dual satellite observations (i.e., ∆R0.67 and ∆BTD3.7-11), as well as R0.67, are utilized as three
components in the PI formulation. This provides a more accurate detection and specific display for the
weather phenomenon, than the individual thresholds described in previous studies (e.g., [8,19]). It is
because the ∆BTD3.7-11 in (2) has less seasonality in the LSF detection than the ∆R0.67 in (1), and because
it is useful, particularly in April–May, over the Yellow Sea [31]. The R0.67 values of less than 0.001 were
excluded in the process of data quality control in this study.

Ground-based fog and clear-sky observations [32] were used to derive and validate PI for
LSF detection at dawn in South Korea from April to August between April 2012 and June 2015.
There are 45 meteorological ground stations located in the country’s inland and coastal regions
(Figure 2 and Table A2). Ground observations included data on the cloud amount, visibility, rain,
and mist at a one-hour interval. In most cases, visibility and cloud altitude are determined by an
automatic weather system, but some stations still operate by utilizing human observers. A total of
754 fog and 433 clear-sky cases from the ground-based observations were used to derive the LSF
thresholds and the PI for the detection (Table 2). The fog and clear-sky data were subdivided into two
periods, control data during 2012–2013 and experimental data during 2014–2015. Relatively optically
thick fog cases were investigated in this study. Therefore, fog cases with a duration of at least 30 minutes
were selected to exclude optically thin fog cases. The clear-sky, in contrast with the fog, was defined
in this study as a cloud amount of less than 10% during the dry period (i.e., September to April).
These months were chosen because clear-sky occurrences are rare between May and August, due to
persistent rain and yellow dust, possibly resulting in cloud or aerosol contamination. In order to
compare satellite-derived higher cloud classifications above the LSF layer with the ground-based
observations, the cloud type and height data from the reports of both ground stations and surface
synoptic observations (SYNOP) were used [33]. Cloud-type data were often described as being ‘missing’
or omitted from the reports, especially for middle and high clouds. The ‘missing’ cases were excluded
in this study.
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Figure 2. Locations of the 45 meteorological stations in South Korea used for the LSF analysis.

Table 2. Ground-based fog and clear-sky observations used to validate the probability index (PI) for
the LSF detection at dawn at 45 meteorological stations in South Korea.

Weather Phenomenon
Spring (April–May) Summer (June–August) Dry Season

(September–April)
Total Number

of Observations

Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

Fog 183 138 287 146 754
Clear-sky (cloud
amount≤ 10%) 255 178 433

2.2. Probability Index Formulation from Past Fog Observations

The PI formulation converts the long-term LSF probabilities to the near real-time LSF probabilities.
To make the long-term LSF probabilities, we have counted the frequencies of LSF occurrences in
a grid for the 18 months. The LSF occurrences are those detected by the three threshold tests: ∆R0.67,
∆BTD3.7-11, and R0.67. Observations of ∆R0.67 and ∆BTD3.7-11 are taken from the two-satellites that are
collocated in ~5 km × ~5 km grids, while R0.67 from the COMS satellite pixels. As we will show later,
these three tests have been selected, as they make higher probability of detection (POD) scores in LSF
detection than other tests.

Seven LSF classes have been divided from a combination of the three threshold tests (Figure 3a).
Each class has a long-term probability of fog detection at the 45 stations, as indicated by the frequency
of each fog class, normalized by the total frequency (Figure 3b). Data from 754 fog and 433 clear-sky
observations have been used for this calculation. Using the higher cloud criteria, the fog data have
been categorized into two types of LSF cases (473 LSF1 and 281 LSFhighclouds, refer to Table A1
for the acronyms and Figure A1 for the detailed meaning). Since the three tests are not entirely
independent of each other in their optical properties for detection, their information is partially
overlapped. For instance, the ‘Class 1’ indicates the fog occurrences detected by the all three threshold
tests. Each class provides information on the normalized frequency that is succeeded by the threshold
tests (Figure 3b). In Figure 3b, there is no FAR for Class 1. For instances, Class 2 and Class 5 successfully
detected fog by using the two tests (∆R0.67 and ∆BTD3.7-11) and only the R0.67 test, respectively. The LSF
cases that failed the threshold tests are indicated by ‘Miss’. The Normalized Frequency of LSF (NFL) in
Figure 3b is summarized in Table 3.
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Figure 3. (a) Seven classes from the combination of the three threshold tests using ∆R0.67, ∆BTD3.7-11,
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Table 3. Normalized Frequency of LSF (NFL) and weighting factor (WF) values for each class of the
DSM. The terms ‘NFL’ and ‘WF’ are defined in the text. ‘WF*’ has been obtained from the frequency
ratio of fog cases to the whole data (i.e., fog and clear-sky) to include the false alarm rate (FAR) effect.

Class
Miss Total

1 2 3 4 5 6 7

NFL (%) of LSF 49.07 13.00 11.80 4.91 7.69 6.63 3.85 3.05 100
NFL (%) of clear-sky 0.23 4.38 2.08 0.46 1.39 9.01 1.62 80.83 100

WF 1.00 0.90 0.80 0.70 0.60 0.50 0.50 0.00
WF* 1.00 0.84 0.91 0.95 0.91 0.56 0.81 0.06

With the same 18-month fog records, we estimated PI (PIest) to be equivalent to the POD values
(0.816 ± 0.02 for total LSF) of the best threshold test using ∆R0.67 (later shown in Table 4). This is
because the PIest is PI that is estimated for the upper-limit condition of LSF detection accuracy, and it
should not exceed the maximum POD value. The condition is assumed conservatively, to prevent
excessive PI values. Since each threshold test has an inherently independent portion for LSF detection,
the PI value (which has comprehensively been obtained from the three tests) would be better than the
POD from one threshold test. Finally, the seven weighting factors (WF(Classi)) in the PI formulation
have to be determined, in order to satisfy the following relation:

7∑
i=1

WF(Classi)·NFLi = PIest (3)

where WF(Classi) is the weighting factor; subscript ‘i’ is the ith class of LSF (i = 1 to 7); NFLi and PIest

are pre-calculated values by the 18-month fog records. LSF ‘Miss’ could be considered as an eighth
class, although it was not included in (3).
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Table 4. Statistical verification of the six threshold values for LSF detection at dawn, using the FY-2D
and COMS satellites. The values in parentheses below the LSF scores indicate the verification scores for
LSF1 without the overlying higher clouds. The scores are presented for Period 1 (2012–2013), Period 2
(2014–2015), and the entire time period (2012–2015), respectively. The contingency table and definition
are shown in Table A3.

Satellite-Derived Threshold Period
LSF (LSF1)

HSS CSI POD PC FAR

FY-2D minus COMS (∆R0.67)
0.44 < ∆R0.67 < 0.995

2012–2013 0.673 (0.821) 0.766 (0.846) 0.802 (0.909) 0.841 (0.911) 0.055 (0.076)
2014–2015 0.739 (0.814) 0.801 (0.826) 0.838 (0.887) 0.872 (0.907) 0.052 (0.077)
2012–2015 0.699 (0.819) 0.780 (0.839) 0.816 (0.901) 0.853 (0.910) 0.054 (0.076)

COMS R0.67
0.185 < R0.67 < 0.529

2012–2013 0.581 (0.661) 0.670 (0.684) 0.677 (0.696) 0.783 (0.828) 0.016 (0.024)
2014–2015 0.601 (0.701) 0.690 (0.725) 0.729(0.791) 0.799 (0.851) 0.072 (0.103)
2012–2015 0.588 (0.676) 0.677 (0.700) 0.696(0.732) 0.789 (0.837) 0.039 (0.057)

COMS R0.67 (KMA)
0.25 < RKMA < 0.55

2012–2013 0.468 (0.494) 0.555 (0.514) 0.555 (0.514) 0.712 (0.739) 0.000 (0.000)
2014–2015 0.525 (0.588) 0.596 (0.594) 0.602 (0.605) 0.749 (0.794) 0.017 (0.027)
2012–2015 0.489 (0.530) 0.571 (0.544) 0.573 (0.548) 0.726 (0.761) 0.007 (0.012)

FY-2D minus COMS
(∆BTD3.7-11)

10.5K < ∆BTD3.7-11 < 34.0K

2012–2013 0.574 (0.613) 0.680 (0.656) 0.706 (0.696) 0.785 (0.804) 0.051 (0.080)
2014–2015 0.605 (0.679) 0.709 (0.718) 0.771 (0.819) 0.805 (0.839) 0.103 (0.147)
2012–2015 0.585 (0.638) 0.691 (0.680) 0.731 (0.742) 0.793 (0.818) 0.072 (0.109)

COMS BTD3.7-11
4.5K < BTD3.7-11 <3 1.0K

2012–2013 0.349 (0.201) 0.480 (0.277) 0.502 (0.297) 0.647 (0.583) 0.085 (0.200)
2014–2015 0.399 (0.317) 0.495 (0.356) 0.514 (0.379) 0.678 (0.659) 0.070 (0.141)
2012–2015 0.369 (0.245) 0.485 (0.306) 0.507 (0.328) 0.659 (0.613) 0.080 (0.176)

COMS BTD3.7-11 (KMA)
15K < BTDKMA < 50K

2012–2013 0.106 (0.016) 0.145 (0.017) 0.145 (0.017) 0.446 (0.472) 0.000 (0.000)
2014–2015 0.101 (0.006) 0.136 (0.017) 0.137 (0.017) 0.465 (0.504) 0.049 (0.400)
2012–2015 0.104 (0.012) 0.142 (0.017) 0. 142 (0.017) 0.453 (0.485) 0.018 (0.200)

The WF(Classi) values were determined, considering the three priority conditions: a high POD
ranking (∆R0.67 > ∆BTD3.7-11 > R0.67) based on observations from 45 stations, common detection from
two or more threshold tests, and low FAR. Table 3 shows that the WF(Classi) for seven classes ranges
from 0.5 to 1. WF(Classi) for ‘Miss’ is zero. Since the WF(Classi) is related to fog detection from at least
one of the three thresholds, it is assumed to be greater than ~0.5, in view of a reasonable probability of
detection. Thus, the lowest WF is set to 0.5 (Table 3). The values of ‘NFL of clear-sky’ and ‘WF*’ have
also been presented in the table, to analyze the clear-sky (or FAR) effect on LSF detection. The effect
does not exceed 10% in each class. Also, the WF* (i.e., PI), which includes the effect, is higher in each
class than 0.55. However, the effect is likely to increase over the real-time satellite scene, due to various
weather conditions (e.g., clear-sky, overcast, and fog, etc.).

2.3. The Near-Realtime LSF PI Retrieval Scheme

The flowchart shows the entire PI calculation process for the LSF PI retrieval at dawn, using the
DSM (Figure 4). It begins with the pre-process reading data (Section 2.1) and then it requires the PI
formulation (Section 2.2). In the pre-process, we collocated 45 ground station sites onto ~5 km × 5 km
satellite observation grids, and satellite data were collected when fog occurred at the ground stations.
The optimum thresholds were derived from this information, to discriminate between fog and clear-sky
cases, based on the skill score test of the variables (∆R0.67, R0.67, and ∆BTD3.7-11).
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Figure 4. Flow chart for LSF detection in South Korea at dawn during the warm season (April-August)
between April 2012 and June 2015, based on near-simultaneous satellite observations from COMS
and FY-2D. The values of NFL, PIest, Classi and WF(Classi) in a grid have been calculated from the
long-term database (i.e., 18 months), while the values of Classobs and WF(Classobs) over the real-time
scene are assigned to one among seven classes of Classi and WF(Classi), i = 1 to 7.

The pre-process also minimizes the effects of the higher clouds above a fog layer on the
satellite-derived LSF PI retrieval. By these means, we performed RTM simulations to constructed
a look-up table (LUT) for the three variables (∆R0.67, ∆BTD3.7-11, and R0.67). The RTM of the Santa Barbara
DISORT Atmospheric Radiative Transfer (SBDART) was used to compute the plane-parallel radiative
transfer for clear and cloudy conditions in the atmosphere and at the surface [34]. The RTM of SBDART
was utilized to derive the thresholds for the fog detection and its optical characteristics for daytime [35]
and nighttime [4], and at dawn [8]. The initial conditions for the RTM input were various degrees of
cloudiness (i.e., clear-sky, LSF1, and LSFhighclouds) and cloud optical properties (phase, size, and optical
thickness). LSF1 can be defined as being either fog or low stratus, while LSFhighclouds can be defined
as the LSF1 accompanying higher clouds above it. A schematic diagram on the two types of LSF is
shown in Figure A1. Details about the RTM input are in Table A4. Results for the various weather
conditions were saved in the LUT for the time-saving purposes before being applied to an almost
real-time satellite scene. The near-simultaneous satellite observations for the three thresholds, and LUT
were analyzed with the ground-based observations.

In addition, the following three conditions were used in a grid to remove the instances where
higher cloud exists above the fog layer: BT11 standard deviation in 3 × 3 grids (σT11), BT11max–BT11,
and R0.67–Rmin [8]. The values of BT11 and R0.67 were determined from the COMS observations. BT11max

and Rmin were the values of the BT11 maximum and R0.67 minimum, respectively, in the vicinity of
the Korean Peninsula (122–132◦E, 32.5–42.5◦N). Of the 754 total fog observations that occurred at
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the ground stations during 2012–2015, 473 were categorized as LSF1, and 281 were categorized as
LSFhighclouds.

For the determination of near-real-time LSF PI, we used the WF(Classi) values in Table 3 from
PI formulation (Section 2.2). Once the class of LSF is determined from the threshold tests for each
grid-point near-real-time satellite data, the LSF PI is simply set to be one of the seven WF(Classi) values
(Table 3), which correspond to the LSF class determined from the satellite observations (Classobs).
Thus, the near-real-time LSF PI is 0, or 0.5 to 1.0. Above all, this LSF PI can be readily presented on a 2D
map. This 2D map is especially useful for the west coast of the country and the Yellow Sea, where the
ground observations are rare, despite frequent fog occurrences [16,28].

3. Results

The simulated and satellite-observed LSF detection results are described in this section to
demonstrate its remote sensing skills. The RTM simulation was carried out over three time ranges,
dawn, noon, and dusk. This was done in order to address the usefulness of the dual satellite
observations at dawn. The pre-process for improved LSF detection is shown in Sections 3.1 and 3.2,
based on the long-term observations and the RTM simulation. Spatial PI distributions from the case
study are presented in Section 3.3.

3.1. RTM Simulation for LSF

The simulation gives insight for fog detection at dawn, utilizing the three thresholds (∆R0.67, R0.67,
and ∆BTD3.7-11) from the dual satellite observations (Figure 5). The optical characteristics of LSF can
be estimated by both their simulations and observations. Since direct and diffuse radiation varies
with the diurnal variation of SZA [36], the simulated ∆R0.67 was largest at dawn (06:00 local standard
time; LST). These significantly large differences (∆R0.67 or ∆BTD3.7-11) can be used as indicators for
LSF detection (Figure 5a,b). They are greater at dawn than at the other time ranges, due to the angle
difference between the two satellites, compared to the spectral response function (SRF) [8].
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Figure 5. Simulated results of ∆R0.67 vs R0.67 (a,c,e) and ∆BTD3.7-11 vs BTD3.7-11 (b,d,f) under the
Radiative Transfer Model (RTM) conditions of Table A4. Each simulation on 18 July 2014 was shown
in the dual-satellite relationship of FY-2D and COMS at three different times: 06:00 LST (for dawn),
12:00 LST (noon), and 18:00 LST (for dusk). The reflectance and BTD3.7-11 simulations are presented
in the left- and right-hand columns, respectively. The clear-sky value is shown in the leftmost one
(red square) in each figure.

The four colors (red, green, blue, and black) and four symbols (circle, asterisk, triangle,
and rectangle) in Figure 5 denote the effective radii (ER: 2, 4, 8, 16 µm) and heights (FH or CH: 2, 4-6,
8-10 km) of the fog and cloud particles, respectively. RTM details are given in Table A4. The figures
on the left show the relationship between ∆R0.67 and R0.67 at dawn, noon, and dusk (Figure 5a,c,e).
The relationship between ∆BTD3.7-11 and BTD3.7-11 is presented on the right (Figure 5b,d,f). The ∆R0.67

and ∆BTD3.7-11 values from the dual-satellite relationship at dawn are about three times as large as
those at noon and dusk, regardless of the various input conditions (e.g., high clouds above the fog
layer, effective radii of fog or cloud, and their phase). In other words, the values at dawn under the
LSF conditions (see also Figure A1 for the LSF definition) are substantially large compared to those at
noon and dusk. However, there is a significant difference in seasonal variation between ∆R0.67 and
∆BTD3.7-11 (later shown in Figure 11).
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While the ∆R0.67 value at a given location was largest in the summer, the ∆BTD3.7-11 was less
sensitive to seasonality, and it was possibly useful for the other seasons (e.g., spring). The simulation
implies that the dual satellite-derived thresholds for LSF sensing near the Korean Peninsula are best
at dawn (Figure 5a,b) and worst at noon (Figure 5c,d). The values of ∆R0.67 and ∆BTD3.7-11 at dusk
were relatively small and opposite to each other, compared to their values at dawn (Figure 5e,f).
The relationship between ∆BTD3.7-11 and BTD3.7-11 is similar to that of ∆R0.67 and R0.67, except at noon.
Fog detection in the former relationship was less useful than in the latter, because their variations with
LSF height and ER were less systematic and included more detection uncertainties. Since the simulated
differences (∆R0.67 and ∆BTD3.7-11) at dawn were remarkably larger in the LSF situations than when the
sky was clear, they can provide good thresholds for LSF detection from the dual-satellite observations.

The simulated ∆R0.67 values near the Korean Peninsula at dawn need to be larger than 0.35,
to separate the weather phenomena of LSF and clear-sky (Figure 5). Since the values under the LSF
condition at dusk and noon did not generally reach the threshold, these dual-satellite observations
were less useful. These results were caused by the angles made by the sun and the satellites in the
space (i.e., SZA and RAA), which affect direct and diffuse radiation in radiative transfer. For these
reasons, the dual-satellite relationship focused only on detection at dawn.

3.2. Optimum Thresholds for LSF Detection

In satellite-based LSF detection, the optimum thresholds are important for distinctly separating
the clear-sky and LSF phenomena. After co-locating the ground-based and dual-satellite observations,
the satellite data related to these weather phenomena (754 fog and 433 clear-sky occurrences) were
collected in terms of reflectance (R0.67 and ∆R0.67) and brightness temperature (BTD3.7-11 and ∆BTD3.7-11)
for each grid. To determine the optimum LSF thresholds for the variables ∆R0.67, R0.67, ∆BTD3.7-11,
and BTD3.7-11, the frequency distributions of LSF (green), LSF1 (red), and clear-sky (blue) were presented,
respectively (Figure 6). Here, LSF means total LSF (LSF1 and LSFhighclouds). The dashed lines in pink
indicate the upper and lower thresholds between total LSF and clear-sky. There is no overlap with
clear-sky in the upper-limit condition. However, it is necessary to filter the optically thick convective
clouds without accompanying LSF (e.g., Yoo et al. [22]). The individual threshold was obtained
iteratively until its total LSF POD reached a maximum under the limiting condition FAR≤ 0.15, as shown
in Table 4. This limitation is needed for the practical purpose of LSF detection. The POD maxima for the
thresholds of the variables in the detection of either the total LSF or LSF1 during the study period were
estimated to be ∆R0.67 (0.82–0.90) > ∆BTD3.7-11 (0.73–0.74) > R0.67 (0.70–0.73) > BTD3.7-11 (0.33–0.51).
This indicates that the ∆R0.67 threshold was best for both the total LSF and LSF1 detection (Figure 6a),
while the BTD3.7-11 threshold was worst (Figure 6d).
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Figure 6. Frequency distributions of total LSF (green), LSF1 (red), and clear-sky (blue) with respect
to (a) ∆R0.67, (b) R0.67, (c) ∆BTD3.7-11, and (d) BTD3.7-11. The pink dotted lines indicate the optimum
threshold values that can be used for LSF detection when FAR ≤ 0.15. The ground-based observations
of clear-sky and fog were used for the distributions, and the fog data were categorized into LSF1 and
LSFhighclouds with the help of satellite-observed criteria. Total LSF means the summation of LSF1 and
LSFhighclouds. Note that the upper limit (pink dotted line) is not needed to separate clear cases from fog,
but is included to separate out optically thick convective clouds.

Based on their frequency distributions, all of the thresholds (∆R0.67, ∆BTD3.7-11, and R0.67) except
for BTD3.7-11 were useful for LSF detection. This means that the LSF phenomena was reasonably well
detected by using the dual satellite thresholds on the satellite-observed scene, where the LSF and
clear-sky cases coexist. Thus, both of the satellite observation variables ∆R0.67 and ∆BTD3.7-11 are
included in the PI formulation of this study, while only R0.67 was utilized in previous studies. The higher
clouds above the LSF1 layer had a large effect on LSF and clear-sky classification in the ∆R0.67 domain
(Figure 6a), compared to R0.67 in Figure 6b. In other words, the LSF detection from the ∆R0.67 threshold
was more accurate in the LSF1 cases (red line) without the accompanying higher clouds, than for
the total LSF (green line), which is composed of both LSF1 and LSFhighclouds. LSFhighclouds included
the clouds above the LSF1 layer, which were a hindrance to the LSF detection [22]. The ∆BTD3.7-11

threshold was less sensitive to the higher clouds than the ∆R0.67 threshold (Figure 6a), showing similar
patterns of LSF (green line) and LSF1 (red line). In summary, the accuracy of LSF detection by the
satellite-derived thresholds was affected by the clouds, and the seasonal and diurnal variations of the
satellite observations.

Statistical verification on total LSF and LSF1 was performed with respect to the six threshold
variables, ∆R0.67, R0.67, RKMA, ∆BTD3.7-11, BTD3.7-11, and BTDKMA, and the verification used fog and
clear-sky data at 45 ground stations in South Korea at dawn during the study period. Five skill
indices [37,38] were used for statistical analysis: HSS (Heidke Skill Score), CSI (Critical Success Index),
POD (Probability of Detection), PC (Percentage Correct), and FAR (False Alarm Ratio). Table 4 shows
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the verification in terms of the skill scores for Period 1 (2012–2013), Period 2 (2014–2015), and the entire
time span (2012–2015). The data from Period 1 denote the control case, and the fog detection thresholds
were developed from these satellite observations. The data from Period 2 are the experimental case
applied to the threshold quality evaluation. Other than FAR, the higher the skill indices, the higher the
detection efficiency; the lower the FAR, the higher the accuracy. The thresholds RKMA and BTDKMA,
used for daytime (SZA ≤ 60◦) fog detection in KMA [19], were included with the other four thresholds,
to allow for a comparison among the available conventional thresholds.

Table 4 shows that the HSS values of the total LSF for the whole period were in a descending
magnitude order of 4R0.67 (0.699) > R0.67 (0.588) > 4BTD3.7-11 (0.585) > RKMA (0.489) > BTD3.7-11 (0.369)
> BTDKMA (0.104). This means that the ∆R0.67 threshold was the most effective at detecting fog at dawn.
In addition, ∆R0.67 and ∆BTD3.7-11 (the dual satellite-observations) were at least 6–21% more accurate
than the conventional COMS-only RKMA or BTDKMA thresholds [19]. The POD skill scores descend
in the order of ∆R0.67 > ∆BTD3.7-11 > R0.67 > RKMA > BTD3.7-11 > BTDKMA. The results for Period 2
were similar to those for Period 1 (Figure 7a,b and Table 4), although, due to interannual variations,
the scores were somewhat higher for the experimental data than those for the control. Compared to
KMA [19], the ∆R0.67 and ∆BTD3.7-11 thresholds were excellent detection indicators overall.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 24 

the order of ΔR0.67 > ΔBTD3.7-11 > R0.67 > RKMA > BTD3.7-11 > BTDKMA. The results for Period 2 were similar 

to those for Period 1 (Figure 7a,b and Table 4), although, due to interannual variations, the scores 

were somewhat higher for the experimental data than those for the control. Compared to KMA [19], 

the ΔR0.67 and ΔBTD3.7-11 thresholds were excellent detection indicators overall.  

The accuracy of ΔR0.67 and R0.67 in LSF1 was higher by 9–11% compared to the total LSF (Table 4). 

This indicates that the higher clouds above the LSF1 layer resulted in a significant hindrance to the 

detection by the reflectance thresholds. The LSF1 scores from the reflectance-based thresholds (i.e., 

ΔR0.67, R0.67, and RKMA) were higher than for total LSF, suggesting that they were more sensitive to the 

clouds than to the brightness temperatures (ΔBTD3.7-11, BTD3.7-11, and BTDKMA). The BTD-based 

thresholds did not show significant improvements over the LSF1, compared to the total LSF, probably 

due to their low sensitivities to the clouds. 

 

 

Figure 7. Statistical verification with respect to six threshold components (ΔR0.67, ΔBTD3.7-11, R0.67, RKMA, 

BTD3.7-11, and BTDKMA) for Period 1 (control data period) and Period 2 (experimental data period) of 

(a) POD and (b) HSS. The six threshold values were verified by using ground observations from 754 

fog and 433 clear-sky occurrences in South Korea. 

Scatter diagrams in two dimensions (2D) and three dimensions (3D) were presented by using 

the top three thresholds of the variables (ΔR0.67, ΔBTD3.7-11 and R0.67) in the POD scores (Table 4 and 

Figures 7 and 8). In total, the cases of 473 LSF1 (red asterisk), 281 LSFhighclouds (green triangle), and 433 

clear-sky (blue cross) were used. The LSF1 and LSFhighclouds cases are shown for Period 1 and Period 2, 

respectively, in Table A5. The ratio values of LSF1 to total LSF case are 62–63% for the two periods. 

The dashed-line boundaries in the 2D figures indicate the threshold values of the coordinate variables 

(Figure 8a–c). If the satellite observations in a grid that were co-located with the ground observed fog 

occurrences within their threshold boundaries, the LSF detection was regarded as a ‘success.’ LSF 

and clear-sky separation in the ΔR0.67 versus R0.67 diagrams (Figure 8a) and ΔR0.67 versus ΔBTD3.7-11 

diagrams (Figure 8b) were excellent. 

The LSF detection value of R0.67 (69.6%) was obtained from 525 LSF cases out of 754 fog 

occurrences. The LSF1 detection value (73.2%) was obtained from 346 LSF1 cases out of 473 fog 

occurrences. Also, the POD scores of the ΔR0.67 threshold in the ordinate were 81.6% for the total LSF, 

and 90.1% for LSF1, respectively. ΔR0.67 from the dual satellite observations was 12.0–16.9% better at 

detecting the total LSF and LSF1 than the R0.67 from the single COMS observations. The POD values 

of ΔR0.67 compared to R0.67 were enhanced by 12.0% for the total LSF and by 16.9% for LSF1. In other 

words, the ΔR0.67 threshold was more accurate for LSF1 in the absence of higher clouds. In Figure 7b 

and Table 3, the POD values of ΔBTD3.7-11 were 73.1–74.2% for the total LSF and LSF1, and somewhat 

higher than those of R0.67 (69.6–73.2%). However, the FAR values of ΔBTD3.7-11, 7.2–10.9%, were higher 

by 4–5% than those of R0.67 (3.9–5.7%). Among the top three thresholds, ΔR0.67 was the best indicator 

of LSF detection; the others were close.  

Discrimination between the clear-sky and LSF cases at the BTD3.7-11 axis (Figure 8c) was worse 

than for ΔR0.67, R0.67, or ΔBTD3.7-11. This discrimination can be better seen in the 3D relationship 

depicted in Figure 8d. The LSF1, LSFhighclouds, and clear-sky weather phenomena were more  

P
O

D

0.0

0.2

0.4

0.6

0.8

1.0
2012-2013

2014-2015
PODa 

R0.67     R0.67 RKMABTD3.7-11   BTD3.7-11   BTDKMA

H
S

S

0.0

0.2

0.4

0.6

0.8

1.0
2012-2013

2014-2015

HSSb

R0.67     R0.67 RKMABTD3.7-11   BTD3.7-11   BTDKMA

Figure 7. Statistical verification with respect to six threshold components (∆R0.67, ∆BTD3.7-11, R0.67,
RKMA, BTD3.7-11, and BTDKMA) for Period 1 (control data period) and Period 2 (experimental data
period) of (a) POD and (b) HSS. The six threshold values were verified by using ground observations
from 754 fog and 433 clear-sky occurrences in South Korea.

The accuracy of ∆R0.67 and R0.67 in LSF1 was higher by 9–11% compared to the total LSF
(Table 4). This indicates that the higher clouds above the LSF1 layer resulted in a significant
hindrance to the detection by the reflectance thresholds. The LSF1 scores from the reflectance-based
thresholds (i.e., ∆R0.67, R0.67, and RKMA) were higher than for total LSF, suggesting that they were
more sensitive to the clouds than to the brightness temperatures (∆BTD3.7-11, BTD3.7-11, and BTDKMA).
The BTD-based thresholds did not show significant improvements over the LSF1, compared to the
total LSF, probably due to their low sensitivities to the clouds.

Scatter diagrams in two dimensions (2D) and three dimensions (3D) were presented by
using the top three thresholds of the variables (∆R0.67, ∆BTD3.7-11 and R0.67) in the POD scores
(Table 4 and Figures 7 and 8). In total, the cases of 473 LSF1 (red asterisk), 281 LSFhighclouds (green
triangle), and 433 clear-sky (blue cross) were used. The LSF1 and LSFhighclouds cases are shown for
Period 1 and Period 2, respectively, in Table A5. The ratio values of LSF1 to total LSF case are 62–63%
for the two periods. The dashed-line boundaries in the 2D figures indicate the threshold values of the
coordinate variables (Figure 8a–c). If the satellite observations in a grid that were co-located with the
ground observed fog occurrences within their threshold boundaries, the LSF detection was regarded
as a ‘success.’ LSF and clear-sky separation in the ∆R0.67 versus R0.67 diagrams (Figure 8a) and ∆R0.67

versus ∆BTD3.7-11 diagrams (Figure 8b) were excellent.
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Figure 8. Scatter diagrams of satellite-observations. (a) ∆R0.67 vs R0.67, (b) ∆R0.67 vs ∆BTD3.7-11,
(c) ∆BTD3.7-11 vs BTD3.7-11, and (d) the 3D plot of the three variables (∆R0.67, ∆BTD3.7-11, and R0.67)
from the ground observations of 754 fog and 433 clear-sky occurrences. The weather phenomena of
LSF1, LSFhighclouds, and clear-sky are shown as red, green, and blue colors, respectively.

The LSF detection value of R0.67 (69.6%) was obtained from 525 LSF cases out of 754 fog
occurrences. The LSF1 detection value (73.2%) was obtained from 346 LSF1 cases out of 473 fog
occurrences. Also, the POD scores of the ∆R0.67 threshold in the ordinate were 81.6% for the total LSF,
and 90.1% for LSF1, respectively. ∆R0.67 from the dual satellite observations was 12.0–16.9% better at
detecting the total LSF and LSF1 than the R0.67 from the single COMS observations. The POD values of
∆R0.67 compared to R0.67 were enhanced by 12.0% for the total LSF and by 16.9% for LSF1. In other
words, the ∆R0.67 threshold was more accurate for LSF1 in the absence of higher clouds. In Figure 7b
and Table 3, the POD values of ∆BTD3.7-11 were 73.1–74.2% for the total LSF and LSF1, and somewhat
higher than those of R0.67 (69.6–73.2%). However, the FAR values of ∆BTD3.7-11, 7.2–10.9%, were higher
by 4–5% than those of R0.67 (3.9–5.7%). Among the top three thresholds, ∆R0.67 was the best indicator
of LSF detection; the others were close.

Discrimination between the clear-sky and LSF cases at the BTD3.7-11 axis (Figure 8c) was worse than
for ∆R0.67, R0.67, or ∆BTD3.7-11. This discrimination can be better seen in the 3D relationship depicted
in Figure 8d. The LSF1, LSFhighclouds, and clear-sky weather phenomena were more distinguishable
in the 3D depictions than in the 2D ones (Figure 8a,b). The thresholds derived from the three
variables inherently had their own merits in the distinction of either LSF1 or LSFhighclouds from clear-sky
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phenomena, as follows; ∆R0.67 (LSF1 from clear-sky), R0.67 (LSFhighclouds from clear-sky), and ∆BTD3.7-11

(the mixed feature of ∆R0.67 and R0.67). Rather than just using the two variables (∆R0.67 and R0.67)
proposed in Yoo et al. [8], this study used the top three variables for LSF detection.

We conducted a case study on fog occurrence at the island of Ulleungdo (130.9◦ E, 37.48◦ N;
orange circles) at 06:15 LST on 17 April 2014, to estimate the optical properties of LSF in the 2D and 3D
coordinates. These estimations were made using both the dual satellite observations and the RTM
simulation (Figure 9). Regardless of the weather, the dual satellite observations (∆R0.67 and ∆BTD3.7-11)
are shown in grey circles in the background of Figure 9a–c. The R0.67 and BTD3.7-11 values were
observed by using COMS data. Fog (orange circles) is also denoted in the 3D simulation (Figure 9d).
According to ground-based reports at 06:00 LST, there were typical fog conditions (surface temperature
= 11 ◦C, air temperature = 10.3 ◦C, humidity = 93% and visibility = 300 m). The fog type was
classified as LSF1, based on this study’s higher cloud criteria (i.e., CA, CB, and CC). The ground-based
observations also reported meteorological conditions that were consistent with the higher cloud
estimation calculated from the satellite-derived criteria (total cloud amount = 10, amount of low and
middle clouds = 10, and ceiling = 300 m). The cloud amount is scaled from 0 to 10.
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Figure 9. RTM results near the Korean Peninsula (122–132◦ E, 32.5–42.5◦ N) during a fog period at
Ulleungdo island (orange circles) at 06:15 LST on 17 April 2014. The simulation was performed without
higher clouds (LSF1; black and sky-blue), with fog and middle-level/high-level clouds (LSFhighclouds;
red, blue and green), and with clear sky (pink) in the domain of (a) ∆R0.67 vs R0.67, (b) ∆R0.67 vs
∆BTD3.7-11, and (c) ∆BTD3.7-11 vs R0.67. The 3D plot of the three variables (∆R0.67, ∆BTD3.7-11, and R0.67)
is shown in (d). The input conditions were the same as for the simulation of the four figures.

The optical fog features at the island were investigated by simulating (Table A4) a) ∆R0.67 versus
R0.67, b) ∆R0.67 versus ∆BTD3.7-11, and c) ∆BTD3.7-11 versus R0.67 (Figure 9a–c). The symbols and colors
represent various fog or cloud conditions: i) just a fog layer (black for 0–1 km and sky-blue for 0–2 km),
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ii) fog with mid-level (4–6 km) clouds of different phases (red for water, blue for ice), and iii) fog with
high-level (8–10 km) clouds (green). Clear-sky is denoted by pink. Similarly to Figure 8, the satellite
observations inside the dashed-line rectangle were within the LSF detection threshold ranges for the
same spatiotemporal conditions as for fog.

Figure 9a–c show that the higher cloud effect above the fog layer (i.e., the difference between LSF1
and LSFhighclouds) varied systematically with cloud height inside the dashed-line threshold rectangle.
This was derived from any two of the three variables, ∆R0.67, R0.67, and ∆BTD3.7-11. The simulated
results of the middle clouds (blue for ice and red for water) showed they were mixed with each other,
and difficult to separate. The simulated optical information, estimated from individual variables,
did not necessarily agree with the estimates from the other variable, indicating that it was not unique.
Overall, the RTM simulation (asterisks) for the case study agreed with the satellite-based observations
(grey circles) and the ground-based fog observations (yellow).

The 2D simulations for the case study used the optical characteristics of the top three LSF
detection variables. The actual fog case (orange circles) in the 3D simulation (Figure 9d) demonstrated
three kinds of LSF optical features: (i) a 1 km-height fog layer (i.e., LSF1) for ∆R0.67 versus R0.67

(Figure 9a), (ii) a 2 km-height fog layer (i.e., LSF1) for ∆R0.67 versus ∆BTD3.7-11 (Figure 9b), and (iii)
fog (i.e., LSFhighclouds) with water-phase middle (4–6 km) clouds for ∆BTD3.7-11 vs R0.67 (Figure 9c).
The clear-sky is shown as a pink circle in Figure 9d. The LSF1 estimation for ∆R0.67 vs R0.67 (Figure 9a)
was the most reliable, based on the top two POD scores (Table 4), though the simulated fog information
from each relationship, in terms of the LSF types was not unique (Figure 9).

3.3. Probability Index for Improved LSF Detection

For validation, the PI method derived from the control data of the total LSF for Period 1 was
applied to the experimental data for Period 2. We compared two methods: DSM* PI, using two
variables (∆R0.67 and R0.67) versus DSM PI, based on three variables (∆R0.67, ∆BTD3.7-11, and R0.67).
The FAR value (13.5%) of DSM PI was relatively high, compared to those of other variables (4–9%)
in Table 5. However, the value seems to be acceptable in view of the results from previous studies
(FAR ≤ ~15%) [4,39]. In addition, the POD values of DSM and DSM* were 0.982 and 0.947, respectively.
Monthly average time series for the PODs of three thresholds (∆R0.67, RKMA, and BTDKMA) were
investigated in terms of the monthly average for the 18 months between April 2012 and June 2015
(Figure 10). The number of fog occurrences per month varied from 17 to 75 for the period. The 18-month
average values of the PODs were ∆R0.67 (0.81), RKMA (0.55), and BTDKMA (0.14). The accuracy of the
LSF detection was estimated in the order of ∆R0.67 POD > RKMA POD > BTDKMA POD.

Table 5. POD values (∆R0.67, ∆BTD3.7-11, and R0.67), and the PIest values of DSM and DSM* for the LSF
detection validation during Period 2 (2014-2015) using the thresholds of the satellite-observed variables
for Period 1 (2012–2013). The FAR values of the five methods are also given. **The ∆R0.67 values within
±2% have been used as the upper limit condition of PIest. The POD values of DSM and DSM* have
been obtained from the NFL data, not from WF(Classi).

POD PIest FAR

∆R0.67 **0.873 0.085
∆BTD3.7-11 0.704 0.057

R0.67 0.715 0.043
DSM 0.982 0.853 0.135
DSM* 0.947 0.871 0.146
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Figure 10. Time series for the monthly fog-detection average values at dawn over South Korea
(45 stations). The three series in the figure are shown for the PODs of (i) ∆R0.67 from the dual satellite
observations (red rectangles), (ii) RKMA from COMS (blue triangles), and (iii) BTDKMA from COMS
(green circles).

In Figure 11, DSM PI derived from three variables (∆R0.67, ∆BTD3.7-11, and R0.67) tends to be
less variability within a month or season than DSM* PI. For reference, three WF values (1.0, 0.8, 0.6)
have been used for DSM* PI, although the details about DSM* PI are beyond the scope of this study.
The difference between DSM PI and DSM* PI was clear in the variability (one standard deviation) of
the LSF detection accuracy, indicating that ∆BTD3.7-11 resulted in less variability. The LSF detection
variability of DSM PI was 23–25% less than that of DSM* PI. Although ∆R0.67 was utilized as one of the
three components in the PI calculation, it has a more seasonal dependence in the detection than the PI,
showing the lowest POD in April 2014. The DSM PI, however, derived from both the reflectance and
brightness temperatures, was less influenced by seasonality than the ∆R0.67 threshold. This tendency
was clear in April, showing that the averages of DSM PI and POD of ∆R0.67 were 0.776 and 0.597,
respectively (Figures 10 and 11). This resulted from the low sensitivity of ∆BTD3.7-11 to the seasonality,
compared to ∆R0.67. In summary, compared to an individual threshold, the PI was useful for LSF
detection because of its high skill level, and the low seasonality and variability in the detection accuracy.

For the validation, the thresholds of three satellite-observed variables for Period 1 have
been applied to the PI derivation for Period 2 (Figure 11). The optimum thresholds for
Period 1 were 0.40 < ∆R0.67 < 0.995, 12.0 K < ∆BTD3.7-11 < 34.0 K, and 0.20 < R0.67 < 0.55. Note that
the thresholds in Table 4 were derived from the whole period (2012–2015) data. A monthly time
series of DSM PI in Period 2 (black solid line) was approximately similar to that of DSM PI (blue solid
line), derived from the whole-period thresholds. The PI average and the FAR values in Period 2 were
0.853 and 0.135, respectively (Table 5).

The DSM PI was applied to two cases of fog occurrences, to analyze its usefulness for monitoring
LSF on 2D maps (Figure 12). The PI in the LSF spatial distribution can provide more specified
probability values than 2–3 steps of KMA [19]. The two cases where there were at least four fog
occurrences, based on ground observations, occurred at springtime and summertime dawn in 2014,
one at 06:30 LST on April 17, and the other at 06:15 LST on August 30. Fog detection on the map
was presented in two stages, fog and no fog, in the RKMA threshold (Figure 12a,b); three stages,
fog, possible fog, and no fog, in the KMA COMS operational algorithm [19,23] (Figure 12c,d); and
with the seven PI values (no fog, 50%, 60%, 70%, 80%, 90%, and 100%) of this study (Figure 12e,f).
These threshold values of KMA [19] were not accurate for actual fog cases [23], because they incorrectly
detected fog areas as cloud-contamination pixels, and underestimated fog occurrence.
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Figure 11. Same as Figure 10 except for DSM PI (N, blue solid line) and DSM* PI (�, pink dashed line)
with one standard deviation (±1σ) of PI values in a month. The shaded area in blue and pink indicate
the standard deviation values of DSM PI and DSM* PI, respectively. The overbars of PI and σ indicate
the averages of their 18 monthly values, respectively. In addition, a time series for DSM PI in Period 2
(H, black solid line) was shown for validation.

The figures in the left column of Figure 12 were used to investigate the fog-detection accuracy of
the thresholds, and PI for seven fog occurrences at springtime dawn. The foggy stations in Figure 12a
are denoted as pink triangles (see also Figure 2 and Table A2). The station numbers in South Korea
are the west coast (2, 3, and 29), inland (25, 26, and 31), and the island of Ulleungdo (24). The RKMA

threshold failed fog detection in all of the stations except on the island (Figure 12a). In the COMS
operational algorithm [19], three fog occurrences at the inland sites were classified as ‘possible fog,’
and only the fog event on Ulleungdo island was detected. The algorithm was unsuccessful at the
west coast’s three stations. Two international airports, station 29 at Gimpo and station 3 at Incheon,
are located in the region, and accurate fog monitoring is required for aviation. Most of the fog
occurrences were successfully detected by the PI. The LSF possibility value was 100% at Ulleungdo,
and it was 80% at the other six stations (Figure 12e). The PI was substantially better at springtime fog
detection than the threshold for either RKMA or the operational algorithm.



Remote Sens. 2019, 11, 1283 19 of 26
Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 24 

 

Figure 12. Spatial distributions of fog probabilities at dawn (06:30 LST) on 17 April 2014 near the 

Korean Peninsula from the three fog detection methods: (a) RKMA threshold [19], (c) the operational 

algorithm with a COMS image [19], and (e) the PI of this study. (b) As in Figure 12a, except for the 

date and time (06:15 LST on 30 August 2014). (d) Same as in Figure 12c, except for the date and time. 

(f) Same as in Figure 12e, except for the date and time. The white areas in Figure 12e,f mean ‘no fog’. 

 Apr 17, 2014 (06:30 LST) Aug 30, 2014 (06:15 LST) 

RKMA 

 (KMA, 2012) 
 

   

COMS 

operational  

algorithm 

(KMA, 2012)  

 

    
120                125              130E              

 

 

 
   120             125              130           135E 
 

PI of 

this study 

 

  

 

Foggy area  

Fog Fog 

Figure 12. Spatial distributions of fog probabilities at dawn (06:30 LST) on 17 April 2014 near the
Korean Peninsula from the three fog detection methods: (a) RKMA threshold [19], (c) the operational
algorithm with a COMS image [19], and (e) the PI of this study. (b) As in Figure 12a, except for the
date and time (06:15 LST on 30 August 2014). (d) Same as in Figure 12c, except for the date and time.
(f) Same as in Figure 12e, except for the date and time. The white areas in Figure 12e,f mean ‘no fog’.

The fog-detection case at summertime dawn is presented in the right-hand column of Figure 12,
which also shows four fog occurrences at ground stations 10, 27, 38, and 45. While none of the fog
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occurrences were detected by the RKMA threshold or the COMS operational algorithm (Figure 12b,d),
the PI was generally successful in the detection. The PI values were 0.9, except at ground station 45
(Sunchon), where it was a relatively value low (0.6) (Figure 12f). The four-station PI detection average
(0.83) was remarkably high, in contrast with the detection failures of both the RKMA and the operational
algorithms. In both of the above case studies, the DSM PI was able to detect fog and determine its
spatial distribution better than the KMA [19] single GEO of COMS threshold and algorithm methods.

4. Discussion

The previous study [8] that emphasized ∆R0.67 was limited to the LSF detection in summer only.
Based on the dual satellite method proposed in Yoo et al. [8], this study has attempted to extend
the study period to spring and summer, and to develop the probability index (PI) of LSF utilizing
∆R0.67 with additional satellite-observed variables, ∆BTD3.7-11 and R0.67. Compared to the threshold
test (e.g., either fog or no fog) in Yoo et al. [8], PI in this study can visualize the LSF possibility
into seven stages, and provides the practical application to LSF detection in its spatial distribution.
Table 6 summarizes the differences between the two studies; the study period, the satellite variables for
LSF detection, LSF probability classes, LSF spatial distribution, and the variability in the LSF detection
accuracy for a month or season. The differences between this study and Yoo et al. [8] have been
summarized in Table 6.

Table 6. Differences in the LSF detection between this study and Yoo et al. [8].

This Study Yoo et al. [8]

Theoretical basis Dual satellite observations Dual satellite observations
Season Warm season (April to August) Summer (June to August)
Variables used for LSF detection ∆R0.67, ∆BTD3.7-11 and R0.67 ∆R0.67 and suggests R0.67

Detection method Probability Index derived from three
variables (∆R0.67, ∆BTD3.7-11, and R0.67)

Threshold test of ∆R0.67 in the domain
(∆R0.67 vs R0.67)

LSF spatial distribution Yes No
Number of LSF
probability classes 7 2 or 3

Variability in LSF detection
accuracy in a month or season Low High

Using the dual satellite method (DSM), we have derived the probability index (PI) of low stratus
and fog (LSF) from 18-month satellite and ground-based observations near the Korean Peninsula
at dawn during the warm season. More climatological database values may help to provide more
accurate PIs. The LSF retrieval was most effective in summer, based on the BRDF values of Yoo et al. [8].
We were able to extend the previous study period from June–August (summer) to the April—August
(warm season) by deriving PI from additional satellite-observed variables (4BTD3.7-11 and R0.67) to
4R0.67, as recommended by Yoo et al. [8]. The 4BTD3.7-11 test tends to reduce the variability of LSF PI
accuracy in a month or season, but to raise the FAR to some extent. Overall, the LSF detection methods
of DSM PI, DSM* PI and ∆R0.67 are found to have their own merits of LSF detection skill in view of
POD, FAR, and favorable seasons, etc. Also, the dual satellite-observed methods may be selectively
utilized for an operational purpose, for instance, considering seasons of LSF occurrence seasons and
the acceptable FAR limit.

Thus, the current LSF PI retrieval algorithm is expected to be less useful for non-warm seasons
and at dusk, and this may need to be investigated in future studies. The validation for DSM PI
has was carried out using at 45 ground stations in South Korea, including some island stations.
However, the validation was not performed over the open sea, due to the lack of these stations.
Two case studies have been selected to validate DSM PI, but the LSF signals over the sea (Figure 12e,f)
needs to be verified in the future for whether they were fog or low stratus, and furthermore, LSF1 or
LSFhighclouds. Although PI values in the case of middle/high clouds without fog have not been
investigated in this study, the clouds are expected to lower the PI value, based on the LSFhighclouds
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values out of thresholds. In addition, the visibility meter data may be utilized, particularly in the
coastline. Also, there may be a case study limitation to some degree.

5. Conclusions

A new method for LSF detection, called DSM, was developed in terms of the LSF probability
index (PI) determined from the nearly simultaneous observations of dual geostationary-orbit
satellites (COMS and FY-2D) and ground station observations during the warm season of
18 months. The ground-based observations yielded 754 fog and 433 clear-sky occurrences that
were utilized to validate the satellite-observed LSF detection. An RTM simulation demonstrated
that LSF detection and optical properties were generally consistent with the dual-satellite
observations. The POD values of six detection thresholds were ranked in a descending order
of magnitude: 4R0.67 > 4BTD3.7-11 > R0.67 > RKMA > BTD3.7-11 > BTDKMA. The DSM PI was derived
from a combination of observations (∆R0.67 and ∆BTD3.7-11 from the dual satellites; R0.67 from a single
GEO of COMS) in association with the top three POD scores for detection probability. The PI accuracy
was analyzed with respect to the fog detection rates of the conventional thresholds (RKMA and BTDKMA)
and the KMA [19] operational algorithm from COMS.

Two case studies using maps of spatial fog distribution at springtime and summertime dawn
addressed the PI’s improved method of fog detection. Compared to the conventional methods of
KMA [19] and single threshold (∆R0.67; [8]), the PI has three merits: (i) a high LSF detection rate,
(ii) more specified (seven classes) LSF spatial distribution, and (iii) variability of the detection accuracy
in a month or season. The 4BTD3.7-11 component in PI was found to lead to the trend of low variability,
based on the comparison of the DSM PI with the DSM* PI, which was derived from the two reflectance
variables (4R0.67 and R0.67) The PI has timely implications for LSF detection, because the newly available
satellite-based observations from the advanced GEOs (e.g., GK-2A launched on December 5, 2018 [40];
FY-4A [41] and Himawari-8 [42]) have additional multi-channels with higher spatiotemporal resolution
than do previous satellites. The DSM technique can be applied to other meteorological/environmental
variables (e.g., cloud and dust) and satellite calibration, as well as near real-time LSF monitoring.
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Appendix A

Table A1. List of acronyms used in this study.

Acronyms Original Words (or Details) Acronyms Original Words (or Details)

AVHRR Advanced Very High Resolution
Radiometer KMA Korea meteorological administration

BT11 brightness temperature at ~11 µm LSF low stratus and fog

BT11max

maximum value of BT11 over the
region

(122–132◦E, 32.5–42.5◦N)
LUT look-up table

BT3.7 brightness temperature at ~3.7 µm MODIS Moderate Resolution Imaging
Spectroradiometer

BTD brightness temperature difference NFL normalized frequency of LSF

BTD11-6.7
brightness temperature difference

between 11 µm and 6.7 µm OBS observation

BTD3.7-11 difference between BT3.7 and BT11 PC percentage correct
BTD6.2-11 difference between BT6.2 and BT11 PI probability index

BTDKMA
threshold for fog detection used at

KMA (2012) POD probability of detection

CER cloud effective radius R0.67 reflectance at ~0.67 µm
CH cloud height RAA relative azimuth angle

COMS Korean Communication, Ocean
and Meteorological Satellite RKMA

threshold for fog detection used at KMA
(2012)

COT cloud optical thickness Rmin
minimum value of R0.67 over the region

(122–132◦E, 32.5–42.5◦N)
CSI critical success index RTM radiative transfer model

DSM dual satellite method SBDART Santa Barbara DISORT Atmospheric
Radiative Transfer

ER effective radius SEVIRI Spinning Enhanced Visible and Infrared
Imager

FAR false alarm ratio SNR signal-to-noise
FER fog effective radius SRF spectral response function
FH fog height SWIR shortwave infrared at ~3.7 µm

FOT fog optical thickness SYNOP surface synoptic observations
FY-2D Chinese FengYun-2D SZA solar zenith angle
GEO geostationary-orbit satellite VZA satellite viewing zenith angle
GTS global telecommunications system VIS visible
HR hit rate ∆R0.67 difference in R0.67 between two satellites

HSS Heidke skill score ∆BTD3.7-11
difference in BTD3.7-11 between two

satellites

IR1 infrared at ~11 µm σT11

standard deviation at BT11 over the 3 × 3
grid-pixel area

IR2 infrared at ~12 µm
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Table A2. The 45 meteorological stations in South Korea used in the LSF analysis.

Station
Number

Coastal
Station

Lat
(◦N)

Lon
(◦E)

Height
(m)

Station
Number

Inland
Station Lat (◦N) Lon

(◦E)
Height

(m)
1 Baengnyeongdo 37.97 124.63 145 24 Ulleungdo 37.48 130.90 223
2 Incheon 37.48 126.62 68 25 Cheorwon 38.15 127.30 154

3 Incheon
Airport 37.28 126.26 N/A 26 Chuncheon 37.90 127.74 78

4 Boryeong 36.33 126.56 15 27 Daeguallyeong 37.68 128.72 773
5 Gunsan 35.99 126.71 26 28 Seoul 37.57 126.97 86

6 Mokpo 34.82 126.38 38 29 Gimpo
Airport 37.33 126.48 N/A

7 Heuksando 34.69 125.45 76 30 Suwon 37.27 126.99 34
8 Jindo 34.47 126.32 476 31 Wonju 37.34 127.95 149
9 Wando 34.40 126.70 35 32 Cheonan 36.78 127.12 21

10 Gochang 35.35 126.60 52 33 Seosan 36.78 126.49 29
11 Yeosu 34.74 127.74 65 34 Cheongju 36.64 127.44 57
12 Tongyeong 34.85 128.44 33 35 Andong 36.57 128.71 139
13 Changwon 35.17 128.57 37 36 Daejeon 36.37 127.37 69
15 Busan 35.11 129.03 70 37 Jeonju 35.82 127.16 53
15 Jeju 33.51 126.53 20 38 Geochang 35.67 127.91 226
16 Gosan 33.29 126.16 74 39 Daegu 35.89 128.62 64
17 Jeju Airport 33.30 126.29 N/A 40 Daegu(kma) 35.89 128.62 64
18 Seogwipo 33.25 126.57 50 41 Jeongeup 35.56 126.87 45
19 Seongsan 33.39 126.88 18 42 Ulsan 35.56 129.32 35
20 Pohang 36.03 129.38 2 43 Gwangju 35.17 126.89 72
21 Uljin 36.99 129.41 50 44 Jinju 35.16 128.04 30
22 Bukgangneung 37.81 128.86 79 45 Suncheon 35.02 127.37 165
23 Sokcho 38.25 128.57 18

Table A3. Contingency table and definitions for the statistical skill test. HSS: Heidke Skill Scores, CSI:
Critical Success Index, POD: Probability of Detection, PC: Percentage Correct, FAR: False Alarm Ratio.

SYNOP

Fog Clear-Sky

COMS only Fog a b

Clear-sky c d

CSI = a
a+b+c FAR = b

a+b HSS =
2(ad−bc)

(a+c)(c+d)+(a+b)(b+d) PC = a+d
a+b+c+d POD = a

a+c

Table A4. SBDART input variables for the LUT product.

Input Variable Contents

Atmospheric profile Mid-latitude summer, US62
Wavelength (λ):

Three channels of VIS, SWIR, & IR1 for COMS &
FY-2D

0.55–0.90, 3.5–4.0, 10.3–11.3 µm

Solar Zenith Angle (SZA) 0≤ SZA ≤ 80◦ at 10◦ intervals, and 85◦

Surface type Ocean, Vegetation
Fog Height (FH) Water fog at 0–1 km or 0–2 km

Upper Cloud Height (CH) above the fog layer Water/ice cloud (4–6 km), Ice cloud (8–10 km)
Fog Optical Thickness (FOT) 0, 0.5, 1, 2, 4, 8, 16, 32, 64

Cloud Optical Thickness (COT) 0, 4, 8, 16, 32
Effective Radius of fog (FER) 4, 8, 16, 32 µm

Effective Radius of cloud (CER) 2, 4, 8, 16 µm
Flux computation stream 32

Vertical resolution 1 km
Viewing Zenith Angle (VZA) 0≤ VZA ≤ 90◦ at 10◦ intervals

Relative Azimuth Angle (RAA) 0≤ RAA ≤ 180◦ at 30◦ intervals
Boundary layer aerosol type Urban

Vertical optical depth of boundary layer aerosols
nominally at 0.55 µm 0.2
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Table A5. Number of LSF cases that are used to develop and validate the optimum thresholds at
the beginning of this study. The LSF1 and LSFhighclouds cases are shown for Period 1 and Period
2, respectively. The values in parentheses indicate the ratios (%) of the corresponding LSF types to
the whole cases. Since the thresholds are not sensitive to the periods (i.e., interannual variation),
the whole-period threshold values have been used in this study.

Period LSF LSF1 LSFhighclouds

Period 1
(2012–2013) 470 (100%) 296 (63%) 174 (37%)

Period 2
(2014–2015) 284 (100%) 177 (62%) 107 (38%)
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