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Abstract: Urbanization poses significant challenges on sustainable development, disaster resilience,
climate change mitigation, and environmental and resource management. Accurate urban extent
datasets at large spatial scales are essential for researchers and policymakers to better understand
urbanization dynamics and its socioeconomic drivers and impacts. While high-resolution urban
extent data products - including the Global Human Settlements Layer (GHSL), the Global Man-Made
Impervious Surface (GMIS), the Global Human Built-Up and Settlement Extent (HBASE), and the
Global Urban Footprint (GUF) - have recently become available, intermediate-resolution urban
extent data products including the 1 km SEDAC’s Global Rural-Urban Mapping Project (GRUMP),
MODIS 1km, and MODIS 500 m still have many users and have been demonstrated in a recent
study to be more appropriate in urbanization process analysis (around 500 m resolution) than
those at higher resolutions (30 m). The objective of this study is to improve large-scale urban
extent mapping at an intermediate resolution (500 m) using machine learning methods through
combining the complementary nighttime Visible Infrared Imaging Radiometer Suite (VIIRS) and
daytime Moderate Resolution Imaging Spectroradiometer (MODIS) data, taking the conterminous
United States (CONUS) as the study area. The effectiveness of commonly-used machine learning
methods, including random forest (RF), gradient boosting machine (GBM), neural network (NN), and
their ensemble (ESB), has been explored. Our results show that these machine learning methods can
achieve similar high accuracies across all accuracy metrics (>95% overall accuracy, >98% producer’s
accuracy, and >92% user’s accuracy) with Kappa coefficients greater than 0.90, which have not
been achieved in the existing data products or by previous studies; the ESB is not able to produce
significantly better accuracies than individual machine learning methods; the total misclassifications
generated by GBM are more than those generated by RF, NN, and ESB by 14%, 16%, and 11%,
respectively, with NN having the least total misclassifications. This indicates that using these machine
learning methods, especially NN and RF, with the combination of VIIRS nighttime light and MODIS
daytime normalized difference vegetation index (NDVI) data, high accuracy intermediate-resolution
urban extent data products at large spatial scales can be achieved. The methodology has the potential
to be applied to annual continental-to-global scale urban extent mapping at intermediate resolutions.

Keywords: urbanization; urban extent; urban land use; remote sensing; machine learning;
VIIRS; MODIS

1. Introduction

Over 50% of the global population already lives in urban areas, and two-thirds of them
are expected to live in urban areas by 2050 [1]. Urban population growth and the associated
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socioeconomic development have caused intensive urban expansion [2,3] and, in turn, greater poverty
and environmental degradation [4], which are posing significant challenges on sustainable development,
disaster resilience, climate change mitigation, and environmental and resource management in urban
areas [5–7]. As a result, city governments may not be able to provide services for the increased
population, elevated city energy use often leads to greater air pollution, and the risk of urban
environmental hazards can be magnified [5]. Studies have shown that the global urbanization rate hit
about 54% in 2014 [1], and urban land areas will grow 1.2 million km2 by 2030 if the current trend
continues [8]. To better understand the patterns, dynamics, drivers, and impacts of urban expansion
and effectively support decision makings regarding sustainable urban development, it is fundamental
to obtain timely, accurate, and consistent measurements of urban extent at large spatial scales [9–11].

Satellite remote sensing has been widely used in urban area mapping since Earth observation
satellite data became available [10,12–16]. While high-resolution urban extent data products - including
the Global Human Settlements Layer (GHSL), the Global Man-Made Impervious Surface (GMIS), the
Global Human Built-Up and Settlement Extent (HBASE), and the Global Urban Footprint (GUF) derived
from Landsat and TanDEM-X data - have recently become available [16–18], intermediate-resolution
urban extent data products are still valuable, especially for large-scale urbanization analysis.
The reasons include (1) intermediate-resolution satellite images have proven effective in urban
extent extraction at regional to global scales [10,16,19,20] and will be more computationally efficient,
(2) intermediate-resolution urban extent data products generated from satellite data such as the
1 km NASA Socioeconomic Data and Applications Center (SEDAC)’s Global Rural-Urban Mapping
Project (GRUMP), MODIS 1km, and MODIS 500 m [10,21,22] still attract many analyses and modeling
users [23–27], (3) considering that urban and rural areas are not necessarily discrete classes but more
of a continuum [28,29], intermediate-resolution data products may better reflect demographic and
sociological conditions of urban areas [12,15], which include not just built-up areas but the urban fabric
of core urban areas and surrounding hinterlands and commuter-sheds, (4) broader definitions of what
constitutes urban areas are useful for studies of urban morphology, energy use, climate change, and
sustainability [14], and also for research on rural agricultural systems where one may wish to exclude
all but the smallest built-up areas, and (5) a recently published study has demonstrated that urban
extent data products at 480 m resolution are more appropriate than those at the high resolution (30 m)
for urbanization process analysis at large spatial scales [30].

Although several global urban extent data products at intermediate resolutions are available
currently (Table 1), significant inconsistencies remain among them [10,11]. For example, the total
areas of global urban extent measured by IMPSA, MODIS 1km, MODIS 500 m, and GRUMP differ
by 15% to 516% (572,000, 657,000, 727,000, and 3,524,000 km2, respectively). While one of the
reasons for these inconsistencies is that different groups and disciplines define urban areas somewhat
differently [10,31–35], these definitions are highly correlated. This calls into question the accuracy of
each map’s depiction of urban areas. Based on Schneider’s assessment on these data products, their
overall accuracies ranged from 73% (GRUMP) to 93% (MODIS 500 m). However, their producer’s
accuracy (how often real urban areas on the ground are correctly shown on the classified map) is
generally low (IMPSA and GLC2000 < 50%, MODIS 500 m and MODIS 1km around 75%, and GRUMP
nearly 90%), and their user’s accuracies (how often the urban areas on the map are actually present
on the ground) is also low (MODIS 500 m around 73%, GLC2000 and IMPSA are 66% and 65%)
with the Kappa coefficients ranging from only 0.28 to 0.65 [10]. More recent studies at intermediate
resolutions [16,36–48] reported overall accuracies from 73% to 99% for all urban and non-urban
features, with Kappa coefficients from 0.29 to 0.84, and the producer’s accuracy around 80%, and
user’s accuracy close to 90% for only urban features. Therefore, research is still needed to develop an
intermediate-resolution urban extent mapping methodology that can achieve consistent high accuracies
(overall accuracy, producer’s accuracy, user’s accuracy, and Kappa), is repeatable for different times,
and is scalable to continental-to-global scale applications [7].
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Table 1. Major intermediate-resolution global urban extent or urban extent-related data products
derived from satellite imagery available in the past decades.

Data Product/Year Definition of Urban Area Resolution

Global Urban Built-Up Areas 2014 [32] Urban and built-up areas 500 m

Global Rural–Urban Mapping Project
1995 (GRUMP v1) [24] Urban extent 927 m

GlobCover 2009 (GlobCover) [33] Artificial surfaces and associated areas
(urban areas >50%) 309 m

MODIS Urban Land Cover 500 m
(MODIS 500 m) ca 2001 [10]

Areas dominated by a built environment
(>50%), including non-vegetated,

human-constructed elements, with the
minimum mapping unit >1 km by 1 km

463 m

Global Impervious Surface Area
2000–2001 (IMPSA) [34] Density of impervious surface area 927 m

Global Land Cover 2000
(GLC2000) [35] Artificial surfaces and associated areas 988 m

MODIS Urban Land Cover 1 km
(MODIS 1 km) ca 2001 [22] Urban and built-up areas 927 m

Both nighttime light [7,24,34,36–43] and daytime spectral satellite data [10,13–15,32,33,35,44,45]
have been studied in mapping urban extent, and they tend to be complementary for characterizing
urban areas [16]. Therefore, the combination of nighttime light and daytime spectral data has the
potential to overcome their individual limitations. However, only a few former studies have combined
nighttime light data and daytime spectral data [16,19,20,46–48].

Machine learning methods have been demonstrated to perform well in land cover mapping [49–52],
and have been effective in urban area mapping in recent years [11,13,15,16,44,45,48,53]. Schneider
et al. employed a supervised decision tree algorithm (C4.5) with a one-year time series of MODIS
8-day composites of the seven land bands and the enhanced vegetation index (EVI), and produced the
MODIS 500 m global urban extent data product [10]. Hu and Weng estimated impervious surfaces
from medium spatial resolution imagery using multi-layer perceptron neural networks [13]. Zhou et al.
developed a cluster-based method to map urban areas from the Defense Meteorological Program
Operational Line-Scan System (DMSP/OLS) nightlight data [43]. Wan et al. relied on the Terra MODIS
surface reflectance datasets and a positive and unlabeled learning (PUL) method for mapping US urban
extent [45]. Zhang et al. applied the one-class support vector machine (OCSVM) to classify different
combinations of the DMSP/OLS stable nighttime light (NTL) data, MODIS normalized difference
vegetation index (NDVI) data, and land surface temperature (LST) data for regional urban extent
mapping [48]. Wang et al. used a back propagation neural network to identify urban areas in China
with VIIRS nighttime light and MODIS NDVI data as inputs [16]. Li et al. experimented with support
vector machine (SVM) methods to extract urban extent from LJ1-01 and VIIRS nighttime light data [20].

Random forest (RF), gradient boosting machine (GBM), neural network (NN), and their ensemble
(ESB) are commonly used machine learning methods in land cover mapping but have not been fully
assessed in urban area mapping, especially at intermediate resolutions. The objective of this study
is to explore the effectiveness of these machine learning methods for improving the accuracies of
large-scale urban extent mapping at intermediate resolutions (500 m) based on the combination of the
complementary VIIRS nighttime light and MODIS daytime NDVI data.

2. Materials and Methods

2.1. Study Area

This study takes the conterminous United States (CONUS) as the study area (Figure 1). The reasons
for choosing this study area include: First, the United States is one of the highly urbanized countries
with intensive urbanization in recent decades. Based on the statistics from the US Census, four out
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of five Americans lived in urban areas in the 2000s and the urbanization of the United States is not
uniform across its vast landscape with the fastest urbanization occurring in the northeastern region [54].
Lopez’s study in 2014 [55] demonstrated that for 2010, there were 136 US metropolitan areas with a
sprawl index ranging from 50 to 70, and 176 US metropolitan areas with a sprawl index greater than 75.
The sprawl index values were calculated based on the formula:

SIi = ((S%i − D%i)/100) × 50, (1)

where:

SIi = sprawl index for metropolitan area i
S%i = percentage of total population in low-density census tracts in metropolitan area i
D%i = percentage of total population in high-density census tracts in metropolitan area i

Sprawl index values range between 0 and 100, with 100 representing the highest level of sprawl
and 0 representing the lowest level of sprawl. In addition, the Joint Research Centre (JRC)’s degree
of urbanization calculation indicates that from 1975 to 2015, the United States’ total built-up area
increased from 80,417 km2 to 161,379 km2. Secondly, the application of VIIRS nighttime light data
in large-scale urban extent mapping is not fully studied for the CONUS region, especially regarding
the use of machine learning methods [7,32,37,39,56,57]. Thirdly, the CONUS covers an area of about
7.6 million km2 and contains various land cover types such as urban built-up areas, water, forests,
grasslands, bare lands, croplands, wetlands, shrubs, and other land cover types. Fourthly, the urban
extent data products for this region have abundant regional users from both the scientific research
community and government agencies [24].
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Figure 1. The study area consisting of the 48 conterminous states in the US, with urban extent data
layer from the Global Rural–Urban Mapping Project (GRUMP) overlaid with state boundaries.

2.2. Definition of Urban Area

The definition of an urban area varies from different research perspectives [33,58,59]. For example,
census-related urban studies refer mainly to population distributions while those using nighttime lights
or multi-spectral data may be related to economic conditions or “built-up areas” (physical attributes of
land surface) [9,10,23,31,57,60,61]. As the characteristics of all these definitions are correlated, most of
the urban areas identified by relevant methods are consistent. However, significant inconsistencies
remain among the urban extent data products, especially for the large differences in total urban areas
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that are partially caused by the different definitions of an urban area. Physical attribute-based urban
extent data products have broader application potential including population analysis, economic
research, disaster modeling, and environmental impact assessment. Therefore, this study employed
the definition proposed by Schneider et al. [11]. That is, urban areas are defined by the physical
attributes and land cover composition of the land surface: urban areas are places dominated by the
built environment with a minimum mapping unit of 1 km by 1 km, which includes all non-vegetated,
human-constructed elements such as buildings, roads, runways, etc. Here, ‘dominated’ implies the
coverage of human-constructed elements is greater than 50% in a 1 km by 1 km area. Based on this
definition, when vegetation, water, and other non-human-constructed elements cover most of a 1 km
by 1 km area, that area will not be considered as an urban area, while any 1 km by 1 km area with
over 50% built-up area, whether they are continuous or not, will be considered as an urban area in
practice (Figure 2). Another reason to adopt this definition of an urban area in this study is that many
recent research activities on urban extent mapping with satellite data used this physical attribute-based
definition [10,11,16,32].
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Figure 2. Illustration of urban and non-urban areas based on the definition of urban areas employed in
this study. The size of the square is 1 km by 1 km: urban area contains more than 50% of built-up areas
(left) while a non-urban area contains less than 50% built-up area (right).

2.3. Data and Preprocessing

2.3.1. Satellite Data

Two types of intermediate-resolution satellite data were utilized in this study: (1) the nighttime
light (NTL) data of the Day/Night Band (DNB) from the Visible Infrared Imaging Radiometer Suite on
the Suomi National Polar-orbiting Partnership Satellite (NPP-VIIRS), and (2) the Normalized Difference
Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Figure 3).
The capability of MODIS daytime spectral reflectance and NDVI for urban extent mapping has been
extensively demonstrated by many researchers [10,11,14,35,44,45,62]. However, as urban areas are
spectrally similar to none or low vegetated non-urban areas, such as uncropped soils or bare lands [6,59],
depending totally on MODIS daytime spectral data for urban extent mapping often leads to classification
errors [57].

Nighttime lights are straight forward for applications in urban extent mapping as artificial
lights in urban areas are easier to separate from the darker non-urban areas at night [63]. The most
widely-used nighttime light data are the stable light data products from the Defense Meteorological
Satellite Program/Operational Linescan System (DMSP/OLS) [34,42,43,64]. While DMSP nighttime
light datasets provide a longer time series of nighttime light observations (1992–2013) than VIIRS and
a method exists to deblur for the blooming [65], their applications are still affected by the coarser 1 km
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spatial resolution, light intensity saturation in urban areas, and intra-sensor calibration problems [66].
The nighttime light data provided by the VIIRS DNB band are superior to DMSP [67], with significant
improvements including increased spatial resolution (15 arc-second, approximately 500 m), lower
light imaging detection limits (~2 × 10−11 W·cm−2

·sr−1), and higher radiometric quantization (14 bit),
thus providing the potential to better delineate urban areas and enhancing the capability to detect
urban areas effectively [1,37,67]. Because nighttime light emissions are related to a number of factors
including energy policies at country level, levels of access to electricity, and measurable levels of
luminosity affected by varied economic conditions, solely depending on nighttime light data may not
be able to produce accurate urban extent maps, especially at a continental-to-global scale [16,24,57].
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Figure 3. (Left) An example of VIIRS nighttime light annual composite for the northeastern United
States with stray light, lightning, lunar illumination, cloud-cover, and gas flares removed (urban areas
are characterized by brighter pixel clusters); (Right) an example of MODIS NDVI annual composite for
the northeastern United States with cloud contamination removed using the greenest pixel method
(urban areas are characterized by NDVI pixel clusters with lower positive values).

Combination of VIIRS nighttime light data and MODIS daytime spectral data might overcome
their individual limitations, thus achieving better performance in mapping urban extent than using
MODIS or VIIRS data alone [16,32,46,68].

The Earth Observations Group (EOG) at NOAA/National Centers for Environmental Information
(NCEI) is producing a version 1 suite of annual average radiance composite images using nighttime
light data from VIIRS DNB, which was available only for 2015 at the time of this study (Figure 3 (Left)).
Impacts from stray lights, lightning, lunar illumination, and cloud-cover have been filtered in this
dataset, and gas flares have also been removed by referencing the gas flares’ locations accompanied
with the nighttime light data provided by NCEI [69].

MODIS 16-Day 500 m (MOD13A1) vegetation index time series data are available from the open
cloud platform Google Earth Engine (GEE) [70] at a global scale from 18 February 2000 to present.
Removing cloud effects from MODIS images is critical when using the data for land cover mapping.
The greenest pixel compositing method uses the maximum normalized difference vegetation index
(NDVI) of a MODIS time series to composite. MODIS NDVI annual composite at 500 m for 2015 was
created using the greenest pixel compositing method through GEE API and downloaded to our local
server (Figure 3 (Right)), and co-registered with the VIIRS nighttime light data.

2.3.2. Reference Sample Data

For training and validating machine learning models, “ground truth” reference samples were
collected for both urban and non-urban land cover types (e.g., forest, cropland, wetland, water,
grassland, and bare land) based on high-resolution images (e.g., ESRI World Imagery) and visual
interpretation for a given 1 km by 1 km area. Data recorded for each reference sample include the
location of the sample site and its attribute (urban or non-urban).



Remote Sens. 2019, 11, 1247 7 of 18

Urban areas, unlike other land cover types, have special spatial characteristics. For example, in
most urban areas, the core or central portions are covered by more human-constructed features (e.g.,
buildings and roads) and less natural features (e.g., vegetation) than the periphery portions; relatively
smaller urban areas tend to have all human-constructed features distributed uniformly within their
boundaries, while the density of human-constructed features in bigger urban areas tend to decrease
from core or central portions to the periphery portions; urban areas located in the northeastern US
contain more vegetation than those in the southwestern US. Therefore, during the process of reference
sample data collection, we applied the stratified random sampling method to reduce sampling bias.
That is, in addition to considering randomness when picking a reference sampling site, we also
considered (1) the core-periphery spatial structure of urban areas to balance the number of urban
area samples for the core urban areas and peripheral urban areas, (2) balancing the number of urban
area samples for bigger urban areas and smaller urban areas, and (3) balancing the number of urban
area samples for urban areas located in different geographic regions. Ignoring such characteristics
of urban areas when collecting reference samples may make the accuracy assessment falsely high
and, thus, untrustworthy (e.g., using urban area samples collected only from the core urban areas
achieved a user’s accuracy of 99.77%, a producer’s accuracy of 98.86%, and an overall accuracy of
99.15% with a Kappa coefficient of 0.9820 for the machine learning methods, as core urban areas are
easy to identify and almost all the inconsistencies among the available urban extent data products occur
in the periphery portions of urban areas). For each reference sample site, as long as the surrounding
1 km by 1 km area contained more than 50% human-constructed features, it was recorded as an urban
sample, and vice visa. As a result, small patches of urban forest or parks that account for less than 50%
in a 1 km by 1 km area were also considered as urban areas.

A total of 2772 reference samples (1455 urban samples and 1317 non-urban samples) were collected
for this study in two steps: (1) reference samples were collected solely for training the machine learning
models - in total, 295 training samples (198 urban samples and 97 non-urban samples) were collected
in this step; (2) after the urban extent data products were generated by each of the machine learning
models, a new set of reference samples was collected solely for independent and rigorous accuracy
assessment - in total, 2477 samples were collected in this step, including 1257 urban samples and 1220
non-urban samples (Figure 4).
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Figure 4. Urban and non-urban reference samples collected for the conterminous United States: (1) the
cross “+” symbols indicate reference sample sites solely for training purposes, (2) the triangle “N”
symbols indicate reference sample sites solely for accuracy assessment. Sample sites of (1) and (2) were
collected in two separate steps and are, therefore, totally independent.
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2.4. Methods

Machine learning methods build mathematical models from training sample data to make
predictions or decisions automatically and have been applied in intermediate-resolution remote
sensing of urban extent. RF, GBM, and NN are three relatively mature and commonly-used machine
learning methods in data analytics and have been increasingly applied to satellite image classifications
for land cover mapping at different spatial scales and resolutions in recent years [11,16,49,51,71,72].
Machine learning ensembles are learning algorithms that construct a group of different classifiers
and then classify the data by taking a weighted vote of the individual classifier predictions [73].
Such ensembles or model combinations are usually more accurate than a single classifier and were
introduced to land cover mapping by Walsh in 2015 [51]. There have been no studies reported yet in
the literature regarding the performance of RF, GBM, NN, and ESB in intermediate-resolution urban
extent mapping with nighttime light and daytime satellite data as inputs.

To explore and compare the effectiveness of RF, GBM, NN, and ESB in mapping urban extent,
exactly the same datasets were used as inputs, which include VIIRS nighttime light luminosity annual
composite, MODIS NDVI annual composite, and the training reference samples. VIIRS nighttime light
and MODIS NDVI were stacked together; therefore, at each 500 m pixel location, there is a 2-dimension
vector:

Z (i, j) = (VIIRS (i, j), MODIS (i, j)), (2)

where:

VIIRS (i, j) = VIIRS nighttime light luminosity at pixel (i, j)
MODIS (i, j) = MODIS NDVI at pixel (i, j)

The construction of the ESB is based on the outputs from the individual machine learning
models [51,73]. As each of the three individual machine learning models uses the same reference
samples and satellite data inputs, their predictions for urban and non-urban land cover types at
unknown pixel locations are correlated inherently, which must be considered during the ensemble step
to achieve better results. Linear stacking with the elastic net was used to address this issue through
both ridge and lasso penalizations [74].

Figure 5 shows the entire workflow of this study. First, for each of the reference sample sites,
the VIIRS luminosity value and MODIS NDVI value were extracted. Secondly, two-thirds of the
295 training reference samples were randomly selected to train the three individual machine learning
models while the remaining one-third reference samples were used for regularizing the ESB weights
and finding an optimal set of model weights that would not diminish the predictive performance of the
ensemble [51]. Specifically, RF was set up using training parameters including out-of-bag (OOB) error,
GBM was set up using training parameters including 10-fold repeated cross-validation and 5 repeats,
NN was set up with one hidden layer and training parameters including 10-fold cross-validation,
and the ESB was set up with a 10-fold regularized ensemble weighting. All these machine learning
algorithms were implemented in R, which can be run on Linux, Windows, and Mac. Thirdly, the urban
probability grids outputted by RF, GBM, NN, and ESB were classified into urban and non-urban using
0.95 probability as the threshold. At the last step, all the validation reference samples were overlaid
with the four urban extent maps corresponding to RF, GBM, NN, and ESB, and their accuracies for
correctly identifying urban areas were assessed and compared.
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3. Results

3.1. New Urban Extent Maps for CONUS

After around 3 h of program execution, four urban extent maps at 500 m resolution were produced
for CONUS 2015 (Figure 6a) corresponding to the four machine learning methods (RF, GBM, NN, and
ESB). By visually analyzing these maps, it is observed that all the maps have correctly revealed the
spatial patterns of urban area distributions in CONUS. Zoom-in detailed comparisons demonstrate that
their differences occur mainly in the areas where urban and non-urban features mix and are located
either in the peripheral areas or inner urban areas bordering with vegetation (e.g., big parks inside a
city) (Figure 6b).
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Figure 6. Urban extent maps generated by Random Forest (RF), gradient boosting machine (GBM),
neural network (NN), and their ensemble (ESB) for CONUS 2015: (a) whole urban extent maps
generated by the four machine learning algorithms (a1,a2,a3,a4), (b) zoom-in detailed comparison of
the four urban extent maps (b1,b2,b3).

3.2. Comparing the Four Urban Extent Maps through Quantitative Accuracy Assessment

To rigorously compare and evaluate which urban extent maps generated by the four machine
learning algorithms are more accurate, a quantitative accuracy assessment was conducted against the
reference samples specifically collected for validation and accuracy assessment. While the overall
accuracy (OA) is the commonly-used index for accuracy assessment, because of class sample imbalance
and different performance of classification methods for different land cover types, it can be biased
towards the majority classes, ignoring the minority classes [16]. Therefore, we generated the confusion
matrices and calculated the producer’s accuracy, the user’s accuracy, and the Kappa coefficients for
each of the four urban extent maps to fully assess the accuracies (Table 2).

The confusion matrices show that these four machine learning methods can achieve similar
high accuracies across all accuracy metrics (>95% overall accuracy, >98% producer’s accuracy, and
>92% user’s accuracy, Kappa coefficients > 0.90), which have not been achieved by existing data
products, previous studies, and associated methods; the ESB of RF, GBM, and NN is not able to
produce significantly better accuracies than the three individual machine learning methods; the total
misclassified validation samples generated by GBM (121) are more than those generated by RF (107),
NN (104), and the ESB (109) by 14%, 16%, and 11%, respectively, with NN having the least total
misclassified validation samples. If we must pick the best and worst among these four machine
learning methods, NN performs the best while GBM performs the worst based on their relatively low
and high numbers of misclassifications and similar level of accuracies across all accuracy metrics.

The reasons for the ESB of RF, GBM, and NN not being able to outperform the individual machine
learning methods could be that RF-, GBM-, and NN-based urban extent data products are mostly
consistent; thus, none is adding significant new information to the others, or each of them has already
achieved quite high accuracy (not many errors), or their outputs are correlated because they use the
same data inputs, especially the satellite data. Considering the more computing resources needed for
running the ESB and its inability to improve significantly on the accuracies relative to the individual
machine learning methods, constructing an ensemble from RF, GBM, and NN appears unnecessary for
such urban extent mapping applications.

The differences in accuracies for NN and RF are negligible while GBM apparently performs a
little worse than both (with user’s accuracy of 1% lower than RF and NN, and misclassified validation
samples of about 15% lower than RF and NN). Therefore, NN and RF should be better choices for
intermediate-resolution urban extent mapping.
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Table 2. Confusion matrices and accuracy assessment using “ground truth” reference samples: (a)
random forest (RF)-based urban extent accuracy assessment, (b) gradient boosting machine (GBM)-based
urban extent accuracy assessment, (c) neural network (NN)-based urban extent accuracy assessment,
and (d) ESB-based urban extent accuracy assessment.

(a)

Classified Data
Reference Data

Total User’s Accuracy Kappa Coefficient
Urban Non-Urban

Urban 1240 90 1330 93.23%
Non-Urban 17 1130 1147 98.52%

Total 1257 1220 2477
Producer’s Accuracy 98.65% 92.62% 95.68% (Overall Accuracy) 0.9121

(b)

Classified Data
Reference Data

Total User’s Accuracy Kappa Coefficient
Urban Non-Urban

Urban 1243 107 1350 92.07%
Non-Urban 14 1113 1127 98.76%

Total 1257 1220 2477
Producer’s Accuracy 98.89% 91.23% 95.12% (Overall Accuracy) 0.9023

(c)

Classified Data
Reference Data

Total User’s Accuracy Kappa Coefficient
Urban Non-Urban

Urban 1235 82 1317 93.77%
Non-Urban 22 1138 1160 98.10%

Total 1257 1220 2477
Producer’s Accuracy 98.25% 93.28% 95.80% (Overall Accuracy) 0.9159

(d)

Classified Data
Reference Data

Total User’s Accuracy Kappa Coefficient
Urban Non-Urban

Urban 1236 88 1324 93.35%
Non-Urban 21 1132 1153 98.18%

Total 1257 1220 2477
Producer’s Accuracy 98.33% 92.79% 95.60% (Overall Accuracy) 0.9119

Additionally, the reason for NN and RF outperforming GBM could be that RF can break the
correlation between individual base learner predictions, thus hopefully reducing the variance of
final predictions, and NN is flexible and capable of effectively representing both structured and
non-structured data (pixel values).

3.3. Comparing the New Urban Extent with Existing Data Products

The comparison between our newly created urban extent (year 2015) with other existing urban
extent data products is to characterize their differences and confirm whether the new urban extent data
perform well in delineating urban areas. Not all the datasets listed in Table 1 were available to us at the
time of this study. We chose the available GRUMP urban extent (1 km for the year 1995) and GlobCover
artificial surfaces (309 m for the year 2009) datasets and selected US cities for the comparison. As there
were no urban extent data products available for the same year (2015), urban extent data for different
nominal years were selected.

Figure 7 shows the comparison between our new urban extent and GRUMP urban extent.
While these datasets are 20 years apart and comparing cannot discriminate between actual urban
changes and improvements of the new methodology, considering urban extents for all cities in 1995
must be smaller than or the same as those in 2015 (actually most of US cities are sprawling based on
the sprawl analysis [55]), it clearly shows that our new urban extent data product delineates more
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realistically the urban areas (boundaries between urban areas and non-urban areas) as the base map is
dated between 2016 and 2017.
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Figure 8 shows the comparison between our new urban extent (2015) and urban extent extracted
from GlobCover (2009) for the class “artifical surfaces.” These two datasets are 6 years apart during
which there were no significant urban expansions in Baltimore and Philadelphia urban areas by
comparing Landsat images between 2009 and 2015. It appears that GlobCover detected only the core
urban portions and missed the peripheral urban portions while our new urban extent data product
correctly identified both urban portions, even though they used similar definitions of urban (urban
areas >50%).
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4. Conclusions

Urban land changes are related to sustainable development, environmental quality, public health,
natural hazards, poverty, climate change adaptation, and other environmental and socioeconomic
issues [75–80]. Satellite urban extent mapping provides a fundamental dataset for analyzing urban
land changes and the relevant environmental or socioeconomic drivers and impacts [81,82].

Our results and analyses have demonstrated that both NN and RF can be used to create
high-accuracy intermediate-resolution urban extent data products at large spatial scales when the
complementary VIIRS nighttime light and MODIS daytime NDVI data are combined. Such data
products can be used to update the existing intermediate-resolution urban extent data products with
better accuracy, spatial resolution, and consistency (e.g., our NN-based 500 m urban extent data product
for CONUS is being used to update the 23-years-old 1995 GRUMP urban extent at 1 km for CONUS
region at SEDAC). In addition, these machine learning methods can be used to create annual urban
extent data products based on the availability of VIIRS nighttime light and MODIS daytime spectral
data or data from other similar satellites so that urban land change dynamics can be studied.

5. Discussion

These machine learning methods, especially NN and RF, have the potential to be applied to
continental-to-global scale urban extent mapping at intermediate resolutions. However, as the
characteristics of urban areas in other parts of the world might be different from the CONUS, further
study is needed before these methods can be applied to other continents or globally. For example, there
are recognized issues in using nighttime light satellite data to capture urban areas located in poorly lit
countries like North Korea or African countries or because of the deliberate decision of some countries
in Europe to rarely light urban areas [67] (it is known that when comparing the USA to European cities,
American cities have five times more lights per capita than European cities). While incorporating
daytime MODIS spectral data with VIIRS nighttime light can help to mitigate these issues, they may
still have an impact on the machine learnings’ calibration and limit their performance when applying
them directly to other continents or at a global scale. One possible solution to these issues is to train
and calibrate the machine learning methods by continent; however, the effectiveness and accuracies
that can be achieved can only be found out through further testing of other world regions. At the very
least, these methods can be used to effectively map urban areas in the US and other developed or
well-lit countries of the world.

Although several recent studies have explored the most suitable sensors and methods for mapping
urban extent, and data products derived from high-resolution sensors (e.g., Landsat, Sentinel-1) and
very high-resolution sensors (e.g., TerraSAR-X) are currently available, producing these kinds of data
products is time consuming, especially when repeated mapping at large spatial scales is needed.
Further, when applying such high-resolution urban extent data products to continental-to-global scale
models and applications, the data usually needs to be resampled to lower resolutions because of
the huge data volume involved and the computing resources needed. A recent study [30] based on
30 m Landsat-derived urban extent has demonstrated that 480 m resolution performs the best for
urbanization process analysis. Therefore, improving the accuracy of intermediate-resolution urban
extent mapping at 500 m with VIIRS nighttime light, MODIS daytime spectral data or other similar
satellite data, and machine learning methods is still needed for data users even when there are open
global urban extent products at relatively high resolutions.

As shown in the results and analyses, the major differences or inconsistencies between the urban
extent data products generated by different machine learning methods or other studies are located
mainly in the peripheral portions of urban areas or along the borders of built-up areas and vegetated
urban areas (e.g., parks) where mixing pixels are mainly located. Therefore, introducing unmixing
image analysis in the future may further help increase the urban extent mapping accuracies or provide
another interesting data product to represent urbanization degree. For example, through unmixing,
different percentages of built-up area coverage in a pixel can be extracted and, thus, a non-binary
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continuous urban extent data layer can be generated. This might be helpful for mapping low-density
sprawl settlements and for some urban models or applications.

Urban land changes occurring on small scales may not be detectable at the relatively coarse
resolution of VIIRS and MODIS. When such urban changes are important in relevant applications (e.g.,
local applications), higher resolution satellite data such as those from Landsat and Sentinel 2 need to
be introduced and the effectiveness of machine learning methods in improving urban extent mapping
at such scales can be explored.
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