
remote sensing

Article

Predicting Taxi Demand Based on 3D Convolutional
Neural Network and Multi-task Learning

Li Kuang 1 , Xuejin Yan 1 , Xianhan Tan 1, Shuqi Li 1 and Xiaoxian Yang 2,*
1 School of Computer Science and Engineering, Central South University, Changsha 410075, China;

kuangli@csu.edu.cn (L.K.); mr.yxj@csu.edu.cn (X.Y.); txhts1606@csu.edu.cn (X.T.); lishuqi@csu.edu.cn (S.L.)
2 School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China
* Correspondence: xxyang@sspu.edu.cn

Received: 20 April 2019; Accepted: 25 May 2019; Published: 28 May 2019
����������
�������

Abstract: Taxi demand can be divided into pick-up demand and drop-off demand, which are firmly
related to human’s travel habits. Accurately predicting taxi demand is of great significance to
passengers, drivers, ride-hailing platforms and urban managers. Most of the existing studies only
forecast the taxi demand for pick-up and separate the interaction between spatial correlation and
temporal correlation. In this paper, we first analyze the historical data and select three highly relevant
parts for each time interval, namely closeness, period and trend. We then construct a multi-task
learning component and extract the common spatiotemporal feature by treating the taxi pick-up
prediction task and drop-off prediction task as two related tasks. With the aim of fusing spatiotemporal
features of historical data, we conduct feature embedding by attention-based long short-term memory
(LSTM) and capture the correlation between taxi pick-up and drop-off with 3D ResNet. Finally, we
combine external factors to simultaneously predict the taxi demand for pick-up and drop-off in the
next time interval. Experiments conducted on real datasets in Chengdu present the effectiveness of
the proposed method and show better performance in comparison with state-of-the-art models.

Keywords: taxi demand prediction; deep learning; spatiotemporal data; convolutional neural
network; multi-task learning

1. Introduction

The transportation system is to the city as the blood tissue is to the human body, and it is the
key to urban construction. In the future, it will play an essential role in the construction of smart
cities. With the development of Didi Chuxing and Uber, online car-hailing has become a travel habit
of people. Therefore, extensive data on taxi demand have been collected for research. Accurate taxi
demand forecast can help passengers avoid hot spots reasonably and save waiting time. It also can
help drivers choose hot spots rationally and make a better balance between benefits and efficiency.
For the online car-hailing platform, they can plan better and pre-allocate resources to maximize the
benefits. For city managers, it can provide reference suggestions for infrastructure construction and
traffic planning. Therefore, how to accurately predict future taxi demand in various regions of the city
based on historical data has become a hot area of research.

In literature, traffic data prediction problem has been widely studied in the past, including traffic
volume, taxi demand and travel time. Time series prediction methods and machine learning methods
are first applied to traffic data prediction; representative algorithms include autoregressive integrated
moving average (ARIMA) and its variants [1–3], and support vector machine (SVM) and its variants,
respectively. However, such methods ignore the spatial correlation of data. In recent years, deep
learning, which has achieved great success in computer vision and natural language process [4], has
been widely used to traffic prediction [5]. Convolution neural network (CNN) and recurrent neural

Remote Sens. 2019, 11, 1265; doi:10.3390/rs11111265 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-4975-034X
https://orcid.org/0000-0001-6759-0867
http://dx.doi.org/10.3390/rs11111265
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/11/1265?type=check_update&version=2

Remote Sens. 2019, 11, 1265 2 of 18

network (RNN) are used to catch temporal correlation [6–8] and spatial correlation [9,10], respectively.
Models combining CNN, RNN and their variants are also widely used in traffic data prediction [11–13];
such methods usually use CNN to extract spatial features first, then use RNN to extract temporal
features and finally make predictions.

However, accurate traffic data prediction still faces three significant challenges:

1. First of all, traffic data are affected by complex spatial–temporal correlation, and there is an
apparent periodicity in traffic data. Traffic states between different regions will affect each other,
and there may be interactions between regions that are far away. Although the models combining
CNN, RNN and their variants have achieved good results, this kind of method separates the
interaction between temporal correlation and spatial correlation.

2. Secondly, there is little work in predicting taxi drop-off demand. If there is a high taxi demand for
drop-off in a particular region at a certain time, the vacancy rate of taxis in this region will be
high, and it will be required for reasonable evacuation. At the same time, the high traffic volume
will be a test for the infrastructure and road conditions of the corresponding region. Therefore,
predicting taxi demand for drop-off can provide advice to taxi drivers and city managers. Besides,
taxi demand for pick-up and drop-off may affect each other, since empty cars may stimulate
people’s desire to take a taxi and increase the number of taxi pick-ups in surrounding areas.

To tackle the above challenges, this paper proposes a method to predict taxi demand for pick-up
and drop-off in various regions of the city based on multi-task learning (MTL) and 3D convolutional
neural networks (3D CNN). In detail, to begin, we first selected highly relevant historical data at each
time interval. Then we treated taxi pick-up demand prediction and taxi drop-off demand prediction as
related tasks. We harnessed the power of MTL and 3D CNN to extract spatiotemporal features without
separating the interaction between temporal correlation and spatial correlation. Secondly, for the
purpose of fusing the extracted features of historical data, we embedded those feature representations
into a tensor by attention-based long short-term memory (LSTM). Next, we regarded the tensor as
a video consisting of frames that represented the demand status within half an hour, and we used
3D ResNet to capture the spatiotemporal correlation and the complex correlation between the taxi
demand for pick-up and drop-off. Finally, we combined external factors to predict taxi demand for
pick-up and drop-off at the same time. We conducted extensive experiments on a real-world dataset.
Our contributions are summarized as follows:

1. We propose to consider the prediction of taxi demand for pick-up and drop-off as related tasks,
and we constructed a feature extraction component based on multi-task learning and 3D CNN to
extract spatiotemporal features concurrently.

2. We propose to deem the demand situation of the urban taxi as a video and use 3D CNN to capture
the spatiotemporal correlation and the complex correlation between taxi demand for pick-up
and drop-off.

3. We combined external factors, such as weather, day of the week and public transport conditions,
to simultaneously predict taxi demand for pick-up and drop-off.

4. We conducted extensive theoretical analysis and experiments on a real-world dataset in Chengdu
and achieved better performance and efficiency than other baselines.

The rest of the paper is organized as follows: Section 2 describes the related work of the traffic
data prediction problem. Section 3 provides the problem definition. The method for predicting taxi
demand for pick-up and drop-off is outlined in Section 4. Section 5 gives the experimental verification
designs and results. Section 6 summarizes the whole paper.

2. Related Work

Machine learning has been widely used in various fields, such as recommendation system [14,15],
service computing [16–21], prediction problem [22–25], edge computing [26,27], and so on. In recent

Remote Sens. 2019, 11, 1265 3 of 18

years, deep learning has been widely used in many research fields with great success in the fields of
computer vision and natural language processing [28–30]. Taking the speech recognition field as an
example, according to Padmanabhan et al. [31], Hidden Markov Model (HMM), Gaussian Mixture
Models (GMM), SVM, and Artificial neural network (ANN) have been applied in this field and achieved
limited performance. Deep learning is also widely used in speech recognition [32,33], and by contrast,
allows end-to-end learning and achieves better performance.

In addition, many areas use multi-task learning to improve the performance of the applications.
Zhang et al. [34] proposed to classify multi-task supervised learning as two categories according to
what to share. One is the feature-based MTL, where different tasks share a feature representation, and
the other is the parameter-based MTL, where model parameters relate to different tasks. The former is
further categorized into the feature transformation approach, the feature selection approach, and the
deep-learning approach according to the approach of sharing features.

The traffic data prediction problem, comprised of traffic volume, traffic speed, travel time and
taxi demand (our problem), has attracted the attention of many researchers; these approaches can be
divided into two groups: traditional approaches and deep learning approaches.

2.1. Traditional Approach

Time series algorithms are first introduced into predicting traffic data in an ARIMA-like model.
Hamed et al. [35] developed an ARIMA model to predict the traffic volume on urban arterials. From
here on, to improve prediction performance, researchers applied many variants of ARIMA for traffic
prediction [36,37].

On the other hand, machine learning algorithms are also widely used in this filed. Wu et al. [38]
applied support vector regression for travel-time prediction, Zheng et al. [39] used a Bayesian model
combined neural network for short-term freeway traffic flow prediction. Kuang et al. [40] proposed a
two-level model, which combines a cost-sensitive Bayesian network and a weighted K-nearest neighbor
model to predict the duration of traffic accidents. k-NN models are also widely applied in predicting
traffic speeds and volume due to its simple nature [41,42].

These methods focus on the temporal correlation of traffic data, while neglecting its spatial
correlation. However, the traffic conditions in the current region are affected not only by the
adjacent region but also by regions farther away. For example, a traffic incident occurring in the
intersection may render roads impassable, resulting in a dramatic increase in traffic volume at a remote
transportation hub.

2.2. Deep Learning Approach

In recent years, deep learning methods have been widely used by many researchers in predicting
traffic data. CNN has proved effective on extracting features from images. Thus, by treating the traffic
condition of the entire city as an image, many researchers naturally started to employ CNN in traffic
data prediction. Ma et al. [6] divided the city into many tiny grids, converting city traffic speed into
images and use CNN for predicting traffic speed. Zhang et al. [7] employed CNN modeling temporal
dependent (temporal closeness, period and seasonal trend) and spatial dependent for predicting traffic
flow, rent/return of bikes and traffic flow. Later, Zhang et al. [8] used a residual neural network, a
parametric-matrix-based fusion mechanism, and external information to improve the performance
in predicting crowd flows. These studies focus more on the spatial correlation of traffic data. On the
contrary, for modeling temporal correlation, they simply fusion features extracted by CNN through
neural networks, which does not utilize temporal correlation sufficiently.

On the other hand, the success of RNN and its variants, that is, long short-term memory (LSTM)
and gated recurrent units (GRU), in sequential learning tasks [43] has led many researchers to predict
traffic data based on them. Zhao et al. [9] proposed using cascaded LSTM, where lateral dimension
indicates the changes in the time domain and the vertical dimension indicates different observation
points’ indexes, combined with an origin–destination correlation matrix to capture spatial–temporal

Remote Sens. 2019, 11, 1265 4 of 18

correlation for predicting traffic flow. Xu et al. [10] applied LSTM and mixture density network
to predict taxi demand in the city of New York. The model first predicts the entire probability
distribution of taxi demands, then uses this probability distribution to decide taxi demand for each
area. These studies focus more on capturing temporal correlation. However, they do not use spatial
correlation sufficiently.

With the purpose of making full use of spatiotemporal correlation, many researchers combined
CNN and RNN for predicting traffic data. Wu et al. [11] treated roads as a vector, which fed into 1D
CNN to capture spatial correlation of traffic flow, and then used two LSTM to mine the short-term
variability and periodicities of traffic flow. Yu et al. [12] proposed to apply deep CNN to extract spatial
features which then fed to stacked LSTM for predicting large-scale transportation network traffic.
Yao et al. [13] believed that applying CNN to the image of the entire city hurts prediction accuracy;
for this reason, they utilized local CNN to capture spatial correlation and introduced a semantic view
combined with LSTM to predict taxi demand. Although spatiotemporal correlation is taken into
consideration in both instances, these studies separate the interaction between temporal correlation
and spatial correlation.

In summary, previous studies separate the interaction between temporal correlation and spatial
correlation, few studies predict taxi drop-off demand, and none of these studies take the interaction
between taxi pick-up and taxi drop-off into consideration.

3. Preliminary

Definition 1 (Trip). We defined a trip as a tuple (id,tpick,locationpick,tdrop,locationdrop), where id is the trip
identification number, tpick is the pick-up time, locationpick represents the pick-up location, tdrop is the drop-off
time, locationdrop represents the drop-off location.

Definition 2 (Region Partition). In the spatial view, we followed previous studies [44]. As shown in Figure 1a,
let point A be the lowest left corner of the rectangle represented by the coordinates PA(lngA, latA), and let point
B be the top right corner of the rectangle represented by the coordinates PB(lngB, latB). We partitioned the whole
city into I × J equal grids. We used λlat and λlng to represent the length of latitude and longitude of a grid,
respectively. Where

I =
lngB − lngA

λlng
(1)

J =
latB − latA

λlat
(2)

we represented grid grid(i, j) which lies as the ith row and the jth column as

glng
i j ∈

[
λlng × i,λlng × (i + 1)

)
(3)

glat
i j ∈ [λlat × i,λlat × (i + 1)) (4)

where i < I and j < J.

Definition 3 (Pick-up/Drop-off Demand). Following previous studies [8,44], for a certain grid(i, j), the
taxi pick-up and taxi drop-off demand at the time interval [Tk, Tk+1) were defined respectively as

ypick,i, j
k =

∣∣∣∣{trip
∣∣∣tpick ∈ [Tk, Tk+1)∧ locationpick ∈ gi j

}∣∣∣∣ (5)

ydrop,i, j
k =

∣∣∣∣{trip
∣∣∣tdrop ∈ [Tk, Tk+1)∧ locationdrop ∈ gi j

}∣∣∣∣ (6)

At the time interval [Tk, Tk+1), demands in all regions were denoted as a tensor Yk ∈ R2×I×J where
(Yk)0,i, j = ypick, i, j

k and (Yk)1,i, j = ydrop, i, j
k .

Remote Sens. 2019, 11, 1265 5 of 18

Problem 1: Given λlat, λlng, λt and the historical demand tensors {Yk|k = 0, 1, . . . , n− 1}, predict Yn.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 19

area. These studies focus more on capturing temporal correlation. However, they do not use spatial
correlation sufficiently.

With the purpose of making full use of spatiotemporal correlation, many researchers combined
CNN and RNN for predicting traffic data. Wu et al. [11] treated roads as a vector, which fed into 1D
CNN to capture spatial correlation of traffic flow, and then used two LSTM to mine the short-term
variability and periodicities of traffic flow. Yu et al. [12] proposed to apply deep CNN to extract
spatial features which then fed to stacked LSTM for predicting large-scale transportation network
traffic. Yao et al. [13] believed that applying CNN to the image of the entire city hurts prediction
accuracy; for this reason, they utilized local CNN to capture spatial correlation and introduced a
semantic view combined with LSTM to predict taxi demand. Although spatiotemporal correlation is
taken into consideration in both instances, these studies separate the interaction between temporal
correlation and spatial correlation.

In summary, previous studies separate the interaction between temporal correlation and spatial
correlation, few studies predict taxi drop-off demand, and none of these studies take the interaction
between taxi pick-up and taxi drop-off into consideration.

3. Preliminary

Definition 1 (Trip). We defined a trip as a tuple pick pick drop drop(id,t ,location ,t ,location) , where id is the
trip identification number, pickt is the pick-up time, picklocation represents the pick-up location, dropt is
the drop-off time, droplocation represents the drop-off location.
Definition 2 (Region Partition). In the spatial view, we followed previous studies [44]. As shown in
Figure 1(a), let point A be the lowest left corner of the rectangle represented by the coordinates

A A AP (lng ,lat) , and let point B be the top right corner of the rectangle represented by the coordinates
B B BP (lng ,lat) . We partitioned the whole city into I J× equal grids. We used latλ and lngλ to represent

the length of latitude and longitude of a grid, respectively. Where

 B A

lng

lng lng
I

λ
−

= (1)

 B A

lat

lat lat
J

λ
−

= (2)

we represented grid ()grid i, j which lies as the thi row and the thj column as

 ())lng
ij lng lngg λ i ,λ i 1∈ × × + (3)

 ())lat
ij lat latg λ i ,λ i 1∈ × × + (4)

where i I< and j J< .

(a)

(b)

Figure 1. Regions in Chengdu: (a) Partition in spatial view; (b) partition in temporal view.

4. Method

Figure 2 presents the framework of our proposed model Taxi3D. We first selected parts of
historical data, which are highly relevant to the future demand situation. Secondly, we extracted
common spatiotemporal features by MTL-based 3D CNN from two related tasks, that is, a taxi pick-up
prediction task and a taxi drop-off prediction task. Later, we used attention-based LSTM embedding
spatiotemporal features into a tensor which fed into the 3D ResNet and transformed into a vector.
Meanwhile, external information, such as meteorological features, was also encoded into vectors.
Finally, we concatenated the above two vectors and simultaneously predicted taxi demand for pick-up
and drop-off in the next interval.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 19

Figure 1. Regions in Chengdu: (a) Partition in spatial view; (b) partition in temporal view.

Definition 3 (Pick-up/Drop-off Demand) Following previous studies [8,44], for a certain grid(i , j) ,
the taxi pick-up and taxi drop-off demand at the time interval k k 1[T ,T)+ were defined respectively
as

 { }pick ,i ,j
k pick k k+1 pick ijy trip|t [T ,T) location g= ∈ ∧ ∈ (5)

 { }drop,i ,j
k drop k k+1 drop ijy trip|t [T ,T) location g= ∈ ∧ ∈ (6)

At the time interval k k 1[T ,T)+ , demands in all regions were denoted as a tensor k ∈Y 2 I J× ×
where pick , i ,j

k 0 ,i ,j k() y=Y and drop, i ,j
k 1,i ,j k() y=Y .

Problem 1: Given latλ , lngλ , tλ and the historical demand tensors { }k |k 0,1, ,n 1= … −Y , predict nY .

4. Method

Figure 2 presents the framework of our proposed model Taxi3D. We first selected parts of
historical data, which are highly relevant to the future demand situation. Secondly, we extracted
common spatiotemporal features by MTL-based 3D CNN from two related tasks, that is, a taxi pick-
up prediction task and a taxi drop-off prediction task. Later, we used attention-based LSTM
embedding spatiotemporal features into a tensor which fed into the 3D ResNet and transformed into
a vector. Meanwhile, external information, such as meteorological features, was also encoded into
vectors. Finally, we concatenated the above two vectors and simultaneously predicted taxi demand
for pick-up and drop-off in the next interval.

Figure 2. Architecture of the proposed model Taxi3D.

Accordingly, our model is composed of four major components, which as follows: 1) Multi-task
spatiotemporal feature extraction component, in which we capture spatiotemporal correlations. 2)
Feature embedding component. In this module, we fused spatiotemporal features into a tensor, then
captured correlations between taxi pick-up and taxi drop-off and obtained the representation vector

tg . 3) External factors component, where external information (e.g., weather condition, holidays, etc.)
were encoded into representation te . 4) Prediction component. We combined tg and te to predict
future demand.

Figure 2. Architecture of the proposed model Taxi3D.

Accordingly, our model is composed of four major components, which as follows: (1) Multi-task
spatiotemporal feature extraction component, in which we capture spatiotemporal correlations. (2) Feature
embedding component. In this module, we fused spatiotemporal features into a tensor, then captured

Remote Sens. 2019, 11, 1265 6 of 18

correlations between taxi pick-up and taxi drop-off and obtained the representation vector gt. (3) External
factors component, where external information (e.g., weather condition, holidays, etc.) were encoded into
representation et. (4) Prediction component. We combined gt and et to predict future demand.

In this section, we detailed our proposed method by a running example. The historical demand
data inputted into our model are defined as a C×D×W ×H four-dimensional tensor:

1. C is the category of data, that is, 0 for taxi pick-up data and 1 taxi drop-off data.
2. D is the depth of data.
3. W is the number of grid columns.
4. H is the number of grid rows.

For example, at time interval t, we may concatenate Yt−4, Yt−3, Yt−2, Yt−1 as the input tensor
(C, D, W, H) = (0, 4, 16, 16) of the model.

4.1. Partition of Historical Data

As shown in Figure 3, the demand in different areas presents a repetitive pattern; for example, the
demand pattern of Friday in Figure 3c is similar to that of Thursday and last Friday. With spatiotemporal
domain knowledge, we can effectively select this higher-dependent timestamps to reduce input size.
To the best of our knowledge, a time series always has one, or two, or all of the following temporal
properties: (1) Temporal closeness; (2) period; (3) trend [7]. In view of the fact that taxi demand not
only exhibits an evident periodicity but is also affected by an adjacent time interval, we separately
divided previous taxi pick-up data and taxi drop-off data into three parts: closeness, period and trend,
which represents the near past, the same time yesterday and the same time last week respectively.

For example, at each time interval t, we split input tensor (C, D, W, H) into 6 parts: (0, Dc, W, H),
(0, Dp, W, H), (0, Dt, W, H), (1, Dc, W, H), (1, Dp, W, H) and (1, Dt, W, H), where Dc, Dp and Dt represents
closeness, period and trend respectively, and Dc + Dp + Dt = D.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 19

In this section, we detailed our proposed method by a running example. The historical demand
data inputted into our model are defined as a C D W H× × × four-dimensional tensor:
1. C is the category of data, that is, 0 for taxi pick-up data and 1 taxi drop-off data.
2. D is the depth of data.
3. W is the number of grid columns.
4. H is the number of grid rows.

For example, at time interval t , we may concatenate t 4 t 3 t 2 t 1, , ,− − − −Y Y Y Y as the input tensor
(C,D,W ,H) (0,4,16,16)= of the model.

4.1. Partition of Historical Data

As shown in Figure 3, the demand in different areas presents a repetitive pattern; for example,
the demand pattern of Friday in Figure 3c is similar to that of Thursday and last Friday. With
spatiotemporal domain knowledge, we can effectively select this higher-dependent timestamps to
reduce input size. To the best of our knowledge, a time series always has one, or two, or all of the
following temporal properties: 1) Temporal closeness; 2) period; 3) trend [7]. In view of the fact that
taxi demand not only exhibits an evident periodicity but is also affected by an adjacent time interval,
we separately divided previous taxi pick-up data and taxi drop-off data into three parts: closeness,
period and trend, which represents the near past, the same time yesterday and the same time last
week respectively.

(a)

(b)

Figure 3. Cont.

Remote Sens. 2019, 11, 1265 7 of 18
Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 19

(c)

Figure 3. The demand in three distinct areas of Chengdu. All data has been normalized: a) Grid (1, 2)
is near schools, residential; b) grid (11,3) is near a university and shopping malls; c) grid (3, 2) is near
office buildings, shopping malls

For example, at each time interval t , we split input tensor (C,D,W ,H) into 6 parts: c(0,D ,W ,H)
, p(0,D ,W ,H) , t(0,D ,W,H) , c(1,D ,W,H) , p(1,D ,W ,H) and t(1,D ,W,H) , where cD , pD and tD
represents closeness, period and trend respectively, and c p tD D D D+ + = .

4.2. Multi-Task Spatiotemporal Feature Extraction Component

Figure 3 shows the number of taxi demands in three distinct regions in Chengdu from November
5, 2016, to November 18, 2016. Analyzing this data indicates that taxi pick-up demands and taxi drop-
off demands were basically positively correlation; that is, when the demand for taxi pick-up was high,
the demand for drop-off was also high, and vice versa. To capture such regularities, we conducted
MLT in extracting features from historical data. In short, by sharing representations between related
tasks, MTL can enable our model to learn several tasks at the same time with better generalization
performance.

To be specific, in this study, two related tasks, taxi pick-up demand prediction and taxi drop-off
demand prediction, were trained together. Different from previous studies, at each time interval t ,
we firstly extracted features from taxi pick-up data (0,D,W ,H) and then used the same network
extracts features from taxi drop-off data (1,D,W ,H) . Therefore, we got shared information in the
feature extraction stage.

Furthermore, taxi demand in adjacent areas will also affect each other. Hence, the problem of
predicting future taxi demand based on historical demand has some common ground with the
problem of video generation, in which every frame and some pixels will affect each other. Motivated
by the success of 3D CNN in human action recognition [45] and video analysis [46], we conducted
feature extraction by 3D CNN.

The hidden layers of a CNN typically contain a series of convolutional layers and pooling layers.
LeCun et al. [4] argue that the role of the convolutional layer is to extract features from data at
different levels. With the interactions between layers, high-level features are obtained in the higher
layers by composing low-level ones extracted in the lower layers. Yosinski et al. [47] visualized an
eight-layer CNN, and the results showed that the lower layers could detect edges, corners, etc., while
the higher layers could detect faces, handles, bottles, etc. As for the pooling layer, its function is to
reduce spatial dimensions of the feature map, reducing the amount of parameters and computation,
and thus control overfitting.

In our study, we constructed a K-layers 3D CNN to obtain complex spatiotemporal features.
Among them, in the first K-1 layers, we used zero-padding to input tensor in the convolution
operation. Zero-padding, on the one hand, ensures that the edges of the tensor are covered many
times in the convolution operation, and on the other hand keeps the size of the feature map

Figure 3. The demand in three distinct areas of Chengdu. All data has been normalized: (a) Grid (1, 2)
is near schools, residential; (b) grid (11,3) is near a university and shopping malls; (c) grid (3, 2) is near
office buildings, shopping malls.

4.2. Multi-Task Spatiotemporal Feature Extraction Component

Figure 3 shows the number of taxi demands in three distinct regions in Chengdu from 5 November
2016, to 18 November 2016. Analyzing this data indicates that taxi pick-up demands and taxi drop-off

demands were basically positively correlation; that is, when the demand for taxi pick-up was high, the
demand for drop-off was also high, and vice versa. To capture such regularities, we conducted MLT in
extracting features from historical data. In short, by sharing representations between related tasks, MTL
can enable our model to learn several tasks at the same time with better generalization performance.

To be specific, in this study, two related tasks, taxi pick-up demand prediction and taxi drop-off

demand prediction, were trained together. Different from previous studies, at each time interval t, we
firstly extracted features from taxi pick-up data (0, D, W, H) and then used the same network extracts
features from taxi drop-off data (1, D, W, H). Therefore, we got shared information in the feature
extraction stage.

Furthermore, taxi demand in adjacent areas will also affect each other. Hence, the problem of
predicting future taxi demand based on historical demand has some common ground with the problem
of video generation, in which every frame and some pixels will affect each other. Motivated by the
success of 3D CNN in human action recognition [45] and video analysis [46], we conducted feature
extraction by 3D CNN.

The hidden layers of a CNN typically contain a series of convolutional layers and pooling layers.
LeCun et al. [4] argue that the role of the convolutional layer is to extract features from data at different
levels. With the interactions between layers, high-level features are obtained in the higher layers by
composing low-level ones extracted in the lower layers. Yosinski et al. [47] visualized an eight-layer
CNN, and the results showed that the lower layers could detect edges, corners, etc., while the higher
layers could detect faces, handles, bottles, etc. As for the pooling layer, its function is to reduce
spatial dimensions of the feature map, reducing the amount of parameters and computation, and thus
control overfitting.

In our study, we constructed a K-layers 3D CNN to obtain complex spatiotemporal features.
Among them, in the first K-1 layers, we used zero-padding to input tensor in the convolution operation.
Zero-padding, on the one hand, ensures that the edges of the tensor are covered many times in
the convolution operation, and on the other hand keeps the size of the feature map unchanged in
convolution operation to fully capture the interaction between each area in the whole city. Besides,
two areas in a city far away from each other may be connected by metro, thus making the demand
patterns of the two places relevant. Therefore, we introduced dilated convolution and increased the
stride size of convolution in the last layer, which not only reduces the size of the feature map, but also
captures the remote dependence.

Remote Sens. 2019, 11, 1265 8 of 18

From a global perspective, we constructed three K-layers 3D CNN based on MTL to extract
features from closeness, period and trend, respectively. Concretely, as illustrated in Figure 4a, we take
trends as an example, in order to capture patterns in historical data. The constructed K-layers 3D CNN
which successively took (0, D, W, H) and (1, D, W, H) as input tensors, and followed by convolution as:

X(l) = f (W(l)
∗X(l−1) + b(l)) (7)

where ∗ denotes the convolutional operation; f (·) is a batch normalization operation [48] followed by
an activation function, that is, f (z) = max(0, BN(z)); W(l) and b(l) are learnable parameters in layer l;
and X(0) is (0, Dt, W, H) or (1, Dt, W, H).

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 19

unchanged in convolution operation to fully capture the interaction between each area in the whole
city. Besides, two areas in a city far away from each other may be connected by metro, thus making
the demand patterns of the two places relevant. Therefore, we introduced dilated convolution and
increased the stride size of convolution in the last layer, which not only reduces the size of the feature
map, but also captures the remote dependence.

From a global perspective, we constructed three K-layers 3D CNN based on MTL to extract
features from closeness, period and trend, respectively. Concretely, as illustrated in Figure 4(a), we
take trends as an example, in order to capture patterns in historical data. The constructed K-layers
3D CNN which successively took (0,D,W ,H) and (1,D,W ,H) as input tensors, and followed by
convolution as:

 (l) (l) (l 1) (l)X f (W X b)−= ∗ + (7)

where ∗ denotes the convolutional operation; f ()⋅ is a batch normalization operation[48] followed
by an activation function, that is, f (z) max(0,BN(z))= ;

(l)

W and
(l)

b are learnable parameters in layer
l ; and (0)X is t(0,D ,W ,H) or t(1,D ,W,H) .

(a)

(b)

Figure 4. 3D convolution and 3D Residual Unit: (a) 3D convolution; (b) 3D Residual Unit

4.3. Feature Embedding Component

Based on the 3D CNN, we got six feature tensors which can be view as time series. To fusion the
features of three parts of historical data, we proposed using long short-term memory (LSTM) based
on attention mechanism to encoding feature tensors into another tensor. LSTM [49] is a type of
recurrent neural network architecture, which is good at processing time series. It was proposed to
address the problem of gradient vanishing or exploding of classic Recurrent Neural Network (RNN).

As shown in Figure 2, in each time interval t , the output tx of 3D CNN was taken as the input
of LSTM after flattening. The peculiar thing about LSTM is that it has a memory cell and three gates,
that is, a forget gate, an input gate, and an output gate. Specifically, the function of the memory cell
is to store information, the forget gate decides what information is going to throw from the cell, the
input gate determines what information will be added to the cell, and the output gate controls what
information is sent to next time interval. In detail, at time interval t , the input tx and output vector

−t 1h at the previous interval are first sent into the forget gate to obtain the forget gate's activation

Figure 4. 3D convolution and 3D Residual Unit: (a) 3D convolution; (b) 3D Residual Unit.

4.3. Feature Embedding Component

Based on the 3D CNN, we got six feature tensors which can be view as time series. To fusion the
features of three parts of historical data, we proposed using long short-term memory (LSTM) based on
attention mechanism to encoding feature tensors into another tensor. LSTM [49] is a type of recurrent
neural network architecture, which is good at processing time series. It was proposed to address the
problem of gradient vanishing or exploding of classic Recurrent Neural Network (RNN).

As shown in Figure 2, in each time interval t, the output xt of 3D CNN was taken as the input of
LSTM after flattening. The peculiar thing about LSTM is that it has a memory cell and three gates,
that is, a forget gate, an input gate, and an output gate. Specifically, the function of the memory cell
is to store information, the forget gate decides what information is going to throw from the cell, the
input gate determines what information will be added to the cell, and the output gate controls what
information is sent to next time interval. In detail, at time interval t, the input xt and output vector ht−1

at the previous interval are first sent into the forget gate to obtain the forget gate’s activation vector
f orgett. Next, the input gate combines xt and ht−1 to calculate its activation vector inputt. Then we
can update memory cell into cellt according to the above all activation vectors and the memory cell
state vector cellt−1 at previous time interval. Afterward, xt and ht−1 are used to obtain the output gate’s
activation vector outputt Finally, we can get the output vector ht at this time interval through outputt

and cellt. Formally, the updating equations for LSTM are provided below:

f orgett = σ(W f xt + U f ht−1 + b f) (8)

Remote Sens. 2019, 11, 1265 9 of 18

inputt = σ(Wixt + Uiht−1 + bi) (9)

cellt = f orgett ◦ cellt−1 + inputt ◦ tanh(Wcxt + Ucht−1 + bc) (10)

outputt = σ(Woxt + Uoht−1 + bo) (11)

ht = outputt ◦ tanh(cellt) (12)

where ◦ is the Hadamard product, tanh(·) is hyperbolic tangent function, and σ(·) is sigmoid function.
Different kernel matrices W and bias b are parameters to be learned.

After the LSTM generated hidden states h1, h2, . . . , h6 from the inputs x1, x2, . . . , x6, in order to
capture the interaction between taxi pick-up and taxi drop-off at different time intervals, we decoded
the six hidden states based on the attention mechanism and generated six new representation vectors.
As illustrated in the dashed box in the middle of Figure 2 for each timestamp t, we first calculated
the extent of importance et,i between each hidden state hi and the previous output st−1 of the decoder
LSTM, then normalized it into αt,i, and finally calculated the weighted sum of hi and αt,i to get contextt

which sent into the next timestamp. The key formula for decoding the hidden state is as follows:

et,i = a(st−1, hi) (13)

αt,i =
exp(et,i)∑Tx

k=1 exp(et,k)
(14)

contextt =

Tx∑
i=1

αt,ihi (15)

where a(·) is a one-dimensional convolutional network that is trained with all the other components of
the proposed system.

We then aimed to capture the correlation between taxi demand for pick-up and drop. In order
to address the issue that the deeper networks are difficult to train, He et al. [50] proposed a residual
learning framework named ResNet. In this study, we captured the aforementioned correlation by 3D
ResNet. Firstly, reshaped the six representation vectors that come from the attention-based LSTM into
matrices, and then stacked them into a tensor X0. Secondly, we took X0 as the input of L stacked 3D
residual units, as shown in Figure 4b, which is defined as follows:

Xl+1 = Xl +F (Xl,θl), l = 1, . . . , L (16)

where F is the 3D residual units, θ is learnable parameter. Finally, we flattened the output of 3D
ResNet into a final representation vector gt ∈ R f .

4.4. External Factors Component

Taxi demand can also be affected by many complex external factors, such as weather, date, region
functions, and regional public transport conditions. Intuitively, taxi demand may be affected by the
weather a lot, with people more inclined to take a taxi when it’s raining, and walking when it’s sunny.
Similarly, the date and time will also affect taxi demand. We may have a fixed travel routes on weekdays
and working hours while having various choices on weekends and holidays. Of equal importance, the
public transportation system will influence travel habits of people due to its convenience and safety.

In this study, there are mainly three types of external data: (1) Numerical data, for example, wind
speed, temperature or humidity; (2) categorical data, for example, day of the week, holiday, or weather;
(3) graph data, for example, metro information. For numerical data, we directly normalized them and
stacked them into a vector en

t ∈ R
en. For categorical data, we conducted one-hot coding for them and

concatenated them into another vector ec
t ∈ R

ec.

Remote Sens. 2019, 11, 1265 10 of 18

As for graph data, we constructed an undirected graph G = (V, E, D), where the set of grids are
nodes V, E ∈ V ×V is the edge set, and D indicates the distance between every two nodes. In this
study, we simply used Manhattan distance to measure the distance between two nodes. Note that if
the two nodes could be directly reached by metro, we set D to 1; if the two nodes could be reached
through a transfer, we set D to 2, and so on. Based on that, the distance between a metro station
and the eight grids surrounding another metro station is set to D + 1. Thus, we ended up with a
fully connected graph, and for all the nodes, the closer to other nodes, the more convenient the traffic
will be. Afterward, we applied Large-scale Information Network Embedding (LINE) algorithm [51]
embedding graph into a vector eg

t ∈ R
eg.

At last, we fused the above vectors into a new vector which then fed into a two-layers
fully-connected neural network, and obtained the representation of external factors et ∈ Re at time
interval t. More specifically, we defined

et = F((Wn
t ◦ en

t) ⊕ (W
c
t ◦ ec

t) ⊕ (W
g
t ◦ eg

t)) (17)

where ◦ is Hadamard product, ⊕ denotes concatenation operator, F(·) is a two-layers fully-connected
neural network, and Wn

t , Wc
t and Wg

t are the learnable parameters.

4.5. Prediction Component

Based on feature encoding and external information encoding, then we aimed to predict the taxi
demand in the next interval. We concatenated the output gt of feature encoding with the output et of
the external information:

qt = gt ⊕ et (18)

where ⊕ denotes concatenation operator, and qt ∈ Rg+e. Then we fed qt to the fully connected network
to get the final prediction value Yn. Formally, the prediction function is provided as below:

Yt = f (Wqt + b) (19)

where W and b are learnable parameters, and f (·) is the ReLU function.
Previous studies mostly take the L2 loss as the loss function, yet the L2 loss is sensitive to outliers;

the gradient of L2 loss is high for larger loss values and vice versa. On the contrary, the L1 loss is
robust to outliers, but its gradient is the same throughout even for small loss values; meanwhile,
discontinuous derivatives would decrease efficiency in problem-solving. Despite taxi demands being
generally stable, outliers still may occur due to various reasons; for example, a sudden rainstorm,
concerts, or public events. Thus, we combined L1 loss and L2 loss to train Taxi3D by minimizing the
Smooth L1 loss [52]. The loss function we used is defined as:

L(θ) =
N∑

i−1

SmoothL1(ŷi
t − yi

t) (20)

in which

SmoothL1 =

{
0.5x2, i f x < 1
|x| − 0.5, others

(21)

where θ denotes all the learnable parameters, N is the numbers of all predicted values.

5. Experiment and Discussion

5.1. Dataset

In this paper, we used a real dataset collected from Didi Chuxing [53]; it consists of five million
taxi trips records in Chengdu from 1 October 2016 to 31 December 2016. The size of the area to be

Remote Sens. 2019, 11, 1265 11 of 18

predicted was about 7.66 km× 7.12 km. There were about 168,362 demands (including pick-up and
drop-off) each day on average. Each row of the original data can be seen as a tuple (order ID, pick-up
time, pick-up longitude, pick-up latitude, drop-off time, drop-off longitude, drop-off latitude), and we
processed the original data with the method mentioned in Section 3 to obtain the final dataset.

The external factors including meteorological features (e.g., weather condition, wind speed),
temporal features (e.g., day of the week, hour of the day, holiday) and spatial features (e.g., public
transport conditions). Taking 10:00 a.m. on 7 October 2016 as an example, we selected the following
features: Sunny, wind speed, temperature, probability of precipitation, humidity, Friday, the 21st time
interval, holiday (Chinese National Day holiday), and metro information.

5.2. Experimental Settings

The data from 1 October 2016 to 18 November 2016 (49 days) was used for training, validation data
was from 19 November 2016 to 23 November 2016 (5 days), and the remaining 7 days of data were used for
testing. In our experiment, we firstly trained our model on training data, and validation data was used to
early-stop our algorithm. Afterward, we continued training our model on the training data and validation
data for a fixed number of epochs. For fair comparison, other methods were also trained like this.

In our experiment, we set time interval to 30 min, that is, λt = 30 min. Limited by the dataset,
we set λlng = 0.005◦ and λlat = 0.004◦, thus, we got 16 × 16 grids for which each grid is about
0.479 km× 0.445 km. All these experiments were run on the server with NVIDIA Tesla K40M. We used
Adam [54] for optimization. We used PyTorch [55] to implement our proposed model.

We set 64 filters of size 3× 3 in all convolutional operation. For the length of closeness, period
and trend, we searched Dc ∈ {2, 3, 4}, Dp ∈ {1, 2, 3} and Dt ∈ {1, 2, 3}. We searched K (the number of
layers of 3D CNN) and L (the number of stacked 3D ResNet) from 2 to 6.

5.3. Baselines

To be fair, we present the best performance of each method. The proposed model and its
variants were trained by multi-task learning. For other baselines, we used taxi pick-up data, taxi
drop-off data and all data for training and prediction. Specifically, we compared our model with the
following baselines:

1. Historical average (HA): By simply averaging the values of previous taxi pick-up and taxi
drop-off demands at the same location and the same time interval, we can get the predicted value.

2. Autoregressive integrated moving average (ARIMA): ARIMA is a well-known model for
predicting times series.

3. XGBoost: XGBoost is a well-known powerful model and is widely used by data scientists to
achieve state-of-the-art results on many machine learning challenges [56].

4. Multiple layer perceptron (MLP): We compared our model with an MLP which consisted of 4
hidden layers. Each layer had 128, 128, 128, and 64 hidden units, respectively.

5. Long Short-Term Memory: LSTM is a special kind of RNN, capable of learning long-term
dependencies, and it is widely used in time series processing.

6. ST-ResNet [8]: ST-ResNet is an end-to-end traffic prediction approach based on deep learning,
which uses the residual network to capture the spatial and temporal characteristics of crowd
traffic, and also combines with external factors.

For fair comparison, all the methods above were implemented with the same equipment and
environment. We also compared the effects of different components of the proposed model.

1. Taxi3D-single: To verify the effectiveness of MTL, in this variant, we designed two independent
networks which extracted spatiotemporal features from taxi pick-up data and drop-off data
respectively. We then stacked the outputs and fed them into the feature embedding component
as Taxi3D does.

Remote Sens. 2019, 11, 1265 12 of 18

2. Taxi3D-lstm: In this variant, we fed the output of the multi-task spatiotemporal feature extraction
component into the LSTM for predicting.

3. Taxi3D-na: Taxi3D without attention-based LSTM; we simply reshaped the output of Figure 2a
and stacked them into tensor, which was taken as the input of 3D ResNet.

4. Taxi3D-nr: We used a 4-layers 3D CNN instead of 3D ResNet in feature embedding component.
5. Taxi3D-ne: This variant removes the external factors component.

5.4. Evaluation Metric

We evaluated our method by root mean square error (RMSE) as:

RMSE =

√
1
Z

∑
i

(xi − x̂i)
2 (22)

where x̂ is the predict value, x is the real value, and Z is numbers of all predicted values.

5.5. Tuning Hyperparameters

Tuning closeness, period and trend. In this section, we verify the effect of the length of closeness,
period and trend, that is, Dc, Dp and Dt. Note that we fixed K = 3 and L = 3. In the first place, we
set Dp = 1 and Dt = 1, and tuned Dc. As shown in Figure 5, we saw RMSE first decrease, then reach
the minimum value when Dc = 3, and finally increase. Thus, we set Dc = 3. In the second place, we
fixed Dc = 3, Dt = 1 and started to tune Dp. Figure 5 illustrates the results, when Dp started with 1,
RMSE gradually decreased and reached the lowest point at 3, then started to gradually increase. Thus,
we determined Dp as 3. After fixing Dc = 3, Dp = 3, we aimed to tune Dt. When Dt = 1, we got the
minimum RMSE. From this, we saw that the time interval closest to the predicted time interval had the
most significant influence on the result. Meanwhile, demand situations at the same time yesterday and
last week were also slightly helpful to enhance performance. However, the less data, the faster the
computation, and we needed to make a trade-off between efficiency and accuracy.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 19

respectively. We then stacked the outputs and fed them into the feature embedding component as
Taxi3D does.
2. Taxi3D-lstm: In this variant, we fed the output of the multi-task spatiotemporal feature
extraction component into the LSTM for predicting.
3. Taxi3D-na: Taxi3D without attention-based LSTM; we simply reshaped the output of Figure 2(a)
and stacked them into tensor, which was taken as the input of 3D ResNet.
4. Taxi3D-nr: We used a 4-layers 3D CNN instead of 3D ResNet in feature embedding component.
5. Taxi3D-ne: This variant removes the external factors component.

5.4. Evaluation Metric

We evaluated our method by root mean square error (RMSE) as:

 2
i i

i

1 ˆRMSE (x x)
Z

= − (22)

where x̂ is the predict value, x is the real value, and Z is numbers of all predicted values.

5.5. Tuning Hyperparameters

Tuning closeness, period and trend. In this section, we verify the effect of the length of
closeness, period and trend, that is, cD , pD and tD . Note that we fixed K 3= and L 3= . In the
first place, we set pD 1= and tD 1= , and tuned cD . As shown in Figure 5, we saw RMSE first
decrease, then reach the minimum value when cD 3= , and finally increase. Thus, we set cD 3= . In
the second place, we fixed cD 3= , tD 1= and started to tune pD . Figure 5 illustrates the results,
when pD started with 1, RMSE gradually decreased and reached the lowest point at 3, then started
to gradually increase. Thus, we determined pD as 3. After fixing cD 3= , pD 3= , we aimed to tune

tD . When tD 1= , we got the minimum RMSE. From this, we saw that the time interval closest to the
predicted time interval had the most significant influence on the result. Meanwhile, demand
situations at the same time yesterday and last week were also slightly helpful to enhance
performance. However, the less data, the faster the computation, and we needed to make a trade-off
between efficiency and accuracy.

Tuning the number of layers of 3D CNN. The role of 3D CNN in the multi-task spatiotemporal
feature extraction component is to capture spatiotemporal correlation. In this section, we compare
the model effects of 3D CNN with different layers. As we can see from Figure 6, when K was
between 2 to 3, RMSE decreased. When K 3= , RMSE reached the minimum value, and then
increased with the increase of K . Thus, we set K 3= in this study.

Figure 5. Tuning the length of closeness, period and trend.

Tuning the number of stacked 3D ResNet. We utilized 3D ResNet to capture the correlation
between taxi pick-up and taxi drop-off. We here verify the impact of number of layers of 3D ResNet.

Figure 5. Tuning the length of closeness, period and trend.

Tuning the number of layers of 3D CNN. The role of 3D CNN in the multi-task spatiotemporal
feature extraction component is to capture spatiotemporal correlation. In this section, we compare the
model effects of 3D CNN with different layers. As we can see from Figure 6, when K was between 2 to
3, RMSE decreased. When K = 3, RMSE reached the minimum value, and then increased with the
increase of K. Thus, we set K = 3 in this study.

Remote Sens. 2019, 11, 1265 13 of 18

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 19

As shown in Figure 6, we observed that when L 3= , the model showed the best performance. One
possible reason is that, limited by the amount of data, it is not that the deeper the network, the more
it learns. Our 3D ResNet does not require very deep networks.

Figure 6. Tuning the number of layers.

5.6. Model Comparsion

First, we aimed to compare our model with the baselines from the perspective of RMSE. The
results are shown in Table 1. We can see that our model achieved the lowest RMSE among all the
models. To be specific, MLP performed poorly (i.e., RMSE was 4.81, 5.48, and 5.31, respectively), as
the method did not take spatiotemporal correlations into account. HA, ARIMA, and LSTM
considered temporal correlation and achieved better results. As a powerful boosting tree-based
model, XGBoost presented good performance, but this method also does not deal with spatial
correlation. The good performance of ST-ResNet shows the effectiveness of the method combined
with spatiotemporal information. However, this method separates the correlation between temporal
correlation and spatial correlation. In a nutshell, the RMSE of our model was 3.33, which achieves
relatively 5.93% up to 37.29% lower RMSE than other baselines.

Table 1. Performance comparison among different methods.

Method
RMSE

pick-up drop-off all
MLP 4.81 5.48 5.31
HA 3.88 4.32 4.11

ARIMA 4.09 4.15 4.13
XGBoost 3.58 3.85 3.84

LSTM 3.76 4.19 4.00
ST-ResNet 3.54 3.72 3.54

Taxi3D 3.24 3.43 3.33
Taxi3D-single 3.36 3.71 3.54
Taxi3D-lstm 3.53 4.05 3.80
Taxi3D-na 3.30 3.69 3.50
Taxi3D-nr 3.38 3.77 3.58
Taxi3D-ne 3.30 3.60 3.45

5.7. Variants Comparsion

Figure 6. Tuning the number of layers.

Tuning the number of stacked 3D ResNet. We utilized 3D ResNet to capture the correlation
between taxi pick-up and taxi drop-off. We here verify the impact of number of layers of 3D ResNet.
As shown in Figure 6, we observed that when L = 3, the model showed the best performance.
One possible reason is that, limited by the amount of data, it is not that the deeper the network, the
more it learns. Our 3D ResNet does not require very deep networks.

5.6. Model Comparsion

First, we aimed to compare our model with the baselines from the perspective of RMSE. The results
are shown in Table 1. We can see that our model achieved the lowest RMSE among all the models.
To be specific, MLP performed poorly (i.e., RMSE was 4.81, 5.48, and 5.31, respectively), as the
method did not take spatiotemporal correlations into account. HA, ARIMA, and LSTM considered
temporal correlation and achieved better results. As a powerful boosting tree-based model, XGBoost
presented good performance, but this method also does not deal with spatial correlation. The good
performance of ST-ResNet shows the effectiveness of the method combined with spatiotemporal
information. However, this method separates the correlation between temporal correlation and spatial
correlation. In a nutshell, the RMSE of our model was 3.33, which achieves relatively 5.93% up to
37.29% lower RMSE than other baselines.

Table 1. Performance comparison among different methods.

Method
RMSE

Pick-up Drop-off All

MLP 4.81 5.48 5.31

HA 3.88 4.32 4.11

ARIMA 4.09 4.15 4.13

XGBoost 3.58 3.85 3.84

LSTM 3.76 4.19 4.00

ST-ResNet 3.54 3.72 3.54

Taxi3D 3.24 3.43 3.33

Taxi3D-single 3.36 3.71 3.54

Taxi3D-lstm 3.53 4.05 3.80

Taxi3D-na 3.30 3.69 3.50

Taxi3D-nr 3.38 3.77 3.58

Taxi3D-ne 3.30 3.60 3.45

Remote Sens. 2019, 11, 1265 14 of 18

5.7. Variants Comparsion

To evaluate the importance of each component of the proposed model, in this section, we
decompose Taxi3D into various variants and conduct comparison experiments. The results are
presented in Figure 7.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 19

To evaluate the importance of each component of the proposed model, in this section, we
decompose Taxi3D into various variants and conduct comparison experiments. The results are
presented in Figure 7.

Figure 7. Performance comparison among different variants.

Effectiveness of MTL. Instead of extracting spatiotemporal features in the same network, we
designed two identical but independent 3D CNN in Taxi3D-single, which means the increase in the
number of parameters and the decrease of computational efficiency. We observed that multi-task
learning accordingly improves model performance by 3.7%, 8.2%, and 5.9% in two related tasks and
all data, compared with RMSE 3.36, 3.71 and 3.54 obtained by Taxi3D-single.

One potential reason is that the tasks of predicting taxi demand for pick-up and drop-off are
related, and we can extract common spatiotemporal features from them by sharing information. In
fact, deep learning models require millions of data points to train; limited by data and computing
power, many applications cannot satisfy this requirement. Thus, we may take advantage of useful
information from other related tasks to assist in the training of our model. In our study, the multi-
task learning component is equivalent to increasing the amount of training data and sharing useful
information at the same time. As a result, Taxi3D achieved better performance than Taxi3D-single.

Effectiveness of Feature Embedding Component. As previously mentioned, feature vectors
extracted by the MTL component can be viewed as time series. Thus, we retained the MTL component
and replaced other parts with LSTM, that is, Taxi3D-lstm. The results indicate that the performance
of the model decreased significantly.

The role of the MTL component is to extract temporal and spatial features without separating
temporal correlation and spatial correlation. The six vectors generated by the MTL component are
the spatiotemporal features of taxi pick-up and taxi drop-off in the three time periods of closeness,
period and trend, respectively. Despite treating these vectors as time series having limited effect, the
information contained in the spatiotemporal features still needs to be further processed. Also, this
variant does not capture the correlation between taxi demand for pick-up and drop-off, which may
interact with each other.

Effectiveness of Attention-based LSTM. Due to the above reasons, we then used 3D ResNet to
further process the spatiotemporal features; that is, adding 3D ResNet to the back of the MTL
component instead of LSTM. The results showed that the performance improvement of Taxi3D-na is
limited compared with Taxi3D-LSTM. Concretely, compare with the RMSE of 3.53, 4.05 and 3.8
obtained by Taxi3D-LSTM, Taxi3D-na accordingly improved performance by 6.5%, 8.9%, and 7.9%
in two related tasks and all data.

The possible reason is that although Taxi3D-na captured correlation between pick-up and drop-
off, the method which simply stacked spatiotemporal features may be questionable. Technically, the

Figure 7. Performance comparison among different variants.

Effectiveness of MTL. Instead of extracting spatiotemporal features in the same network, we
designed two identical but independent 3D CNN in Taxi3D-single, which means the increase in the
number of parameters and the decrease of computational efficiency. We observed that multi-task
learning accordingly improves model performance by 3.7%, 8.2%, and 5.9% in two related tasks and all
data, compared with RMSE 3.36, 3.71 and 3.54 obtained by Taxi3D-single.

One potential reason is that the tasks of predicting taxi demand for pick-up and drop-off are
related, and we can extract common spatiotemporal features from them by sharing information. In fact,
deep learning models require millions of data points to train; limited by data and computing power,
many applications cannot satisfy this requirement. Thus, we may take advantage of useful information
from other related tasks to assist in the training of our model. In our study, the multi-task learning
component is equivalent to increasing the amount of training data and sharing useful information at
the same time. As a result, Taxi3D achieved better performance than Taxi3D-single.

Effectiveness of Feature Embedding Component. As previously mentioned, feature vectors
extracted by the MTL component can be viewed as time series. Thus, we retained the MTL component
and replaced other parts with LSTM, that is, Taxi3D-lstm. The results indicate that the performance of
the model decreased significantly.

The role of the MTL component is to extract temporal and spatial features without separating
temporal correlation and spatial correlation. The six vectors generated by the MTL component are
the spatiotemporal features of taxi pick-up and taxi drop-off in the three time periods of closeness,
period and trend, respectively. Despite treating these vectors as time series having limited effect, the
information contained in the spatiotemporal features still needs to be further processed. Also, this
variant does not capture the correlation between taxi demand for pick-up and drop-off, which may
interact with each other.

Effectiveness of Attention-based LSTM. Due to the above reasons, we then used 3D ResNet
to further process the spatiotemporal features; that is, adding 3D ResNet to the back of the MTL
component instead of LSTM. The results showed that the performance improvement of Taxi3D-na
is limited compared with Taxi3D-LSTM. Concretely, compare with the RMSE of 3.53, 4.05 and 3.8

Remote Sens. 2019, 11, 1265 15 of 18

obtained by Taxi3D-LSTM, Taxi3D-na accordingly improved performance by 6.5%, 8.9%, and 7.9% in
two related tasks and all data.

The possible reason is that although Taxi3D-na captured correlation between pick-up and drop-off,
the method which simply stacked spatiotemporal features may be questionable. Technically, the LSTM
is a master of processing time series. The attention mechanism mimics the way people focus on
critical information while ignoring the rest. Thus we combined LSTM and attention mechanism to
fuse spatiotemporal features of historical demands, which is equivalent to feature embedding. Among
them, the LSTM captures the temporal correlation, and the attention mechanism assigns weights to the
six spatiotemporal features when generating the new representations of historical data.

Effectiveness of 3D ResNet. We then compared Taxi3D-nr with Taxi3D, in which the former
replaces the 3D-ResNet with plain 3D CNN. Even though we used attention-based LSTM to fuse
the spatiotemporal feature, plain 3D CNN may not capture spatial and temporal correlation well,
and the RMSE of Taxi3D-nr was 4.1%, 5% and 7% than that of 3.24, 3.43 and 3.33 obtained by
Taxi3D, respectively.

With the increase of the layers of neural networks, there may be obstacles, such as information
loss, gradient vanishing, gradient exploding and so on when the transmitting information, which leads
to difficulty in training deep networks. Therefore, we utilized ResNet to increase the network depth to
capture the correlation between pick-up and drop-off.

Effectiveness of External Factors Component. As illustrated in Figure 7, Taxi3D achieved better
performance than Taxi3D-ne. The results show that the addition of the external component boosts
predictive performance. Intuitively, external factors will affect taxi demand, since human behavior has
a lot to do with the environment. For example, the travel habits of people on weekends and holidays
may be quite different from the working day, lousy weather increases taxi demands and good weather
may make walking more enjoyable.

6. Conclusions and Future Work

In this paper, we studied the problem of predicting taxi demand for pick-up and drop-off, and
we proposed a novel deep-learning based model. We evaluated our model on the real taxi demand
data in Chengdu, and the results showed that RMSE of 3.33 obtained by our model achieved relatively
5.93% up to 37.29% lower RMSE than other baselines. The main contribution of this paper was to
propose an innovative learning framework to predict taxi demand. In the first level, we deemed the
demand situation of the urban taxi as a video and utilized 3D CNN combined with MTL to extract
spatiotemporal features. In the second level, we used attention-based LSTM for feature embedding
and combined with 3D ResNet to capture the correlation between pick-up and drop-off. Then we fused
external factors and made the prediction.

The study concludes that, from the perspective of spatial correlation, the demand for taxis between
adjacent regions will influence each other. From the standpoint of temporal correlation, taxi demand
in adjacent periods may affect each other, and the demand at the same time interval is nearly similar.
In terms of spatiotemporal correlation, they complement each other and should not be separated, and
taxi pick-up and taxi drop-off will also affect each other. From the citizen’s point of view, the weather,
holidays, and public transport conditions have an impact on taxi demand.

However, our study still has limitations. In the future, we will consider the following aspects
to improve prediction accuracy: The first is to improve the predicting performance of hot spots with
the help of time series anomaly detection algorithms. Hot spots are prone to outliers, which have a
significant impact on model training and prediction performance. The second is to divide the city
according to regional semantics, and then predict taxi demand by graph convolutional networks.
In real life, the interior of a city will likely be irregular rather than square. Also, we will consider
extending our model to multi-step prediction.

Remote Sens. 2019, 11, 1265 16 of 18

Author Contributions: Conceptualization, L.K., X.Y. (Xuejin Yan) and X.Y. (Xiaoxian Yang); funding acquisition,
L.K.; methodology, L.K., X.Y. (Xuejin Yan) and X.Y. (Xiaoxian Yang); project administration, L.K.; resources, L.K.;
software, X.Y. (Xuejin Yan) and X.T.; supervision, L.K. and X.Y. (Xiaoxian Yang); validation, L.K., X.T. and X.Y.
(Xiaoxian Yang); visualization, S.L.; writing—original draft, X.Y. (Xuejin Yan) and S.L.; writing—review & editing,
L.K., X.Y. (Xuejin Yan), X.T., S.L. and X.Y. (Xiaoxian Yang).

Funding: The research is supported by the National Natural Science Foundation of China (No.61772560), the
National Key R&D Program of China (No.2018YFB1003800), and the Natural Science Foundation of Hunan
Province (No. 2019JJ40388).

Acknowledgments: Data retrieved from Didi Chuxing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Williams, B.M.; Hoel, L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:
Theoretical basis and empirical results. J. Transp. Eng. 2003, 129, 664–672. [CrossRef]

2. Shekhar, S.; Williams, B. Adaptive seasonal time series models for forecasting short-term traffic flow. Transp.
Res. Rec. J. Transp. Res. Board 2008, 2024, 116–125. [CrossRef]

3. Moreira-Matias, L.; Gama, J.; Ferreira, M.; Mendes-Moreira, J.; Damas, L. Predicting taxi–passenger demand
using streaming data. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1393–1402. [CrossRef]

4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
5. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic flow prediction with big data: A deep learning approach.

IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [CrossRef]
6. Ma, X.; Yu, H.; Wang, Y.; Wang, Y. Large-scale transportation network congestion evolution prediction using

deep learning theory. PLoS ONE 2015, 10, e0119044. [CrossRef] [PubMed]
7. Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X. DNN-based prediction model for spatio-temporal data. In

Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, Burlingame, CA, USA, 31 October–3 Novembe 2016; p. 92.

8. Zhang, J.; Zheng, Y.; Qi, D. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction.
In Proceedings of the AAAI, San Francisco, CA, USA, 4–9 February 2017; pp. 1655–1661.

9. Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.; Liu, J. LSTM network: A deep learning approach for short-term traffic
forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [CrossRef]

10. Xu, J.; Rahmatizadeh, R.; Bölöni, L.; Turgut, D. Real-time prediction of taxi demand using recurrent neural
networks. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2572–2581. [CrossRef]

11. Wu, Y.; Tan, H. Short-Term Traffic Flow Forecasting with Spatial–Temporal Correlation in a Hybrid Deep
Learning Framework. Available online: https://arxiv.org/pdf/1612.01022.pdf (accessed on 28 May 2019).

12. Yu, H.; Wu, Z.; Wang, S.; Wang, Y.; Ma, X. Spatiotemporal recurrent convolutional networks for traffic
prediction in transportation networks. Sensors 2017, 17, 1501. [CrossRef]

13. Yao, H.; Wu, F.; Ke, J.; Tang, X.; Jia, Y.; Lu, S.; Gong, P.; Ye, J.; Li, Z. Deep multi-view spatial-temporal network
for taxi demand prediction. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

14. Yin, Y.; Chen, L.; Wan, J. Location-aware service recommendation with enhanced probabilistic matrix
factorization. IEEE Access 2018, 6, 62815–62825. [CrossRef]

15. Yin, Y.; Aihua, S.; Min, G.; Yueshen, X.; Shuoping, W. QoS prediction for web service recommendation with
network location-aware neighbor selection. Inter. J. Softw. Eng. Knowl. Eng. 2016, 26, 611–632. [CrossRef]

16. Yin, Y.; Xu, Y.; Xu, W.; Gao, M.; Yu, L.; Pei, Y. Collaborative service selection via ensemble learning in mixed
mobile network environments. Entropy 2017, 19, 358. [CrossRef]

17. Gao, H.; Miao, H.; Liu, L.; Kai, J.; Zhao, K. Automated quantitative verification for service-based system
design: A visualization transform tool perspective. Inter. J. Softw. Eng. Knowl. Eng. 2018, 28, 1369–1397.
[CrossRef]

18. Gao, H.; Zhang, K.; Yang, J.; Wu, F.; Liu, H. Applying improved particle swarm optimization for dynamic
service composition focusing on quality of service evaluations under hybrid networks. Inter. J. Distrib. Sensor
Netw. 2018, 14, 1550147718761583. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)
http://dx.doi.org/10.3141/2024-14
http://dx.doi.org/10.1109/TITS.2013.2262376
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.1371/journal.pone.0119044
http://www.ncbi.nlm.nih.gov/pubmed/25780910
http://dx.doi.org/10.1049/iet-its.2016.0208
http://dx.doi.org/10.1109/TITS.2017.2755684
https://arxiv.org/pdf/1612.01022.pdf
http://dx.doi.org/10.3390/s17071501
http://dx.doi.org/10.1109/ACCESS.2018.2877137
http://dx.doi.org/10.1142/S0218194016400040
http://dx.doi.org/10.3390/e19070358
http://dx.doi.org/10.1142/S0218194018500390
http://dx.doi.org/10.1177/1550147718761583

Remote Sens. 2019, 11, 1265 17 of 18

19. Gao, H.; Mao, S.; Huang, W.; Yang, X. Applying Probabilistic Model Checking to Financial Production Risk
Evaluation and Control: A Case Study of Alibaba’s Yu’e Bao. IEEE Trans. Comput. Soc. Syst. 2018, 5, 785–795.
[CrossRef]

20. Gao, H.; Chu, D.; Duan, Y.; Yin, Y. Probabilistic model checking-based service selection method for business
process modeling. Inter. J. Softw. Eng. Knowl. Eng. 2017, 27, 897–923. [CrossRef]

21. Gao, H.; Huang, W.; Yang, X.; Duan, Y.; Yin, Y. Toward service selection for workflow reconfiguration: An
interface-based computing solution. Future Gener. Comput. Syst. 2018, 87, 298–311. [CrossRef]

22. De, G.; Gao, W. Forecasting China’s Natural Gas Consumption Based on AdaBoost-Particle Swarm
Optimization-Extreme Learning Machine Integrated Learning Method. Energies 2018, 11, 2938. [CrossRef]

23. Li, C.; Zheng, X.; Yang, Z.; Kuang, L. Predicting Short-Term Electricity Demand by Combining the Advantages
of Arma and Xgboost in Fog Computing Environment. Available online: https://www.hindawi.com/journals/
wcmc/2018/5018053/ (accessed on 28 May 2019).

24. Kuang, L.; Yu, L.; Huang, L.; Wang, Y.; Ma, P.; Li, C.; Zhu, Y. A personalized qos prediction approach for cps
service recommendation based on reputation and location-aware collaborative filtering. Sensors 2018, 18,
1556. [CrossRef] [PubMed]

25. Yin, Y.; Xu, W.; Xu, Y.; Li, H.; Yu, L. Collaborative QoS Prediction for Mobile Service with Data Filtering and
SlopeOne Model. Available online: https://www.hindawi.com/journals/misy/2017/7356213/ (accessed on 28
May 2019).

26. Deng, S.; Xiang, Z.; Yin, J.; Taheri, J.; Zomaya, A.Y. Composition-driven IoT service provisioning in distributed
edges. IEEE Access 2018, 6, 54258–54269. [CrossRef]

27. Chen, Y.; Deng, S.; Ma, H.; Yin, J. Deploying Data-Intensive Applications with Multiple Services Components
on Edge. Available online: https://doi.org/10.1007/s11036-019-01245-3 (accessed on 28 May 2019).

28. Deng, S.; Huang, L.; Xu, G.; Wu, X.; Wu, Z. On deep learning for trust-aware recommendations in social
networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 1164–1177. [CrossRef]

29. Yin, Y.; Chen, L.; Xu, Y.; Wan, J.; Zhang, H.; Mai, Z. QoS Prediction for Service Recommendation with Deep
Feature Learning in Edge Computing Environment. Available online: https://doi.org/10.1007/s11036-019-
01241-7 (accessed on 28 May 2019).

30. Gao, H.; Duan, Y.; Miao, H.; Yin, Y. An approach to data consistency checking for the dynamic replacement
of service process. IEEE Access 2017, 5, 11700–11711. [CrossRef]

31. Padmanabhan, J.; Johnson Premkumar, M.J. Machine learning in automatic speech recognition: A survey.
IETE Tech. Rev. 2015, 32, 240–251. [CrossRef]

32. Fei, H.; Tan, F. Bidirectional Grid Long Short-Term Memory (BiGridLSTM): A Method to Address
Context-Sensitivity and Vanishing Gradient. Algorithms 2018, 11, 172. [CrossRef]

33. Siniscalchi, S.M.; Salerno, V.M. Adaptation to new microphones using artificial neural networks with trainable
activation functions. IEEE Trans. Neural Net. Learn. Syst. 2016, 28, 1959–1965. [CrossRef]

34. Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. 2017, 5, 30–43. [CrossRef]
35. Hamed, M.M.; Al-Masaeid, H.R.; Said, Z.M.B. Short-term prediction of traffic volume in urban arterials.

J.Transp. Eng. 1995, 121, 249–254. [CrossRef]
36. Van Der Voort, M.; Dougherty, M.; Watson, S. Combining Kohonen maps with ARIMA time series models to

forecast traffic flow. Transp. Res. Part. C Emerg. Tech. 1996, 4, 307–318. [CrossRef]
37. Williams, B. Multivariate vehicular traffic flow prediction: Evaluation of ARIMAX modeling. Transp. Res.

Rec. J. Transp. Res. Board 2001, 1776, 194–200. [CrossRef]
38. Wu, C.-H.; Ho, J.-M.; Lee, D.-T. Travel-time prediction with support vector regression. IEEE Trans. Intell.

Transp. Syst. 2004, 5, 276–281. [CrossRef]
39. Zheng, W.; Lee, D.-H.; Shi, Q. Short-term freeway traffic flow prediction: Bayesian combined neural network

approach. J. Transp. Eng. 2006, 132, 114–121. [CrossRef]
40. Kuang, L.; Yan, H.; Zhu, Y.; Tu, S.; Fan, X. Predicting duration of traffic accidents based on cost-sensitive

Bayesian network and weighted K-nearest neighbor. J. Intell. Transp. Syst. 2019, 23, 161–174. [CrossRef]
41. Chang, H.; Lee, Y.; Yoon, B.; Baek, S. Dynamic near-term traffic flow prediction: Systemoriented approach

based on past experiences. IET Intell. Transp. Syst. 2012, 6, 292–305. [CrossRef]
42. Xia, D.; Wang, B.; Li, H.; Li, Y.; Zhang, Z. A distributed spatial–temporal weighted model on MapReduce for

short-term traffic flow forecasting. Neurocomputing 2016, 179, 246–263. [CrossRef]

http://dx.doi.org/10.1109/TCSS.2018.2865217
http://dx.doi.org/10.1142/S0218194017500334
http://dx.doi.org/10.1016/j.future.2018.04.064
http://dx.doi.org/10.3390/en11112938
https://www.hindawi.com/journals/wcmc/2018/5018053/
https://www.hindawi.com/journals/wcmc/2018/5018053/
http://dx.doi.org/10.3390/s18051556
http://www.ncbi.nlm.nih.gov/pubmed/29757995
https://www.hindawi.com/journals/misy/2017/7356213/
http://dx.doi.org/10.1109/ACCESS.2018.2871475
https://doi.org/10.1007/s11036-019-01245-3
http://dx.doi.org/10.1109/TNNLS.2016.2514368
https://doi.org/10.1007/s11036-019-01241-7
https://doi.org/10.1007/s11036-019-01241-7
http://dx.doi.org/10.1109/ACCESS.2017.2715322
http://dx.doi.org/10.1080/02564602.2015.1010611
http://dx.doi.org/10.3390/a11110172
http://dx.doi.org/10.1109/TNNLS.2016.2550532
http://dx.doi.org/10.1093/nsr/nwx105
http://dx.doi.org/10.1061/(ASCE)0733-947X(1995)121:3(249)
http://dx.doi.org/10.1016/S0968-090X(97)82903-8
http://dx.doi.org/10.3141/1776-25
http://dx.doi.org/10.1109/TITS.2004.837813
http://dx.doi.org/10.1061/(ASCE)0733-947X(2006)132:2(114)
http://dx.doi.org/10.1080/15472450.2018.1536978
http://dx.doi.org/10.1049/iet-its.2011.0123
http://dx.doi.org/10.1016/j.neucom.2015.12.013

Remote Sens. 2019, 11, 1265 18 of 18

43. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings
of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 8–13 December 2014;
pp. 3104–3112.

44. Zhou, X.; Shen, Y.; Zhu, Y.; Huang, L. Predicting multi-step citywide passenger demands using attention-based
neural networks. In Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, Marina Del Rey, CA, USA, 5–9 February 2018; pp. 736–744.

45. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 221–231. [CrossRef]

46. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d
convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Boston,
MA, USA, 7–12 June 2015; pp. 4489–4497.

47. Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H. Understanding Neural Networks through Deep
Visualization. Available online: https://arxiv.org/abs/1506.06579 (accessed on 28 May 2019).

48. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6 –11 July
2015; pp. 448–456.

49. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
51. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding.

In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015;
pp. 1067–1077.

52. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 13–16 December 2015; pp. 1440–1448.

53. Didi Chuxing. Available online: https://gaia.didichuxing.com (accessed on 16 December 2018).
54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International

Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015.
55. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;

Lerer, A. Automatic differentiation in pytorch. In Proceedings of the Future of Gradient-Based Machine
Learning Software and Techniques (Autodiff) in Thetwenty-Ninth Annual Conference on Neural Information
Processingsystems (NIPS), Long Beach, CA, USA, 4–9 December 2017.

56. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 785–794.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2012.59
https://arxiv.org/abs/1506.06579
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://gaia.didichuxing.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Traditional Approach
	Deep Learning Approach

	Preliminary
	Method
	Partition of Historical Data
	Multi-Task Spatiotemporal Feature Extraction Component
	Feature Embedding Component
	External Factors Component
	Prediction Component

	Experiment and Discussion
	Dataset
	Experimental Settings
	Baselines
	Evaluation Metric
	Tuning Hyperparameters
	Model Comparsion
	Variants Comparsion

	Conclusions and Future Work
	References

