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Abstract: Taxi demand can be divided into pick-up demand and drop-off demand, which are firmly 
related to human's travel habits. Accurately predicting taxi demand is of great significance to 
passengers, drivers, ride-hailing platforms and urban managers. Most of the existing studies only 
forecast the taxi demand for pick-up and separate the interaction between spatial correlation and 
temporal correlation. In this paper, we first analyze the historical data and select three highly 
relevant parts for each time interval, namely closeness, period and trend. We then construct a multi-
task learning component and extract the common spatiotemporal feature by treating the taxi pick-
up prediction task and drop-off prediction task as two related tasks. With the aim of fusing 
spatiotemporal features of historical data, we conduct feature embedding by attention-based long 
short-term memory (LSTM) and capture the correlation between taxi pick-up and drop-off with 3D 
ResNet. Finally, we combine external factors to simultaneously predict the taxi demand for pick-up 
and drop-off in the next time interval. Experiments conducted on real datasets in Chengdu present 
the effectiveness of the proposed method and show better performance in comparison with state-
of-the-art models. 

Keywords: taxi demand prediction; deep learning; spatiotemporal data; convolutional neural 
network; multi-task learning 

 

1. Introduction 

The transportation system is to the city as the blood tissue is to the human body, and it is the 
key to urban construction. In the future, it will play an essential role in the construction of smart 
cities. With the development of Didi Chuxing and Uber, online car-hailing has become a travel habit 
of people. Therefore, extensive data on taxi demand have been collected for research. Accurate taxi 
demand forecast can help passengers avoid hot spots reasonably and save waiting time. It also can 
help drivers choose hot spots rationally and make a better balance between benefits and efficiency. 
For the online car-hailing platform, they can plan better and pre-allocate resources to maximize the 
benefits. For city managers, it can provide reference suggestions for infrastructure construction and 
traffic planning. Therefore, how to accurately predict future taxi demand in various regions of the 
city based on historical data has become a hot area of research. 

In literature, traffic data prediction problem has been widely studied in the past, including traffic 
volume, taxi demand and travel time. Time series prediction methods and machine learning methods 
are first applied to traffic data prediction; representative algorithms include autoregressive 
integrated moving average (ARIMA) and its variants [1-3], and support vector machine (SVM) and 
its variants, respectively. However, such methods ignore the spatial correlation of data. In recent 
years, deep learning, which has achieved great success in computer vision and natural language 
process [4], has been widely used to traffic prediction [5]. Convolution neural network (CNN) and 
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recurrent neural network (RNN) are used to catch temporal correlation [6-8] and spatial correlation 
[9,10], respectively. Models combining CNN, RNN and their variants are also widely used in traffic 
data prediction [11-13]; such methods usually use CNN to extract spatial features first, then use RNN 
to extract temporal features and finally make predictions. 

However, accurate traffic data prediction still faces three significant challenges: 

1. First of all, traffic data are affected by complex spatial–temporal correlation, and there is an 
apparent periodicity in traffic data. Traffic states between different regions will affect each other, and 
there may be interactions between regions that are far away. Although the models combining CNN, 
RNN and their variants have achieved good results, this kind of method separates the interaction 
between temporal correlation and spatial correlation. 
2. Secondly, there is little work in predicting taxi drop-off demand. If there is a high taxi demand 
for drop-off in a particular region at a certain time, the vacancy rate of taxis in this region will be high, 
and it will be required for reasonable evacuation. At the same time, the high traffic volume will be a 
test for the infrastructure and road conditions of the corresponding region. Therefore, predicting taxi 
demand for drop-off can provide advice to taxi drivers and city managers. Besides, taxi demand for 
pick-up and drop-off may affect each other, since empty cars may stimulate people's desire to take a 
taxi and increase the number of taxi pick-ups in surrounding areas. 

To tackle the above challenges, this paper proposes a method to predict taxi demand for pick-
up and drop-off in various regions of the city based on multi-task learning (MTL) and 3D 
convolutional neural networks (3D CNN). In detail, to begin, we first selected highly relevant 
historical data at each time interval. Then we treated taxi pick-up demand prediction and taxi drop-
off demand prediction as related tasks. We harnessed the power of MTL and 3D CNN to extract 
spatiotemporal features without separating the interaction between temporal correlation and spatial 
correlation. Secondly, for the purpose of fusing the extracted features of historical data, we embedded 
those feature representations into a tensor by attention-based long short-term memory (LSTM). Next, 
we regarded the tensor as a video consisting of frames that represented the demand status within 
half an hour, and we used 3D ResNet to capture the spatiotemporal correlation and the complex 
correlation between the taxi demand for pick-up and drop-off. Finally, we combined external factors 
to predict taxi demand for pick-up and drop-off at the same time. We conducted extensive 
experiments on a real-world dataset. Our contributions are summarized as follows: 

1. We propose to consider the prediction of taxi demand for pick-up and drop-off as related tasks, 
and we constructed a feature extraction component based on multi-task learning and 3D CNN to 
extract spatiotemporal features concurrently. 
2. We propose to deem the demand situation of the urban taxi as a video and use 3D CNN to 
capture the spatiotemporal correlation and the complex correlation between taxi demand for pick-up 
and drop-off. 
3. We combined external factors, such as weather, day of the week and public transport conditions, 
to simultaneously predict taxi demand for pick-up and drop-off. 
4. We conducted extensive theoretical analysis and experiments on a real-world dataset in 
Chengdu and achieved better performance and efficiency than other baselines. 

The rest of the paper is organized as follows: Section 2 describes the related work of the traffic 
data prediction problem. Section 3 provides the problem definition. The method for predicting taxi 
demand for pick-up and drop-off is outlined in Section 4. Section 5 gives the experimental verification 
designs and results. Section 6 summarizes the whole paper. 

2. Related Work 

Machine learning has been widely used in various fields, such as recommendation system 
[14,15], service computing [16-21], prediction problem [22-25], edge computing [26,27], and so on. In 
recent years, deep learning has been widely used in many research fields with great success in the 
fields of computer vision and natural language processing [28-30]. Taking the speech recognition 
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field as an example, according to Padmanabhan et al. [31], Hidden Markov Model (HMM), Gaussian 
Mixture Models (GMM), SVM, and Artificial neural network (ANN) have been applied in this field 
and achieved limited performance. Deep learning is also widely used in speech recognition [32,33], 
and by contrast, allows end-to-end learning and achieves better performance.  

In addition, many areas use multi-task learning to improve the performance of the applications. 
Zhang et al. [34] proposed to classify multi-task supervised learning as two categories according to 
what to share. One is the feature-based MTL, where different tasks share a feature representation, 
and the other is the parameter-based MTL, where model parameters relate to different tasks. The 
former is further categorized into the feature transformation approach, the feature selection 
approach, and the deep-learning approach according to the approach of sharing features. 

The traffic data prediction problem, comprised of traffic volume, traffic speed, travel time and 
taxi demand (our problem), has attracted the attention of many researchers; these approaches can be 
divided into two groups: traditional approaches and deep learning approaches. 

2.1. Traditional Approach 

Time series algorithms are first introduced into predicting traffic data in an ARIMA-like model. 
Hamed et al. [35] developed an ARIMA model to predict the traffic volume on urban arterials. From 
here on, to improve prediction performance, researchers applied many variants of ARIMA for traffic 
prediction [36,37].  

On the other hand, machine learning algorithms are also widely used in this filed. Wu et al. [38] 
applied support vector regression for travel-time prediction, Zheng et al. [39] used a Bayesian model 
combined neural network for short-term freeway traffic flow prediction. Kuang et al. [40] proposed 
a two-level model, which combines a cost-sensitive Bayesian network and a weighted K-nearest 
neighbor model to predict the duration of traffic accidents. k-NN models are also widely applied in 
predicting traffic speeds and volume due to its simple nature [41,42]. 

These methods focus on the temporal correlation of traffic data, while neglecting its spatial 
correlation. However, the traffic conditions in the current region are affected not only by the adjacent 
region but also by regions farther away. For example, a traffic incident occurring in the intersection 
may render roads impassable, resulting in a dramatic increase in traffic volume at a remote 
transportation hub.  

2.2. Deep Learning Approach 

In recent years, deep learning methods have been widely used by many researchers in predicting 
traffic data. CNN has proved effective on extracting features from images. Thus, by treating the traffic 
condition of the entire city as an image, many researchers naturally started to employ CNN in traffic 
data prediction. Ma et al. [6] divided the city into many tiny grids, converting city traffic speed into 
images and use CNN for predicting traffic speed. Zhang et al. [7] employed CNN modeling temporal 
dependent (temporal closeness, period and seasonal trend) and spatial dependent for predicting 
traffic flow, rent/return of bikes and traffic flow. Later, Zhang et al. [8] used a residual neural network, 
a parametric-matrix-based fusion mechanism, and external information to improve the performance 
in predicting crowd flows. These studies focus more on the spatial correlation of traffic data. On the 
contrary, for modeling temporal correlation, they simply fusion features extracted by CNN through 
neural networks, which does not utilize temporal correlation sufficiently.  

On the other hand, the success of RNN and its variants, that is, long short-term memory (LSTM) 
and gated recurrent units (GRU), in sequential learning tasks [43] has led many researchers to predict 
traffic data based on them. Zhao et al. [9] proposed using cascaded LSTM, where lateral dimension 
indicates the changes in the time domain and the vertical dimension indicates different observation 
points’ indexes, combined with an origin–destination correlation matrix to capture spatial–temporal 
correlation for predicting traffic flow. Xu et al. [10] applied LSTM and mixture density network to 
predict taxi demand in the city of New York. The model first predicts the entire probability 
distribution of taxi demands, then uses this probability distribution to decide taxi demand for each 
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area. These studies focus more on capturing temporal correlation. However, they do not use spatial 
correlation sufficiently. 

With the purpose of making full use of spatiotemporal correlation, many researchers combined 
CNN and RNN for predicting traffic data. Wu et al. [11] treated roads as a vector, which fed into 1D 
CNN to capture spatial correlation of traffic flow, and then used two LSTM to mine the short-term 
variability and periodicities of traffic flow. Yu et al. [12] proposed to apply deep CNN to extract 
spatial features which then fed to stacked LSTM for predicting large-scale transportation network 
traffic. Yao et al. [13] believed that applying CNN to the image of the entire city hurts prediction 
accuracy; for this reason, they utilized local CNN to capture spatial correlation and introduced a 
semantic view combined with LSTM to predict taxi demand. Although spatiotemporal correlation is 
taken into consideration in both instances, these studies separate the interaction between temporal 
correlation and spatial correlation. 

In summary, previous studies separate the interaction between temporal correlation and spatial 
correlation, few studies predict taxi drop-off demand, and none of these studies take the interaction 
between taxi pick-up and taxi drop-off into consideration. 

3. Preliminary 

Definition 1 (Trip). We defined a trip as a tuple pick pick drop drop(id,t ,location ,t ,location ) , where id  is the 
trip identification number, pickt is the pick-up time, picklocation represents the pick-up location, dropt  is 
the drop-off time, droplocation  represents the drop-off location. 
Definition 2 (Region Partition). In the spatial view, we followed previous studies [44]. As shown in 
Figure 1(a), let point A be the lowest left corner of the rectangle represented by the coordinates

A A AP (lng ,lat ) , and let point B be the top right corner of the rectangle represented by the coordinates
B B BP (lng ,lat ) . We partitioned the whole city into I J× equal grids. We used latλ and lngλ to represent 

the length of latitude and longitude of a grid, respectively. Where 

 B A

lng

lng lng
I

λ
−

=  (1)

 B A

lat

lat lat
J

λ
−

=  (2)

we represented grid ( )grid i, j  which lies as the thi  row and the thj  column as 

 ( ))lng
ij lng lngg λ i ,λ i 1∈ × × +  (3)

 ( ))lat
ij lat latg λ i ,λ i 1∈ × × +  (4)

where i I<  and j J< . 

 
(a) 

 
(b) 
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Figure 1. Regions in Chengdu: (a) Partition in spatial view; (b) partition in temporal view. 

Definition 3 (Pick-up/Drop-off Demand) Following previous studies [8,44], for a certain grid(i, j) , 
the taxi pick-up and taxi drop-off demand at the time interval k k 1[T ,T )+  were defined respectively 
as 

 { }pick ,i ,j
k pick k k+1 pick ijy trip|t [T ,T ) location g= ∈ ∧ ∈  (5)

 { }drop,i ,j
k drop k k+1 drop ijy trip|t [T ,T ) location g= ∈ ∧ ∈  (6)

At the time interval k k 1[T ,T )+ , demands in all regions were denoted as a tensor k ∈Y  2 I J× ×  
where  pick , i ,j

k 0 ,i ,j k( ) y=Y  and  drop, i ,j
k 1,i ,j k( ) y=Y . 

 
Problem 1: Given latλ , lngλ , tλ and the historical demand tensors { }k |k 0,1, ,n 1= … −Y , predict nY . 

4. Method 

Figure 2 presents the framework of our proposed model Taxi3D. We first selected parts of 
historical data, which are highly relevant to the future demand situation. Secondly, we extracted 
common spatiotemporal features by MTL-based 3D CNN from two related tasks, that is, a taxi pick-
up prediction task and a taxi drop-off prediction task. Later, we used attention-based LSTM 
embedding spatiotemporal features into a tensor which fed into the 3D ResNet and transformed into 
a vector. Meanwhile, external information, such as meteorological features, was also encoded into 
vectors. Finally, we concatenated the above two vectors and simultaneously predicted taxi demand 
for pick-up and drop-off in the next interval. 

 

Figure 2. Architecture of the proposed model Taxi3D. 

Accordingly, our model is composed of four major components, which as follows: 1) Multi-task 
spatiotemporal feature extraction component, in which we capture spatiotemporal correlations. 2) 
Feature embedding component. In this module, we fused spatiotemporal features into a tensor, then 
captured correlations between taxi pick-up and taxi drop-off and obtained the representation vector

tg . 3) External factors component, where external information (e.g., weather condition, holidays, etc.) 
were encoded into representation te . 4) Prediction component. We combined tg  and te  to predict 
future demand. 
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In this section, we detailed our proposed method by a running example. The historical demand 
data inputted into our model are defined as a C D W H× × ×  four-dimensional tensor: 
1. C  is the category of data, that is, 0  for taxi pick-up data and 1  taxi drop-off data. 
2. D  is the depth of data. 
3. W  is the number of grid columns. 
4. H  is the number of grid rows. 

For example, at time interval t , we may concatenate t 4 t 3 t 2 t 1, , ,− − − −Y Y Y Y as the input tensor 
(C,D,W ,H) (0,4,16,16)=  of the model. 

4.1. Partition of Historical Data 

As shown in Figure 3, the demand in different areas presents a repetitive pattern; for example, 
the demand pattern of Friday in Figure 3c is similar to that of Thursday and last Friday. With 
spatiotemporal domain knowledge, we can effectively select this higher-dependent timestamps to 
reduce input size. To the best of our knowledge, a time series always has one, or two, or all of the 
following temporal properties: 1) Temporal closeness; 2) period; 3) trend [7]. In view of the fact that 
taxi demand not only exhibits an evident periodicity but is also affected by an adjacent time interval, 
we separately divided previous taxi pick-up data and taxi drop-off data into three parts: closeness, 
period and trend, which represents the near past, the same time yesterday and the same time last 
week respectively. 

 

(a) 

 

(b) 
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(c) 

Figure 3. The demand in three distinct areas of Chengdu. All data has been normalized: a) Grid (1, 2) 
is near schools, residential; b) grid (11,3) is near a university and shopping malls; c) grid (3, 2) is near 
office buildings, shopping malls 

For example, at each time interval t , we split input tensor (C,D,W ,H) into 6 parts: c(0,D ,W ,H)
, p(0,D ,W ,H) , t(0,D ,W ,H) , c(1,D ,W ,H) , p(1,D ,W ,H) and t(1,D ,W,H) , where cD , pD and tD
represents closeness, period and trend respectively, and c p tD D D D+ + = . 

4.2. Multi-Task Spatiotemporal Feature Extraction Component 

Figure 3 shows the number of taxi demands in three distinct regions in Chengdu from November 
5, 2016, to November 18, 2016. Analyzing this data indicates that taxi pick-up demands and taxi drop-
off demands were basically positively correlation; that is, when the demand for taxi pick-up was high, 
the demand for drop-off was also high, and vice versa. To capture such regularities, we conducted 
MLT in extracting features from historical data. In short, by sharing representations between related 
tasks, MTL can enable our model to learn several tasks at the same time with better generalization 
performance. 

To be specific, in this study, two related tasks, taxi pick-up demand prediction and taxi drop-off 
demand prediction, were trained together. Different from previous studies, at each time interval t , 
we firstly extracted features from taxi pick-up data (0,D,W ,H)  and then used the same network 
extracts features from taxi drop-off data (1,D,W ,H) . Therefore, we got shared information in the 
feature extraction stage. 

Furthermore, taxi demand in adjacent areas will also affect each other. Hence, the problem of 
predicting future taxi demand based on historical demand has some common ground with the 
problem of video generation, in which every frame and some pixels will affect each other. Motivated 
by the success of 3D CNN in human action recognition [45] and video analysis [46], we conducted 
feature extraction by 3D CNN. 

The hidden layers of a CNN typically contain a series of convolutional layers and pooling layers. 
LeCun et al. [4] argue that the role of the convolutional layer is to extract features from data at 
different levels. With the interactions between layers, high-level features are obtained in the higher 
layers by composing low-level ones extracted in the lower layers. Yosinski et al. [47] visualized an 
eight-layer CNN, and the results showed that the lower layers could detect edges, corners, etc., while 
the higher layers could detect faces, handles, bottles, etc. As for the pooling layer, its function is to 
reduce spatial dimensions of the feature map, reducing the amount of parameters and computation, 
and thus control overfitting. 

In our study, we constructed a K-layers 3D CNN to obtain complex spatiotemporal features. 
Among them, in the first K-1 layers, we used zero-padding to input tensor in the convolution 
operation. Zero-padding, on the one hand, ensures that the edges of the tensor are covered many 
times in the convolution operation, and on the other hand keeps the size of the feature map 
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unchanged in convolution operation to fully capture the interaction between each area in the whole 
city. Besides, two areas in a city far away from each other may be connected by metro, thus making 
the demand patterns of the two places relevant. Therefore, we introduced dilated convolution and 
increased the stride size of convolution in the last layer, which not only reduces the size of the feature 
map, but also captures the remote dependence. 

From a global perspective, we constructed three K-layers 3D CNN based on MTL to extract 
features from closeness, period and trend, respectively. Concretely, as illustrated in Figure 4(a), we 
take trends as an example, in order to capture patterns in historical data. The constructed K-layers 
3D CNN which successively took (0,D,W ,H) and (1,D,W ,H) as input tensors, and followed by 
convolution as: 

 (l) (l) ( l 1) (l)X f (W X b )−= ∗ +  (7)

where ∗  denotes the convolutional operation; f ( )⋅ is a batch normalization operation[48] followed 
by an activation function, that is, f (z) max(0,BN(z))= ;

( l )

W and 
( l )

b are learnable parameters in layer 
l ; and (0 )X  is t(0,D ,W ,H)  or t(1,D ,W,H) . 

 

 
(a) 

 

(b) 

Figure 4. 3D convolution and 3D Residual Unit: (a) 3D convolution; (b) 3D Residual Unit 

4.3. Feature Embedding Component 

Based on the 3D CNN, we got six feature tensors which can be view as time series. To fusion the 
features of three parts of historical data, we proposed using long short-term memory (LSTM) based 
on attention mechanism to encoding feature tensors into another tensor. LSTM [49] is a type of 
recurrent neural network architecture, which is good at processing time series. It was proposed to 
address the problem of gradient vanishing or exploding of classic Recurrent Neural Network (RNN). 

As shown in Figure 2, in each time interval t , the output tx  of 3D CNN was taken as the input 
of LSTM after flattening. The peculiar thing about LSTM is that it has a memory cell and three gates, 
that is, a forget gate, an input gate, and an output gate. Specifically, the function of the memory cell 
is to store information, the forget gate decides what information is going to throw from the cell, the 
input gate determines what information will be added to the cell, and the output gate controls what 
information is sent to next time interval. In detail, at time interval t , the input tx  and output vector 

−t 1h  at the previous interval are first sent into the forget gate to obtain the forget gate's activation 
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vector tforget . Next, the input gate combines tx  and −t 1h  to calculate its activation vector tinput . 
Then we can update memory cell into tcell  according to the above all activation vectors and the 
memory cell state vector −t 1cell  at previous time interval. Afterward, tx  and −t 1h  are used to 
obtain the output gate's activation vector toutput  Finally, we can get the output vector th at this 
time interval through toutput  and tcell . Formally, the updating equations for LSTM are provided 
below: 

 −= + +t f t f t 1 fforget σ(W x U h b )  (8)

 −= + +t i t i t 1 iinput σ(W x U h b )  (9)

 − −= + + t t t 1 t c t c t 1 ccell forget cell + input tanh(W x U h b )  (10)

 −= + +t o t o t 1 ooutput σ(W x U h b )  (11)

 = t t th output tanh(cell )  (12)

where   is the Hadamard product, tanh( )⋅  is hyperbolic tangent function, and σ( )⋅  is sigmoid 
function. Different kernel matrices W and bias b  are parameters to be learned. 

After the LSTM generated hidden states 1 2 6h ,h ,...,h  from the inputs 1 2 6x ,x ,...,x , in order to 
capture the interaction between taxi pick-up and taxi drop-off at different time intervals, we decoded 
the six hidden states based on the attention mechanism and generated six new representation vectors. 
As illustrated in the dashed box in the middle of Figure 2 for each timestamp t , we first calculated 
the extent of importance ,t ie  between each hidden state ih  and the previous output −t 1s  of the 
decoder LSTM, then normalized it into ,t iα , and finally calculated the weighted sum of ih  and ,t iα  
to get tcontext  which sent into the next timestamp. The key formula for decoding the hidden state is 
as follows: 

 −=t ,i t 1 ie a(s ,h )  (13)

 
=

=
 x

t ,i
t ,i T

t ,kk 1

exp(e )
α

exp(e )
 (14)

 
=

= xT
t t ,i ii 1context α h  (15)

where a( )⋅  is a one-dimensional convolutional network that is trained with all the other components 
of the proposed system. 

We then aimed to capture the correlation between taxi demand for pick-up and drop. In order 
to address the issue that the deeper networks are difficult to train, He et al. [50] proposed a residual 
learning framework named ResNet. In this study, we captured the aforementioned correlation by 3D 
ResNet. Firstly, reshaped the six representation vectors that come from the attention-based LSTM 
into matrices, and then stacked them into a tensor 0X . Secondly, we took 0X as the input of L  
stacked 3D residual units, as shown in Figure 4(b), which is defined as follows: 

 l 1 l l lX X (X ,θ ),l 1,...,L+ = + =  (16)

where  is the 3D residual units, θ is learnable parameter. Finally, we flattened the output of 3D 
ResNet into a final representation vector f

tg ∈ . 

4.4. External Factors Component 

Taxi demand can also be affected by many complex external factors, such as weather, date, 
region functions, and regional public transport conditions. Intuitively, taxi demand may be affected 
by the weather a lot, with people more inclined to take a taxi when it's raining, and walking when it's 
sunny. Similarly, the date and time will also affect taxi demand. We may have a fixed travel routes 
on weekdays and working hours while having various choices on weekends and holidays. Of equal 
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importance, the public transportation system will influence travel habits of people due to its 
convenience and safety. 

In this study, there are mainly three types of external data: 1) Numerical data, for example, wind 
speed, temperature or humidity; 2) categorical data, for example, day of the week, holiday, or 
weather; 3) graph data, for example, metro information. For numerical data, we directly normalized 
them and stacked them into a vector n en

te ∈ . For categorical data, we conducted one-hot coding for 
them and concatenated them into another vector c ec

te ∈ . 
As for graph data, we constructed an undirected graph G (V ,E,D)= , where the set of grids are 

nodes V , E V V∈ × is the edge set, and D  indicates the distance between every two nodes. In this 
study, we simply used Manhattan distance to measure the distance between two nodes. Note that if 
the two nodes could be directly reached by metro, we set D  to 1; if the two nodes could be reached 
through a transfer, we set D  to 2, and so on. Based on that, the distance between a metro station 
and the eight grids surrounding another metro station is set to D 1+ . Thus, we ended up with a fully 
connected graph, and for all the nodes, the closer to other nodes, the more convenient the traffic will 
be. Afterward, we applied Large-scale Information Network Embedding (LINE) algorithm[51] 
embedding graph into a vector g eg

te ∈ . 
At last, we fused the above vectors into a new vector which then fed into a two-layers fully-

connected neural network, and obtained the representation of external factors e
te ∈  at time 

interval t . More specifically, we defined 

 g gn n c c
t t t t t t te F((W e ) (W e ) (W e ))= ⊕ ⊕    (17)

where   is Hadamard product, ⊕ denotes concatenation operator, ( )F ⋅  is a two-layers fully-
connected neural network, and n

tW ,  c
tW  and g

tW  are the learnable parameters 

4.5. Prediction Component 

Based on feature encoding and external information encoding, then we aimed to predict the taxi 
demand in the next interval. We concatenated the output tg  of feature encoding with the output te  
of the external information: 

 t t tq g e= ⊕  (18)

where ⊕  denotes concatenation operator, and g e
tq +∈ . Then we fed tq  to the fully connected 

network to get the final prediction value nY . Formally, the prediction function is provided as below: 

 ( )t tY f Wq b= +  (19)

where W  and b  are learnable parameters, and ( )f ⋅  is the ReLU function. 
Previous studies mostly take the 2L  loss as the loss function, yet the 2L  loss is sensitive to 

outliers; the gradient of 2L  loss is high for larger loss values and vice versa. On the contrary, the 1L  
loss is robust to outliers, but its gradient is the same throughout even for small loss values; 
meanwhile, discontinuous derivatives would decrease efficiency in problem-solving. Despite taxi 
demands being generally stable, outliers still may occur due to various reasons; for example, a 
sudden rainstorm, concerts, or public events. Thus, we combined 1L  loss and 2L  loss to train 
Taxi3D by minimizing the Smooth L1 loss [52]. The loss function we used is defined as: 

 
N

i i
L1 t t

i 1
ˆ(θ) Smooth (y y )

−
= −  (20)

in which 

 
2

L1
0.5x , if x 1

Smooth
x 0.5, others

 <=  −
 (21)

where θ  denotes all the learnable parameters, N  is the numbers of all predicted values. 

5. Experiment and Discussion 



Remote Sens. 2019, 11, 1265 11 of 19 

 

5.1. Dataset 

In this paper, we used a real dataset collected from Didi Chuxing [53]; it consists of five million 
taxi trips records in Chengdu from October 1, 2016 to December 31, 2016. The size of the area to be 
predicted was about 7.66km 7.12km× . There were about 168,362 demands (including pick-up and 
drop-off) each day on average. Each row of the original data can be seen as a tuple (order ID, pick-
up time, pick-up longitude, pick-up latitude, drop-off time, drop-off longitude, drop-off latitude), 
and we processed the original data with the method mentioned in Section 3 to obtain the final dataset. 

The external factors including meteorological features (e.g., weather condition, wind speed), 
temporal features (e.g., day of the week, hour of the day, holiday) and spatial features (e.g., public 
transport conditions). Taking 10:00 a.m. on October 7, 2016 as an example, we selected the following 
features: Sunny, wind speed, temperature, probability of precipitation, humidity, Friday, the 21st 
time interval, holiday (Chinese National Day holiday), and metro information. 

5.2. Experimental Settings 

The data from October 1, 2016 to November 18, 2016 (49 days) was used for training, validation 
data was from November 19, 2016 to November 23, 2016 (5 days), and the remaining 7 days of data 
were used for testing. In our experiment, we firstly trained our model on training data, and validation 
data was used to early-stop our algorithm. Afterward, we continued training our model on the 
training data and validation data for a fixed number of epochs. For fair comparison, other methods 
were also trained like this. 

In our experiment, we set time interval to 30 minutes, that is,  tλ 30 minutes= . Limited by the 
dataset, we set lngλ 0.005= °  and latλ 0.004= ° , thus, we got 16 16×  grids for which each grid is 
about 0.479km 0.445km× . All these experiments were run on the server with NVIDIA Tesla K40M. 
We used Adam [54] for optimization. We used PyTorch [55] to implement our proposed model. 

We set 64  filters of size 3 3×  in all convolutional operation. For the length of closeness, period 
and trend, we searched { }  cD 2, 3, 4∈ , { }  pD 1, 2, 3∈  and { }  tD 1, 2, 3∈ . We searched K  (the 
number of layers of 3D CNN) and L  (the number of stacked 3D ResNet) from 2 to 6. 

5.3. Baselines 

To be fair, we present the best performance of each method. The proposed model and its variants 
were trained by multi-task learning. For other baselines, we used taxi pick-up data, taxi drop-off data 
and all data for training and prediction. Specifically, we compared our model with the following 
baselines: 

1. Historical average (HA): By simply averaging the values of previous taxi pick-up and taxi drop-
off demands at the same location and the same time interval, we can get the predicted value. 
2. Autoregressive integrated moving average (ARIMA): ARIMA is a well-known model for 
predicting times series. 
3. XGBoost: XGBoost is a well-known powerful model and is widely used by data scientists to 
achieve state-of-the-art results on many machine learning challenges [56]. 
4. Multiple layer perceptron (MLP): We compared our model with an MLP which consisted of 4 
hidden layers. Each layer had 128, 128, 128, and 64 hidden units, respectively. 
5. Long Short-Term Memory: LSTM is a special kind of RNN, capable of learning long-term 
dependencies, and it is widely used in time series processing. 
6. ST-ResNet[8]: ST-ResNet is an end-to-end traffic prediction approach based on deep learning, 
which uses the residual network to capture the spatial and temporal characteristics of crowd traffic, 
and also combines with external factors. 

For fair comparison, all the methods above were implemented with the same equipment and 
environment. We also compared the effects of different components of the proposed model. 

1. Taxi3D-single: To verify the effectiveness of MTL, in this variant, we designed two independent 
networks which extracted spatiotemporal features from taxi pick-up data and drop-off data 
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respectively. We then stacked the outputs and fed them into the feature embedding component as 
Taxi3D does. 
2. Taxi3D-lstm: In this variant, we fed the output of the multi-task spatiotemporal feature 
extraction component into the LSTM for predicting. 
3. Taxi3D-na: Taxi3D without attention-based LSTM; we simply reshaped the output of Figure 2(a) 
and stacked them into tensor, which was taken as the input of 3D ResNet. 
4. Taxi3D-nr: We used a 4-layers 3D CNN instead of 3D ResNet in feature embedding component. 
5. Taxi3D-ne: This variant removes the external factors component. 

5.4. Evaluation Metric 

We evaluated our method by root mean square error (RMSE) as: 

 2
i i

i

1 ˆRMSE (x x )
Z

= −  (22)

where x̂ is the predict value, x  is the real value, and Z  is numbers of all predicted values. 

5.5. Tuning Hyperparameters 

Tuning closeness, period and trend. In this section, we verify the effect of the length of 
closeness, period and trend, that is, cD , pD  and tD . Note that we fixed K 3=  and L 3= . In the 
first place, we set pD 1=  and tD 1= , and tuned cD . As shown in Figure 5, we saw RMSE first 
decrease, then reach the minimum value when cD 3= , and finally increase. Thus, we set cD 3= . In 
the second place, we fixed cD 3= , tD 1=  and started to tune pD . Figure 5 illustrates the results, 
when pD  started with 1, RMSE gradually decreased and reached the lowest point at 3, then started 
to gradually increase. Thus, we determined pD  as 3. After fixing cD 3= , pD 3= , we aimed to tune 

tD . When tD 1= , we got the minimum RMSE. From this, we saw that the time interval closest to the 
predicted time interval had the most significant influence on the result. Meanwhile, demand 
situations at the same time yesterday and last week were also slightly helpful to enhance 
performance. However, the less data, the faster the computation, and we needed to make a trade-off 
between efficiency and accuracy. 

Tuning the number of layers of 3D CNN. The role of 3D CNN in the multi-task spatiotemporal 
feature extraction component is to capture spatiotemporal correlation. In this section, we compare 
the model effects of 3D CNN with different layers. As we can see from Figure 6, when K  was 
between 2 to 3, RMSE decreased. When K 3= , RMSE reached the minimum value, and then 
increased with the increase of K . Thus, we set K 3=  in this study. 

 

Figure 5. Tuning the length of closeness, period and trend. 

Tuning the number of stacked 3D ResNet. We utilized 3D ResNet to capture the correlation 
between taxi pick-up and taxi drop-off. We here verify the impact of number of layers of 3D ResNet. 
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As shown in Figure 6, we observed that when L 3= , the model showed the best performance. One 
possible reason is that, limited by the amount of data, it is not that the deeper the network, the more 
it learns. Our 3D ResNet does not require very deep networks. 

 

Figure 6. Tuning the number of layers. 

5.6. Model Comparsion 

First, we aimed to compare our model with the baselines from the perspective of RMSE. The 
results are shown in Table 1. We can see that our model achieved the lowest RMSE among all the 
models. To be specific, MLP performed poorly (i.e., RMSE was 4.81, 5.48, and 5.31, respectively), as 
the method did not take spatiotemporal correlations into account. HA, ARIMA, and LSTM 
considered temporal correlation and achieved better results. As a powerful boosting tree-based 
model, XGBoost presented good performance, but this method also does not deal with spatial 
correlation. The good performance of ST-ResNet shows the effectiveness of the method combined 
with spatiotemporal information. However, this method separates the correlation between temporal 
correlation and spatial correlation. In a nutshell, the RMSE of our model was 3.33, which achieves 
relatively 5.93% up to 37.29% lower RMSE than other baselines. 

Table 1. Performance comparison among different methods. 

Method 
RMSE 

pick-up drop-off all 
MLP 4.81 5.48 5.31 
HA 3.88 4.32 4.11 

ARIMA 4.09 4.15 4.13 
XGBoost 3.58 3.85 3.84 

LSTM 3.76 4.19 4.00 
ST-ResNet 3.54 3.72 3.54 

Taxi3D 3.24 3.43 3.33 
Taxi3D-single 3.36 3.71 3.54 
Taxi3D-lstm 3.53 4.05 3.80 
Taxi3D-na 3.30 3.69 3.50 
Taxi3D-nr 3.38 3.77 3.58 
Taxi3D-ne 3.30 3.60 3.45 

5.7. Variants Comparsion 
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To evaluate the importance of each component of the proposed model, in this section, we 
decompose Taxi3D into various variants and conduct comparison experiments. The results are 
presented in Figure 7. 

 

Figure 7. Performance comparison among different variants. 

Effectiveness of MTL. Instead of extracting spatiotemporal features in the same network, we 
designed two identical but independent 3D CNN in Taxi3D-single, which means the increase in the 
number of parameters and the decrease of computational efficiency. We observed that multi-task 
learning accordingly improves model performance by 3.7%, 8.2%, and 5.9% in two related tasks and 
all data, compared with RMSE 3.36, 3.71 and 3.54 obtained by Taxi3D-single. 

One potential reason is that the tasks of predicting taxi demand for pick-up and drop-off are 
related, and we can extract common spatiotemporal features from them by sharing information. In 
fact, deep learning models require millions of data points to train; limited by data and computing 
power, many applications cannot satisfy this requirement. Thus, we may take advantage of useful 
information from other related tasks to assist in the training of our model. In our study, the multi-
task learning component is equivalent to increasing the amount of training data and sharing useful 
information at the same time. As a result, Taxi3D achieved better performance than Taxi3D-single. 

Effectiveness of Feature Embedding Component. As previously mentioned, feature vectors 
extracted by the MTL component can be viewed as time series. Thus, we retained the MTL component 
and replaced other parts with LSTM, that is, Taxi3D-lstm. The results indicate that the performance 
of the model decreased significantly. 

The role of the MTL component is to extract temporal and spatial features without separating 
temporal correlation and spatial correlation. The six vectors generated by the MTL component are 
the spatiotemporal features of taxi pick-up and taxi drop-off in the three time periods of closeness, 
period and trend, respectively. Despite treating these vectors as time series having limited effect, the 
information contained in the spatiotemporal features still needs to be further processed. Also, this 
variant does not capture the correlation between taxi demand for pick-up and drop-off, which may 
interact with each other. 

Effectiveness of Attention-based LSTM. Due to the above reasons, we then used 3D ResNet to 
further process the spatiotemporal features; that is, adding 3D ResNet to the back of the MTL 
component instead of LSTM. The results showed that the performance improvement of Taxi3D-na is 
limited compared with Taxi3D-LSTM. Concretely, compare with the RMSE of 3.53, 4.05 and 3.8 
obtained by Taxi3D-LSTM, Taxi3D-na accordingly improved performance by 6.5%, 8.9%, and 7.9% 
in two related tasks and all data. 

The possible reason is that although Taxi3D-na captured correlation between pick-up and drop-
off, the method which simply stacked spatiotemporal features may be questionable. Technically, the 
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LSTM is a master of processing time series. The attention mechanism mimics the way people focus 
on critical information while ignoring the rest. Thus we combined LSTM and attention mechanism 
to fuse spatiotemporal features of historical demands, which is equivalent to feature embedding. 
Among them, the LSTM captures the temporal correlation, and the attention mechanism assigns 
weights to the six spatiotemporal features when generating the new representations of historical data. 

Effectiveness of 3D ResNet. We then compared Taxi3D-nr with Taxi3D, in which the former 
replaces the 3D-ResNet with plain 3D CNN. Even though we used attention-based LSTM to fuse the 
spatiotemporal feature, plain 3D CNN may not capture spatial and temporal correlation well, and 
the RMSE of Taxi3D-nr was 4.1%, 5% and 7% than that of 3.24, 3.43 and 3.33 obtained by Taxi3D, 
respectively. 

With the increase of the layers of neural networks, there may be obstacles, such as information 
loss, gradient vanishing, gradient exploding and so on when the transmitting information, which 
leads to difficulty in training deep networks. Therefore, we utilized ResNet to increase the network 
depth to capture the correlation between pick-up and drop-off. 

Effectiveness of External Factors Component. As illustrated in Figure 7, Taxi3D achieved better 
performance than Taxi3D-ne. The results show that the addition of the external component boosts 
predictive performance. Intuitively, external factors will affect taxi demand, since human behavior 
has a lot to do with the environment. For example, the travel habits of people on weekends and 
holidays may be quite different from the working day, lousy weather increases taxi demands and 
good weather may make walking more enjoyable. 

6. Conclusions and Future Work 

In this paper, we studied the problem of predicting taxi demand for pick-up and drop-off, and 
we proposed a novel deep-learning based model. We evaluated our model on the real taxi demand 
data in Chengdu, and the results showed that RMSE of 3.33 obtained by our model achieved 
relatively 5.93% up to 37.29% lower RMSE than other baselines. The main contribution of this paper 
was to propose an innovative learning framework to predict taxi demand. In the first level, we 
deemed the demand situation of the urban taxi as a video and utilized 3D CNN combined with MTL 
to extract spatiotemporal features. In the second level, we used attention-based LSTM for feature 
embedding and combined with 3D ResNet to capture the correlation between pick-up and drop-off. 
Then we fused external factors and made the prediction. 

The study concludes that, from the perspective of spatial correlation, the demand for taxis 
between adjacent regions will influence each other. From the standpoint of temporal correlation, taxi 
demand in adjacent periods may affect each other, and the demand at the same time interval is nearly 
similar. In terms of spatiotemporal correlation, they complement each other and should not be 
separated, and taxi pick-up and taxi drop-off will also affect each other. From the citizen's point of 
view, the weather, holidays, and public transport conditions have an impact on taxi demand. 

However, our study still has limitations. In the future, we will consider the following aspects to 
improve prediction accuracy: The first is to improve the predicting performance of hot spots with the 
help of time series anomaly detection algorithms. Hot spots are prone to outliers, which have a 
significant impact on model training and prediction performance. The second is to divide the city 
according to regional semantics, and then predict taxi demand by graph convolutional networks. In 
real life, the interior of a city will likely be irregular rather than square. Also, we will consider 
extending our model to multi-step prediction. 
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