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Abstract: Thermal infrared (TIR) multi-/hyperspectral and sun-induced fluorescence (SIF) approaches
together with classic solar-reflective (visible, near-, and shortwave infrared reflectance (VNIR)/SWIR)
hyperspectral remote sensing form the latest state-of-the-art techniques for the detection of crop
water stress. Each of these three domains requires dedicated sensor technology currently in place
for ground and airborne applications and either have satellite concepts under development (e.g.,
HySPIRI/SBG (Surface Biology and Geology), Sentinel-8, HiTeSEM in the TIR) or are subject to
satellite missions recently launched or scheduled within the next years (i.e., EnMAP and PRISMA
(PRecursore IperSpettrale della Missione Applicativa, launched on March 2019) in the VNIR/SWIR,
Fluorescence Explorer (FLEX) in the SIF). Identification of plant water stress or drought is of utmost
importance to guarantee global water and food supply. Therefore, knowledge of crop water status
over large farmland areas bears large potential for optimizing agricultural water use. As plant
responses to water stress are numerous and complex, their physiological consequences affect the
electromagnetic signal in different spectral domains. This review paper summarizes the importance of
water stress-related applications and the plant responses to water stress, followed by a concise review
of water-stress detection through remote sensing, focusing on TIR without neglecting the comparison
to other spectral domains (i.e., VNIR/SWIR and SIF) and multi-sensor approaches. Current and
planned sensors at ground, airborne, and satellite level for the TIR as well as a selection of commonly
used indices and approaches for water-stress detection using the main multi-/hyperspectral remote
sensing imaging techniques are reviewed. Several important challenges are discussed that occur
when using spectral emissivity, temperature-based indices, and physically-based approaches for
water-stress detection in the TIR spectral domain. Furthermore, challenges with data processing
and the perspectives for future satellite missions in the TIR are critically examined. In conclusion,
information from multi-/hyperspectral TIR together with those from VNIR/SWIR and SIF sensors
within a multi-sensor approach can provide profound insights to actual plant (water) status and the
rationale of physiological and biochemical changes. Synergistic sensor use will open new avenues
for scientists to study plant functioning and the response to environmental stress in a wide range
of ecosystems.
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1. Importance of Water-Stress Detection

Water-deficit stress, usually shortened to water or drought stress, describes the plant physiological
responses induced by a lack of available water due to either soil water deficit or high evaporative
demand of the atmosphere. Water stress induces dehydration in the plant and prevents plant cells
from keeping water concentrations at an acceptable and healthy level [1,2]. Therefore, water stress is
one of the most critical abiotic stressors limiting plant growth, crop yield and quality concerning food
production [3,4].

Since the global population is projected to grow by about 2.3 billion people between 2015 and 2050
and societies are changing from low to medium per capita income, global food demand is expected
to double within the same time [5–7]. Therefore, one of the most challenging tasks of our generation
is to meet the second Sustainable Development Goal as defined in the 2030 agenda for sustainable
development by the United Nations: “End hunger, achieve food security and improved nutrition and
promote sustainable agriculture” [8]. In this respect, agricultural processes need to be optimized and
innovative farming methods must be developed to guarantee global food supply, as arable land and
environmental resources have almost reached the limits of sustainability.

Water is the most valuable resource of our planet. Presently, agriculture consumes 80–90% of the
freshwater used by humans worldwide and about two thirds of this freshwater is required for crop
irrigation [9]. Therefore, the ultimate goal must be a reduction in the amount of water used per unit
yield [10].

In addition, anthropogenic climate change is predicted to cause an increase of 1.0–2.5 ◦C in the
annual mean global temperature over the next 50 years with a tremendous impact on agriculture [11].
Consequently, evapotranspiration (ET) rates will increase and thus, the demand of water for crop
irrigation will further rise. At the same time, extreme weather events such as droughts will appear
more frequently and be more severe. These facts add some extra pressure to increasing global water
scarcity and the need for saving water.

Hence, it is desired to reduce the amount of water used per unit yield by reducing yield loss
and by reducing the amount of water used for irrigation. To achieve this goal, early detection and
monitoring of plant responses to water stress in agricultural crops are mandatory. Remote sensing
offers the opportunity to acquire high spatial, spectral and temporal resolution data as input for
precision agriculture [12]. Precision agriculture promises great potential to close the yield gap by
optimizing food production using the right management practice at the right place and the right time
while keeping the consumption of resources at an environmentally sustainable level [13].

2. Plant Responses to Water Stress

Plant responses to water stress are numerous and complex (see [4,14–16] for comprehensive
reviews). They appear synergistically or antagonistically and are modified by co-occurring plant
stresses under field conditions (Figure 1) [4,17,18]. Therefore, it remains difficult to detect and
monitor plant water deficit based on a single plant response [19]. In general, water deficit causes
physiological and biochemical changes which induce a reduction in photosynthesis and thus plant
growth [16]. However, the timing, intensity, and duration of water stress are crucial to determine the
plant physiological responses and their impact on plant metabolism [20]. For example, under mild
water-stress conditions, plant regulation of water loss and uptake still allows the plant to maintain
relative leaf water content with no or only little change in photosynthetic capacity. In contrast, severe
water deficit induces serious physiological and biochemical changes, which lead to effects ranging
from inhibition of photosynthesis and growth to leaf wilting and the loss of key pigments such as
chlorophyll and thus to irreversible damages to the photosynthetic machinery [15–17]. Hence, plants
have developed multiple mechanisms to prevent severe damage through water stress [21].
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Figure 1. Most important relationships between primary plant stresses, the induced plant responses,
and the multi-/hyperspectral remote sensing techniques for the detection of environmental stresses
(modified after Jones and Vaughan [19]).

The first plant response to water stress is stomatal closure, which prevents transpirational water
loss (e.g., [4,15,17]). In particular, stomatal closure is the response to either a deficit in soil water
supply or to low-humidity atmosphere with high evaporative demand. It is commonly assumed that
stomatal response is rather linked to soil water content than to leaf water content. This suggests that
stomata are most likely triggered by chemical signals, such as the accumulation of abscisic acid (ABA)
in dehydrated roots rather than by a reduced cell turgor [4]. However, under severe and/or prolonged
water stress, cell turgor, and leaf water content is also reduced [15]. As a consequence, the exchange of
water vapor between plants and atmosphere is reduced by stomatal closure and thus, the evaporative
cooling effect is decreased resulting in an overall increase of plant surface temperature compared to a
plant which does not suffer from water stress [14,18,22].

However, the stomata not only control plant transpiration but also plant respiration which inhibits
CO2 uptake and fixation. As a result of stomatal closure, the photosynthetic rate is reduced, which
causes a reduction in cell division and thus slows down leaf growth and reduces the rate of leaf
surface area expansion. A persistent water deficit will further damage the photosynthetic machinery
through loss of chlorophyll, which finally introduces changes in leaf color and wilting [15,16,20].
Another plant response to water stress is the change in sun-induced fluorescence (SIF). While the
photosynthetic rate is reduced by a decreased CO2 uptake due to stomatal closure, irradiance and
absorbed photosynthetically active radiation (fAPAR) remain constant. In general, energy absorbed by
plant pigments (i.e., the chlorophylls and carotenoids) is dissipated by three competitive processes (i.e.,
photosynthesis, SIF, and heat emission). Consequently, a reduced photochemistry as induced by water
stress results in several physiological mechanisms to protect the plant against photoinhibition. These
mechanisms foster non-photochemical quenching (NPQ) and reduce SIF [23,24].

Besides these plant responses to water stress, osmotic adjustment is a further strategy to prevent
irreversible damage. Osmotic adjustment describes the process of the accumulation of solutes such as
carbohydrates and proteins to maintain the cell turgor at osmotic equilibrium [25].
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In summary, plant responses to water stress can be recognized as a sequence of physiological
and biochemical changes depending on the severity and duration of plant water deficit. Hence, the
detection of water-stress symptoms is a function of time and depends on the plant responses to water
deficit and their corresponding physiological changes, which may be sensitive to different remote
sensing techniques.

3. Remote Sensing of Water Stress

Remote sensing is one of the key technologies in precision agriculture, which has an enormous
demand for geospatial information [12,13]. Besides the information needs for soil properties, crop
nutrients, crop biomass, and diseases, farmers and decision makers have a major interest in the
detection of plant responses to environmental and water stresses [26–30]. In general, remote sensing
provides a fast, cost-efficient, non-destructive, and spatio-temporal measure of numerous physiological,
biochemical and structural crop characteristics at different scales (ground, airborne, and satellite).
Plants can be irreversibly affected before visible symptoms of water stress appear [15–17]. Therefore, a
pre-symptomatic or pre-visual detection of plant physiological changes can essentially contribute to
avoiding severe crop damages [31]. Hyperspectral imagery, with its continuous spectral data, has the
potential to provide further insights into the relationship between the spectral features and associated
plant conditions [32]. Focusing on the detection of plant responses to environmental stresses, the main
multi-/hyperspectral remote sensing techniques are thermal imaging (TIR; 8–14 µm), visible, near- and
shortwave infrared reflectance (VNIR/SWIR; 0.4–2.5 µm), and sun-induced fluorescence (SIF 0.685 and
0.74 µm).

3.1. Thermal Infrared Domain

Since the 1970s TIR remote sensing (8–14 µm) has been recognized as a potential tool for early
plant water-stress detection. In general, emitted radiance in the TIR contains two intrinsic kinds of
information: (i) surface temperature (i.e., “directional radiometric surface temperature” as defined
by [33]) of the object of interest and (ii) its spectral emissivity.

3.1.1. Temperature and Emissivity Separation (TES)

To derive both accurate surfaces temperatures and emissivity spectra, from hyperspectral TIR
data, two fundamental problems have to be solved (e.g., [34–36]). First, atmospheric correction is
needed, hence, the spectral radiance measured at sensor consists not only of the radiance emitted by the
object of interest itself but also includes thermal radiation emitted by surroundings and reflected from
the surface of the object (down-welling radiance (DWR)). It is further influenced by the intervening
atmosphere in terms of absorption, emission, and scattering (upwelling radiance and transmittance
(τ) of the atmosphere). In the past, upwelling path and τ were mostly neglected for short distance
field measurements. However, it has been shown by MIDAC (Model M4401-F; MIDAC Corporation,
CA, USA) measurements over agricultural site’s in Barrax (Spain) that atmospheric correction is
required (and possible) for such short distance measurements [37]. For airborne or satellite imagery
the correction of atmospheric distortions is essential. Second, a solution to the so-called TES-problem
is required. The measured spectral radiance is, regarding Planck’s law, a function of the absolute
temperature and the spectral emissivity of the observed object. Thus, if the radiance is measured in n
bands, there will be n + 1 unknowns, n emissivities values, plus the surface temperature. Therefore, to
retrieve accurate surface temperatures, the spectral emissivity must be known and vice versa.

While in theory, the TES represents an ill-posed problem, hyperspectral data in comparison
to multispectral data allows a good fit to Planck’s radiance curve for a specific temperature [38].
Presently, a variety of algorithms exist which differ in the underlying assumptions and the data
basis. A comprehensive review is given by Li et al. [39]. In general, it must be distinguished
between short (indoor and outdoor measurement with 1–3 m) and large (field or air- and spaceborne
measurements) sensor–target distances. For short distance field measurements, the new approach
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by Timmermans et al. [37] offers an auto-correction for atmospheric effects in TIR by: (i) calculating
transmissivity from hot and cold blackbody measurements, (ii) using a simple atmospheric radiative
transfer model based on MODTRAN for the retrieval of the atmospheric gas-constituents (i.e., H2O
and CO2). Besides, the Spectral Smoothness method introduced by Horton et al. [40] is a widely used
and accurate TES-approach for short distance field measurements. This is because the smoothness
approach requires no a priori knowledge, neither the maximum value of the emissivity nor the
corresponding wavenumber. The atmospheric emission lines (i.e., H2O) are negatively oriented if
the sample temperature is overestimated and vice versa. Using this atmospheric characteristic, the
target emissivity spectrum can be accurately retrieved by iteratively changing the target temperature.
However, this approach is only suitable for outside measurements in the presence of atmospheric
water vapor lines. Because atmospheric features are not present or much lower in closed rooms, the
Reference Channel or the Blackbody Fit should be used alternatively for indoor measurements [41].
Concerning measurements from a greater distance (field, airborne or satellite), atmospheric upwelling
path and τ cannot be neglected. The Automatic Retrieval of Temperature and Emissivity using Spectral
Smoothness (ARTEMISS) by Borel [42] is a hybrid approach, combining atmospheric correction and
TES. First, the required atmospheric parameters (DWR, upwelling radiance, τ) are determined using a
MODTRAN (MODerate resolution atmospheric TRANsmission) look-up-table (LUT). To this end, a
pre-selection of potential atmospheric parameters is completed by using the In-Scene Atmospheric
Compensation (ISAC) approach by Young et al. [43]. Finally, spectral emissivity is retrieved using a
spectral smoothness approach called ISSTES (Iterative Spectrally Smooth Temperature and Emissivity
Separation, [44]). In comparison to other in-scene atmospheric correction approaches, such as ISAC
or AAC (Autonomous Atmospheric Compensation, [45]), ARTEMISS does not require any a priori
knowledge and considers DWR. Therefore, ARTEMISS can be considered the state-of-the-art algorithm
for hyperspectral TIR airborne data.

3.1.2. Temperature-Based Approach

Measuring leaf or canopy temperature for the detection of plant responses to water-deficit stress
is based on the idea of Tanner [46]. It is well established from the leaf energy balance equation that leaf
temperature varies with (evapo-) transpiration rates of the leaves and hence is a function of stomatal
conductance [46–48]. The transpiration rate is inversely correlated with leaf temperature [49]. The
underlying principle is that if plant water status decreases, leaf transpiration is reduced as a result
of active regulation of stomatal aperture [31]. Consequently, the inhibited evaporative cooling effect
leads to higher leaf and canopy temperatures in comparison to a well-watered plant (see Section 2
of this review). Normally, the leaf temperature of a fully transpiring plant is about 2–5 K below the
ambient air temperature [50]. Thus, leaf or canopy temperature depends substantially on the stomatal
conductance [22]. Accordingly, as stomatal closure is the initial plant response to water deficit, TIR
remote sensing of leaf and/or canopy temperature has become an established technique to detect
pre-visual water stress (e.g., [22,51–55]).

The major limitation of the temperature-based approach is that the use of leaf or canopy temperature
values alone cannot directly estimate the physiological status of crop plants [49]. This is because
leaf temperatures measured under natural field conditions are very sensitive to highly fluctuating
environmental factors such as air temperature, humidity, vapor pressure deficit (VPD), wind speed,
and incident radiation. Therefore, a variety of crop water-stress index approaches have been developed
in the past with the aim of estimating plant water stress more quantitatively by normalizing radiatively
measured leaf temperatures to actual environmental conditions. Following, a concise overview of
the most important approaches of TIR sensing for water-stress detection is given (see [22,51,55] for
comprehensive reviews).
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The first development was the normalization of plant temperatures against air temperature
formulated in the Stress Degree Day (SDD) by Jackson et al. [56] and Idso et al. [57]. This approach
is based on the difference between leaf and air temperature (Tleaf − Tair) measured 1–1.5 h after solar
noon. The appearance of water stress is assumed as soon as Tleaf − Tair rises above 0 K. A further
improvement of SDD was the commonly established and mostly used index for remotely sensed
water-stress detection, the Crop Water Stress Index (CWSI, see Table 1 [52,53]):

CWSI = (Tleaf − Twet)/(Tdry − Twet) (1)

where Tleaf is the measured leaf temperature, Twet is the lower boundary for canopy temperature,
assuming a leaf with stomata fully open and a maximum potential transpiration rate, and Tdry is the
upper boundary represented by a non-transpiring leaf with stomata completely closed. The greatest
advantage of CWSI, in comparison to the simple approach of SDD, is the inclusion of current leaf
temperature (Tleaf) and their extreme limits (i.e., Twet and Tdry). By defining these potential boundaries,
CWSI also implicitly accounts for effects of free convection on the plant water stress, and thus indirectly
considers not only current air temperature but also other environmental factors (i.e., wind, radiation,
VPD, etc.). Therefore, CWSI should be adaptable to any crop under any meteorological condition.

A variety of approaches have been developed to estimate Twet and Tdry as the input of CWSI
calculation. While the analytical CWSI is a combination of leaf temperature measurements and actual
micro-meteorological data (e.g., wind, air temperature, VPD), the empirical approach only accounts for
leaf temperature, air temperature, VPD and two empirically determined calibration variables [55].

Despite CWSI performing reasonably well in dry and hot climates with high VPD, its performance
is limited in humid climates with low VPD and high variability in wind speed, cloud cover, and thus
incident radiation [22]. Therefore, the most powerful approach to overcome these problems is the
use of artificial reference surfaces. This approach allows simultaneous measurement of reference
and leaf temperature. The main advantage of using artificial reference surfaces is that no additional
meteorological measurements are required and all the needed values can be measured within the
same image even for the spatial scale implementation (e.g., [22,55,58]). However, the use of artificial
reference surfaces presents some problems regarding the choice of material and its handling in the
field. In principle, it should have the same aerodynamic and optical properties as the real leaves.
Furthermore, its spectral emissivity must be close or similar to the emissivity of the observed leaves to
prevent errors in temperature estimation [22]. At the airborne and satellite scale, the application of
artificial reference surfaces seems to be difficult [59] and could be replaced by larger wet references as
suggested by Meron et al. [60].
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Table 1. A selection of commonly applied indices and approaches for water-stress detection using the
main multi-/hyperspectral remote sensing imaging techniques: TIR, VNIR/SWIR, and SIF.

Water-Stress Index Plant Response to Water Stress Formula Reference

TIR
SDD (Stress Degree Day) Rise in plant temperature Tc − Tair [56]
CWSI (Crop Water Stress Index) Rise in plant temperature CWSI = (Tc − Twet)/(Tdry − Twet) [48,52,53]

WDI (Water Deficit Index) Rise in plant temperature Combination of NDVI (or derivate, e.g.,
SAVI) and Tc

[61]

Spectral emissivity Alteration due to changes in the
compositions of leaf constituents Spectral emissivity (ε) [62,63]

VNIR/SWIR
PRI (Photochemical Reflectance Index) Changes in xanthophyll content PRI = (R570 − R531)/(R570 + R531) [64]
SR (Simple Ratio) Decrease in chlorophyll content SR = R800/R670 [65]
NDVI (Normalized Difference
Vegetation Index)

Decrease in chlorophyll content,
canopy structural changes NDVI = (R800 − R670)/(R800 + R670) [66]

WI (Water Index) Decrease in leaf water content WI = R900/R970 [67]
LWI (Leaf Water Index) Decrease in leaf water content LWI = R1300/R1450 [68]
MSI (Moisture Stress Index) Decrease in leaf water content MSI = R1600/R820 [69]
NDWI (Normalized Difference Water
Index) Decrease in leaf water content NDWI = (R857 − R1241)/(R857 + R1241) [70]

SIF Changes in photosynthetic efficiency
due to decreased CO2 uptake SIF685, SIF740, or SIF685/SIF740 [24,71–73]

Alternative derivatives of the CWSI are the Water Deficit Index (WDI, [61]) and the thermal index
of relative stomatal conductance (IG, [48]). WDI takes advantage of an optical vegetation index (VI)
(e.g., NDVI, SAVI) to separate vegetation from soil pixels within a field. Based on some rearrangement
of the leaf energy balance equation, IG has the advantage over CWSI that it is directly linearly related
to stomatal conductance [55].

Because of the enormous potential of temperature-based indices for the pre-visual detection of
plant responses to water stress, many airborne and satellite TIR sensors (Table 2) have been developed
and have been applied in agriculture (see [29] for review). However, satellite sensors have limitations
for applications in precision agriculture because of their low spatial and temporal resolution. For
example, the best spatial resolution with 100 m is delivered by Landsat 8, which for most agricultural
cultivation systems corresponds to a single field per pixel [74]. Thus, recent developments in TIR
remote sensing from airborne and Unmanned Aerial Vehicles (UAVs) have great potential to bridge
the gap between low-resolution satellite images and small-scale in situ measurements. For example,
Berni et al. [75] demonstrated the ability of quantitative UAV remote sensing for several agricultural
applications by using thermal and narrowband multispectral optical sensors.
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Table 2. Current available and planned TIR sensors at ground, airborne, and satellite level. The table should provide an overview without claiming to be exhaustive.

Level (Satellite)/Sensor Wavelength [µm] Thermal Bands
(7–14µm) Bandwidth GSD Temp. Res. [days] Reference

Ground
(only hyperspectral

instruments)

µFTIR 102F
(non-imaging) 2–14 ~110 6 cm−1 10 cm diameter @ 1 m - [76,77]

MIDAC (non-imaging) 2.5–20 ~1400 up to 0.5 cm−1 5.5 cm diameter @ 1 m - [78]
HyperCam-LW 7.7–11.5 ~1700 up to 0.25 cm−1 ~0.3–1 mm @ 1 m - [79]

Airborne
(multispectral)

ATLAS 8.2–12.2 6 0.4 µm 2 m @ 1 km - [80]
TIMS 8.2–12.2 6 0.4 µm - - [81]

(hyperspectral)

AHI 7.5–11.5 256 or 32 ~15 nm or ~125 nm - - [82]
AISA Owl 7.6–12.3 96 100 nm 1.1 m @ 1 km - [83]

HyperCam-LW 7.7–11.5 ~1700 up to 0.25 cm−1 0.3 m @ 1 km - [84]
HyTES 7.5–12 256 1.8 m @ 1 km [85]
SEBASS 7.5–13.5 128 ~ 46 nm 1 m @ 1 km - [86]
TASI-600 8–11.5 32 0.25 µm - - [87]

Satellite
(available)

Landsat/ [88]
TM 10.4–12.5 1 - 120 m 16

ETM+ 10.4–12.5 1 - 60 m 16
DCM (TIRS) 10.6–12.5 2 0.6–1 µm 100 m 16
Terra/ASTER 8.15–11.65 5 0.35–0.7 µm 90 m 16 [89]

NOAA/AVHRR 10.3–12.5 2 1 µm 1090 m 1
2 [90]

Terra/MODIS 8.4–14.4 8 0.3 µm 1000 m 1 [91]
Sentinel-3/SLSTR (Sea

and Land Surface
Temperature
Radiometer)

10.95–13 2 1 µm 1000 m 1–2 [92]

ISS/ECOSTRESS 8–12.5 5 0.9 µm 40–60 m - [93]

(planned or concept) HyspIRI/SBG (Surface
Biology and Geology) 7.35–12.05 7 0.3–0.5 µm 60 m 5 [94]

HiTeSEM/
[95]Spectrometer 7.2–12.5 30–75 60 nm 60 m

1–5Broadband Imager 7.2–12.5 2 - 20 m
Sentinel-8/LSTM (Land
Surface Temperature

Monitoring)
8.6–12 5 18 nm 30–50 m 1–3 [96]
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The majority of studies uses broadband TIR sensors to estimate temperature-based indices for
the detection of plant responses to water stress [59,97–100]. Broadband TIR imagers (i.e., one spectral
band in the wavebands of 7–14 µm) are based on the assumption of a constant emissivity (e.g., 0.97
for vegetation), which does not exist in nature [101]. Thus, neglecting the spectral emissivity of the
leaves themselves limits the accuracy of temperature estimation. For example, an error in the assumed
emissivity of 1% results in absolute temperature errors of about 1 K [22]. However, new hyperspectral
TIR imagers provide innovative techniques to overcome this limitation by many narrowband measures,
which allow precise spectral emissivity retrieval and hence better surface temperature estimation
compared to broadband thermal cameras (for more details see Section 3.1.4 in this review).

3.1.3. Emissivity-Based Approach

Despite a variety of geological applications using TIR spectroscopy (e.g., [102,103]), up to now,
hyperspectral TIR remote sensing of plant properties has received little attention. The general
assumption that vegetation does not provide suitable spectral features in the TIR to study plant
physiological traits depends on several issues as summarized by Ribeiro da Luz and Crowley [104]:
(i) general lack of hyperspectral instruments for remote sensing (most available setups are based on
laboratory equipment), (ii) very low and complex spectral emissivity variations are originating from
complex plant physiological and biochemical processes, (iii) low signal-to-noise-ratio (SNR) as well as
low spatial and spectral resolution of airborne or satellite remote sensing TIR sensors fail to detect
minor variations in plants TIR spectral fingerprint, (iv) proper atmospheric correction and advanced
TES methods are needed to retrieve accurate emissivity spectra.

Only a few researchers have studied vegetation spectra in TIR thus far. Salisbury [105] was
the first who recognized detectable spectral variations in fresh leaves of 13 different tree species
using Directional Hemispherical Reflectance (DHR) measurements at the laboratory level. In 2007,
Ribeiro da Luz and Crowley [104] associated vegetation spectral features to leaf chemical compounds
such as cellulose, xylan, lignin, cutin, and silica. Furthermore, they were the first who carried out
suitable field, canopy and airborne measurements of vegetation spectra in the TIR domain [106]. These
findings, together with recent advances in sensor technology and the availability of hyperspectral
TIR imagers (see Table 2; e.g., Telops HyperCam-LW, Speciem AisaOWL, Itres TASI-600, SEBASS
(Spatially Enhanced Broadband Array Spectrograph System), HyTES) facilitate new possibilities to
detect environmental stresses based on spectral emissivity. The main underlying advantage of TIR
spectral information in comparison to the VNIR/SWIR domain is that TIR spectral features originate
from primary absorption bands of biochemical leaf compounds (e.g., cellulose) and should thus
exhibit higher spectral contrast as VNIR/SWIR spectra which are mainly dominated by overtones and
combination modes of fundamental vibrations originating from the interactions between solar radiation
and leaf contents (e.g., leaf pigments) [107]. Therefore, changes in the compositions of leaf constituents
induced by water stress should be accompanied by changes in the emissivity spectra (e.g., [108]).
However, only little effort has been directed to the detection of plant responses to environmental
stresses based on spectral emissivity. Buitrago et al. [62] showed the ability of spectral emissivity to
detect water and cold stress on both European beech (Fagus sylvatica) and rhododendron (Rhododendron
cf. catawbiense) leaves using DHR laboratory measurements. Gerhards et al. [63] conducted further
successful research on the utility to use spectral emissivity for the detection of water stress on potato
plants (Solanum tuberosum L. Cilena).

3.1.4. Physically-Based Approach

Since the temperature-based indices only provide the relative measures of plant stress, the
physically-based modeling of evapotranspiration (ET) could offer an alternative approach not only for
the detection of plant responses to water deficit, but, also to gain further insights into the interaction
of plants with the intervening pedosphere and atmosphere under environmental stress conditions.
Intrinsic water use by crops is principally determined by transpiration (T), thus, accurately quantifying
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crop T and its spatial variability is a key metric to account for the crop consumptive water use and
contribute to water resource management needed in both ecology and agriculture.

Among the ranges of techniques used to measure ET (e.g., lysimetric, Bowen-ratio energy balance
and the eddy covariance) [109–111], eddy covariance (EC) is the most promising for continuous
monitoring of ET. However, it is hindered by several technical, economic, and environmental factors,
and sometimes suffers due to extended periods of non-operation [112]. EC does not provide spatially
explicit ET, and thus is not ideally suited for the research purposes of water-stress detection. However,
TIR remote sensing provides the ability of synoptic, spatially continuous, and frequent observations of
ET at varying spatial and temporal scales.

Estimation of ET through TIR remote sensing is based on surface energy balance (SEB)
modeling [113–117]. In state-of-the-art SEB models, λE (evaporation as latent heat flux) is derived
either as a residual of the SEB or through partitioning of the net available energy (ϕ) (i.e., net radiation,
RN-soil heat flux, G). The principal assumption of using land-surface temperature (LST) in a SEB model
is, TIR remote sensing can give direct information of the land-surface moisture status influencing the
surface energy fluxes and their partitioning [113,118]. This LST is directly integrated into physical SEB
models [115] which describes the heat flux between the surface and atmosphere by an electrical analog
which is driven by a difference in temperature (as a potential) with the rate controlled by aerodynamic (or
boundary layer) conductance (gA). Examples are: the one-source approach that treats the soil-vegetation
system as a single unit and derive lumped evaporation [116,119]; or the two-source approach treating
the soil-vegetation system separately, thereby decomposing LST into soil and vegetation temperatures,
so that evaporation and transpiration can be retrieved individually [113,120,121]. Both approaches
follow a bottom-up scaling approach and combine LST with radiation, meteorological and VI data to
solve for sensible heat flux (H) and estimate ET as a residual in the SEB equation. However, solving
this aerodynamic approach causes additional problems, particularly in relation to the specification
of gA which is generally not measurable at scales in which TIR remote sensing is applied. So far, the
adoption of some empirical models to determine this conductance is the state-of-the-art which makes
ET estimates prone to significant uncertainties [122,123].

To circumvent such problem, a non-parametric and calibration-free ET estimation approach has
been developed: the STIC model (Surface Temperature Initiated Closure, [124–128]) for simultaneously
estimating ET, H, gA and canopy-surface conductance (gS), surface moisture status, and ET components
(evaporation, E, and transpiration, T) from the data itself. The STIC formulation is based on physical
integration of LST into the Penman-Monteith (PM) equation to find analytical solutions to gA, gS, and the
aerodynamic temperature (T0) thereby obtaining a “closure” of the SEB. This approach simultaneously
captures the critical feedbacks between gA, gS, T0, and VPD surrounding the evaporating surface. The
estimates of conductances, ET, and associated surface flux components obtained through STIC are
independent of any land-surface parameterization [128,129], thus having the potential to overcome
some of the major stumbling blocks of the currently available thermal ET algorithms.

Beyond ET, water stress is an important factor for inferring the surface and root zone water
status [130]. Based on the ratio of ET to potential evaporation, Anderson et al. [114] developed the
evaporative stress index (ESI) for continental-scale water-stress mapping. Water stress is generally
obtained by combining simulated ET and the theoretical upper limit of ET under unstressed surface
conditions. While a recent study of Delogu et al. [131] assessed the performance of a two-source Soil
Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model for predictions of water
stress from the ET components of soil and canopy; Yang et al. [132] used ESI to capture crop stress and
impacts on regional yield variability in water-limited agricultural regions. Apart from that, ESI is also
used in the U.S. [133,134], Brazil [135], and the Czech Republic [136] to demonstrate the importance of
ET-based water stress to explain regional yield variability in water-limited agroecosystems.
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3.2. Comparison to Other Spectral Domains

Over the past four decades, remote sensing of vegetation has focused on the solar- or
optical-reflective domain of the electromagnetic spectrum (0.4–2.5µm; VNIR/SWIR) with a large number
of available multi- and hyperspectral sensors at ground- (e.g., ASD FieldSpec, SpectralEvolution PSR+),
airborne- (e.g., AVIRIS, HyMap, HySpex, Aisa FENIX), and spaceborne-level (e.g., Landsat, SPOT,
MODIS, IKONOS; HYPERION). Optical-reflective remote sensing is based on the spectral reflectance
properties of mainly the leaves, the canopy and the underlying soil [32,137]. Especially hyperspectral
data opened the opportunity for the development of narrowband vegetation indices (VIs), simplifying
the interpretation of complex vegetation reflectance signatures based on their indirect relationships
to plant physiological and structural parameters [138] such as canopy water content (e.g., MSI; [69]),
greenness or fractional vegetation cover (NDVI; [66]), or photosynthetic activity (PRI; [64]). All of these
VIs are somehow sensitive to the current plant water status (e.g., chlorophyll and water content, as well
as photosynthetic rate and leaf or canopy structure change under water-stress condition [15,16,20])
and thus can be used as indicators for the detection of plant water stress [73,100,139]. However, VIs
related to chlorophyll or leaf water content are related to late plant responses which tend to arise
with visible symptoms (i.e., changing leaf color, leaf rolling, or wilting). Thus, it can be assumed that
their usage for pre-visual water-stress detection in crops is limited. On the contrary, PRI is directly
linked to the photosynthetic process due to short-term changes in xanthophyll pigments under stress
conditions. Therefore, PRI is considered a pre-visual index for water-stress detection. For instance,
Suárez et al. [140] and Panigada et al. [73] illustrated the feasibility of PRI as a pre-visual water-stress
indicator at airborne level. Suárez et al. [140] observed robust relationships with canopy temperatures
for various crops (e.g., r2 = 0.8 for peach trees, r2 = 0.65 for olive trees, r2 = 0.72 for maize). Additionally,
Panigada et al. [73] found that PRI is more sensitive to an early plant water-stress stadium than
traditional VIs (e.g., NDVI). However, the ability of the PRI to be used for water-stress detection is not
conclusive [63,73,139].

In contrast, remote sensing of SIF, the passive measurement of chlorophyll fluorescence emission
peaks centered at 685 nm and 740 nm, is considered a direct indicator of photosynthetic efficiency [72] and
has become more and more prominent over the last decade (see Meroni et al. [71] for a comprehensive
review). Simplified, the rationale for remote sensing of SIF is based on the competitive interactions of
how radiative energy absorbed by leaf chlorophyll is processed within the plant: (i) most of the energy
is used for the photochemical conversion to sugars through photosynthesis, (ii) the non-used energy is
rapidly re-emitted through chlorophyll fluorescence or (iii) heat dissipation [23]. Since CO2 uptake
is reduced under water-stress conditions and thus energy used by photosynthesis is also decreased,
meanwhile the amount of radiative energy remains constant, SIF and/or heat dissipation would
consequently also change. Therefore, changes in SIF might be highly correlated with photosynthetic
efficiency and it can thus be assumed to be a proxy for early detection of plant responses to water
stress [72,141,142]. Many ground-based studies have been undertaken to demonstrate the feasibilities
of fluorescence sensing to detect and monitor plant stresses. Additionally, current advances in sensor
technology have opened new opportunities to focus on SIF imaging from airborne and even spaceborne
platforms. Since the fluorescence signal is considerably lower (about 1–2% of the total energy reflected
and emitted by plants) than the plant reflectance used by optical sensor systems, a sensor for SIF
sensing requires an extremely high SNR which traditionally limits other sensor abilities (i.e., spectral
and/or spatial resolution). Apart from this limitation, the fluorescence emission peaks appear in
super-narrow spectral windows within the spectral range from 650 to 800 nm, requiring extremely high
spectral resolution in the range of nanometers. Notwithstanding, the major potential of SIF remote
sensing could be presumed from the FLEX (Fluorescence Explorer) satellite mission supported by the
European Space Agency (ESA). Although recent experiments based on airborne data demonstrated
the utility of SIF for quantitative plant stress detection [139,142], further multi-sensor airborne studies
(e.g., comparative research of SIF, VNIR/SWIR and TIR) are needed to establish a consistent basis for a
robust assessment.
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Since different plant stresses co-occurring under field conditions cause various plant responses,
a multi-sensor approach not only provides useful information about current plant status but also
on the causes of biophysical, physiological, and photochemical changes. Several airborne studies
examined the relationship between different remote sensing approaches for water-stress detection,
ranging from optical indices over SIF to temperature-based indices. For example, Panigada et al. [73]
performed a comparative analysis on airborne level. They found that temperature-based indices
performed best in comparison to SIF and optical indices (e.g., PRI) in cereal crops under different
irrigation levels. Similar results were obtained by Gerhards et al. at ground [63] and airborne
level [143]. However, a hyperspectral multi-sensor airborne approach with its high spatial, spectral,
and temporal resolution has great potential to bridge the gap between in situ and satellite observation.
Furthermore, such concepts provide profound insights into the actual plant status and the rationale
of physiological and biochemical changes. Thus, integrated use of thermal and narrowband optical
imagery to accurately retrieve stress-related plant responses as an input for agricultural applications
(e.g., irrigation scheduling, phenological growth stage assessment, agricultural species detection) is
highly recommended.

4. Challenges and Future Perspectives

4.1. Relationship between Spectral Emissivity Features and Leaf Traits

Current advances in sensor technology have opened the opportunity for imaging hyperspectral
remote sensing of vegetation in the TIR spectral domain and thus to use spectral emissivity for the
detection of environmental stresses. However, only a few studies have been conducted that examine
spectral emissivity in remote sensing of vegetation. For example, Ullah et al. [144] and Rock et al. [145]
demonstrated that specific spectral features in the TIR signature are related to various plant species.
Furthermore, for the first time, water stress was detected through changes in spectral emissivity as
measured by imaging TIR spectroscopy at ground level [63]. Additional studies by Buitrago et al. [62]
and Buitrago Acevedo et al. [146] provided promising results on the relation between leaf structural or
biochemical characteristics and leaf emissivity spectra.

However, the utility of spectral emissivity for the detection of plant responses to environmental
stresses is limited. For example, it is still unknown which physiological and biochemical processes
cause changes in the spectral emissivity and how they are related. Furthermore, the major challenge
of emissivity-based applications of TIR remote sensing is the upscaling from ground to airborne
and satellite level. Ribeiro da Luz and Crowley [106] and [147] were able to discriminate different
tree species based on their airborne emissivity features but most of the spectral information of plant
emissivity spectra is lost through scaling effects (e.g., mixed pixel, cavity effects), which are still largely
unknown. Furthermore, current TIR satellites do not accomplish the requirements (i.e., high SNR, high
spectral and spatial resolution) to measure the low spectral contrast emissivity features of vegetation
from space. Consequently, the upscaling of emissivity-based approaches for water-stress detection
from space is very limited yet. Therefore, further fundamental research is absolutely needed to better
understand the relations between the spectral emissivity features and changes in leaf traits under
environmental stress conditions at different remote sensing scales.

4.2. Thresholds for Temperature-Based Indices

In comparison to VNIR/SWIR indices, temperature-based indices provide an appropriate pre-visual
proxy for the detection of plant responses to water stress, which already has been demonstrated earlier
by Zarco-Tejada et al. [100] and Panigada et al. [73]. Therefore, TIR indices have an enormous potential
to be applied in precision agriculture and especially in irrigation management to determine the right
time, the right place and the right amount of water to apply to reduce the amount of water used per
unit yield. However, it is still unclear when to irrigate the fields and how much water the crops need.
CWSI is pointed out to be applicable for the detection of crop water stress in different crop types,
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seasonal growing stages, and even various climates. Notwithstanding, further research is needed to
establish generally accepted calculations of CWSI to determine thresholds for irrigation scheduling. In
particular, CWSI can be estimated following various approaches from the analytical CWSI to the use of
artificial reference surfaces for the calculation of Twet and Tdry. In addition, crop-specific thresholds of
CWSI are needed to consider plant-specific strategies to environmental stresses such as various leaf
structural architectures (e.g., hypo- or amphistomatous leaves, cuticle thickness, trichomes). Since the
temperature differences between stressed and non-stressed plants are low in cold and humid climates
due to the low VPD, further care must be taken when applying thresholds of CWSI in more temperate
climate zones [48,51].

4.3. ET Modeling

The uncertainties and challenges of TIR remote sensing to derive ET are mainly categorized
into three generic classes, namely (i) calibration, parameterization uncertainty and spatial scaling
uncertainty, (ii) representative spatial and temporal resolution uncertainty, (iii) ET partitioning
water-stress characterization uncertainty.

Some of the fundamental challenges in ET mapping through SEB models have evolved due to, (i)
the inequality between LST and the aerodynamic temperature (T0), which is essentially responsible
for the exchanges of H [124,125,148,149]; (ii) a non-unique relationship between T0 and LST due to
differences between the roughness lengths (i.e., effective source/sink heights) for momentum (z0M) and
heat (z0H) within vegetation canopy and substrate complex [124,150–152]; (iii) the unavailability of a
universally agreed model to estimate spatially explicit T0 [125,153]; (iv) the lack of a physical-based
or analytical gA model as a true representative for spatial application [124,125]; (v) complexities in
gA parameterization to accommodate the differences between the scalar roughness lengths of heat
(z0H) and momentum (z0M) transfer. Such parameterizations are significantly affected by land-surface
heterogeneity and could cause the ET severely overestimated in the semi-arid or arid ecosystems.

Field-scale ET mapping demands both high temporal and spatial resolution images. Therefore,
dedicated exploitation of both thermal infra-red (IR) and shortwave infrared bands could be helpful to
directly constrain the elements of the SEB and field-scale water status [154]. Another major challenge in
SEB-based ET estimates using polar orbiting sensors is associated with integration of one-time-of-day
ET estimates to daily ET. In the water-unlimited ecosystems, the diurnal course of ET closely follows
sinusoidal pattern of net radiation [155]. Therefore, sinusoidal integration is generally followed to
extrapolate the instantaneous ET to daily ET, with the assumption of self-preservation of evaporative
fraction. However, in the water-stressed ecosystems, morning rise in LST leads to rapid decline of the
topsoil moisture and diurnal ET is substantially lagged behind the net available energy from 11 a.m.
Thus, the assumption of diurnal conservation of evaporative fraction is violated in such ecosystems
and sinusoidal integration could lead to overestimation of daily ET.

ET is an absolute, physical quantity, but it also needs to be translated into quantitative water-stress
information for inferring the surface water status and the root zone soil moisture by partitioning of
ET into evaporation (E) and transpiration (T) [130,156]. Contemporary ET partitioning frameworks
use single soil-vegetation composite surface skin temperature (i.e., LST). The two-source SEB model
proposes an arguable underlying assumption to down-regulate transpiration from its potential upper
limit to actual [113], the model assumes sufficient accessibility of water in the root zone to transpire
at a potential rate. Thus, the modeled potential transpiration rate is a valid first guess estimate for
T under water-unlimited conditions. However, if vegetation stress is ignored in the first guess, the
resulting evaporation will decrease to unrealistic levels (negative fluxes) to maintain the same total
composite LST and T will be substantially overestimated. Such ambiguous assumptions need to be
studied and improvised in detail for routine mapping of field-scale water stress in semi-arid and arid
ecosystems, and in the Mediterranean climates.

Not only the challenges of TIR remote sensing to derive ET are numerous but also ET modeling
itself. due to aforementioned criticalities in determining the aerodynamic (gA) and canopy-substrate
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conductance (gC) [157], and T0 [151]. Observations of gA and gC are not available at the respective
scales and their estimation relies heavily on the empirical parameterizations of surface roughness,
displacement height, and atmospheric stability correction, which degrades the performance of the
models especially in the water-stressed ecosystems. A new ET model, SPARSE [130,158], is particularly
designed for ET mapping in water-scarce ecosystems and tends to overcome the T0 vs. LST inequality
challenges. The non-parametric STIC ET model [125–128], has also been developed to circumvent the
challenges of scalability of empirical conductance functions for satellite-based ET mapping, and is
the only model that estimates spatially explicit ET without any biophysical parameterization of the
conductances [124]. For successful application of SEB models in ET mapping, it is not only important
to have an LST component in the model, but, another crucial importance is to have an ensemble
ET from a range of LST-driven models to obtain the best ET estimate for respective crop, soil, and
hydrometeorological conditions.

4.4. Data Processing

The main challenge of all TIR approaches for the detection of crop water-stress at airborne
and satellite level is associated with sensor related technical limitations and scale effects. From the
technical side, instrument SNR, atmospheric correction, and TES are the most challenging tasks to
be solved. Meanwhile, scale effects are dealing with constraints originating from mixed pixels and
canopy structure-related factors such as scattering, re-radiation and cavity effects [95]. For example, the
disaggregation of crop temperature from the much warmer soil pixels is of great interest for the accuracy
of temperature-based indices and ET modeling approaches as retrieved from airborne- and satellite
platforms [159]. However, since the pre-processing of TIR data is essential for the retrieval of both
spectral emissivity and surface temperature, the major limitation of hyperspectral TIR remote sensing
from airborne- and satellite platforms persists in the lack of appropriate data processing schemes.
Therefore, further research is especially needed in the development and implementation of solid
atmospheric correction processing schemes and TES algorithms. Since hyperspectral remote sensing
in the TIR is currently limited to ground- and airborne level and thus only available for small-scale
studies, there is a demand for hyperspectral satellite TIR missions with regional or global coverage.

4.5. Satellite Multi-/Hyperspectral TIR Missions

Since multi- and hyperspectral TIR satellites are currently missing, mission designs such as
HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping [95]) HyspIRI (Hyperspectral
Infrared Imager [94]), and LSTM (Land-Surface Temperature Monitoring [96]) provide very promising
perspectives towards the application of multi-/hyperspectral TIR for the detection of environmental
stresses from space.

Furthermore, in 2018 four innovative Earth-observation instruments were launched and tested
for potential future satellite-based plant function monitoring on the International Space Station
(ISS) [93]. This multi-sensor approach covers a wide range of instruments for the survey of novel
regional and global insights into ecosystem processes and functions. The instruments are the Global
Ecosystem Dynamics Investigation (GEDI, NASA), the Ecosystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS, NASA), the Orbiting Carbon Observatory (OCO-3, NASA),
and the Hyperspectral Imager Suite (HISUI, JAXA). GEDI carries a LiDAR (Light Detection And
Ranging) measuring canopy structural parameters (e.g., height, biomass). TIR data products (i.e.,
surface temperature, ET) will be delivered by ECOSTRESS. SIF is measured by OCO-3 and HISUI
delivers surface reflectance (10 nm spectral resolution) in the VNIR/SWIR. The data products will be
freely available and will open the unique opportunity for scientists to examine the performance and
capabilities of such innovative satellite-based multi-sensor approach to study plant functioning and
the response to environmental stress in a wide range of ecosystems. In particular, the ECOSTRESS
instrument on ISS will offer first prospects for future TIR satellite missions. However, the atmospheric
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correction of the data is very challenging due to the changing height of the ISS. Thus, the data from the
upcoming TIR satellite missions are expected to be more beneficial.

4.6. Representativness and Compatibility

The justification of water-stress research originates due to the increases in agriculture because of
population growth, and increases in environmental stressors (such as drought). However, most of the
current satellite missions fail to have representative spatial and/or temporal resolutions. Because of
technical limitations of the remote sensing sensors, current state-of-the-art thermal infrared sensing
satellites either deliver high temporal (e.g., MODIS, AVHRR, or Sentinel-3 with 1–3 days revisit time;
Table 2) but coarse spatial resolution (i.e., 1 km) or high spatial (e.g., Landsat series, ASTER with ~100 m;
Table 2) but low temporal (i.e., 16 days) resolution images. One Solutions to this could be multi-sensor
scaling, such as pan-sharpening, or more complex disaggregation approaches (e.g., thermal sharpening
or temperature unmixing as listed in Zhan et al. [159]). The combination of independent spectral
domains in a multi-sensor approach would definitely provide the possibilities of new insights in the
soil–plant–atmosphere continuum. However, before multi-sensor combinations can be performed, one
of the major challenges in today’s remote sensing products (i.e., satellite and airborne), the compatibility
of such datasets originating from different platforms and spectral domains with various spatial and
temporal resolution, needs to be confirmed.

5. Conclusions

This review paper has briefly discussed the current state-of-the-art, opportunities and limitations
of multi-/hyperspectral remote sensing approaches for the detection of crop water stress. Water-deficit
stress is of utmost importance to guarantee global water and food supply and knowledge of crop
water status over large farmland areas bear large potential for optimizing agricultural water use. Plant
responses to water stress can be recognized as a sequence of physiological and biochemical changes
depending on the severity and duration of plant water deficit. Hence, the detection of water-stress
symptoms is a function of time and depends on the plant responses to water deficit and their
corresponding physiological changes, which may be sensitive to different remote sensing techniques.

The latest state-of-the-art remote sensing techniques for the detection of crop water stress are:
(i) thermal infrared (TIR) multi-/hyperspectral, (ii) SIF approaches and (iii) classic solar-reflective
(VNIR/SWIR) hyperspectral imaging. For all three domains dedicated sensor technology is required,
which are currently in place for ground and airborne applications and either have satellite concepts
under development (e.g., HySPIRI, Sentinel-8, HiTeSEM in the TIR) or are subject to satellite missions
recently launched or scheduled within the next years (i.e., EnMAP and PRISMA (launched on March
2019) in the VNIR/SWIR, FLEX in the SIF).

Although TIR remote sensing has several potential advantages over optical remote sensing in
crop water-stress detection, there are important challenges to the large-scale usage of hyperspectral
TIR remote sensing for precision agriculture applications: (i) missing thresholds of temperature-based
indices (e.g., CWSI) for the application in irrigation scheduling, (ii) profound knowledge about the
relationship between the spectral emissivity features and changes in leaf traits under environmental
stress conditions is missing, (iii) lack of current TIR satellite missions with suitable spectral and
spatial resolution, (iv) lack of appropriate data processing schemes and radiative transfer models
in TIR spectral domain (including atmospheric correction and temperature emissivity separation)
for hyperspectral TIR remote sensing at airborne- and satellite level. Information from multi-sensor
approaches, including sensors from all three domains (i.e., multi-/hyperspectral TIR, VNIR/SWIR,
and SIF sensors), could provide profound insights about the actual plant status and the rationale
of physiological and biochemical changes. Furthermore, soil water content (SWC) derived by SAR
(Synthetic Aperture Radar) remote sensing (e.g., Sentinel-1) together with ET modeling can add some
extra information about the soil-plant-atmosphere-continuum. All this remotely sensed information
are independent but interlinked to the plant available water in the soil and the resulting fluxes of water
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vapor and heat. A synergistic multi-sensor use will provide better information on the crop water status
than the information provided by a single spectral domain.

In particular, hyperspectral TIR remote sensing provides a large potential for the detection of crop
water stress. Synergistic sensor use will open new avenues for scientists to study plant functioning
and the response to environmental stress in a wide range of ecosystems.

Author Contributions: Conceptualization, M.G.; writing—original draft, M.G.; writing—review and editing,
M.G., M.S., K.M., T.U.; visualization, M.G.; supervision, M.S., K.M. and T.U.; project administration, M.S. and T.U.;
funding acquisition, M.S. and T.U.

Funding: This research was funded by Fonds National de la Recherche (FNR) of Luxembourg within the
PLANTSENS research project [“Detection of plant stress using advanced thermal and spectral remote sensing
techniques for improved crop management”; AFR reference: C13/SR/5894876] and the PhD research of Gilles
Rock [AFR reference: 2011-2/SR/2962130]. Partial support for Martin Schlerf and Kaniska Mallick also came
through the CAOS-2 research unit FOR1598 funded through FNR-DFG. The publication was funded by the Open
Access Fund of Universität Trier and the German Research Foundation (DFG) within the Open Access Publishing
funding programme.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hopkins, W.G.; Hüner, N.P.A. Introduction to Plant Physiology, 4th ed.; Wiley: Hoboken, NJ, USA, 2009;
ISBN 978-0-470-46142-6.

2. Porporato, A.; Laio, F. Plants in water-controlled ecosystems: active role in hydrologic processes and response
to water stress: III. Vegetation water stress. Adv. Water Resour. 2001, 24, 725–744. [CrossRef]

3. Hsiao, T.C.; Fereres, E.; Acevedo, E.; Henderson, D.W. Water Stress and Dynamics of Growth and Yield of
Crop Plants. In Water and Plant Life SE - 18; Lange, O.L., Kappen, L., Schulze, E.-D., Eds.; Ecological Studies;
Springer: Berlin/Heidelberg, Germany, 1976; Volume 19, pp. 281–305. ISBN 978-3-642-66431-1.

4. Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Osório, M.L.; Carvalho, I.; Faria, T.;
Pinheiro, C. How Plants Cope with Water Stress in the Field. Photosynthesis and Growth. Ann. Bot. 2002, 89,
907–916. [CrossRef] [PubMed]

5. United Nations. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Working
Paper No. ESA/P/WP.241; United Nations Department of Economic and Social Affairs, Population Division:
New York, NY, USA, 2015.

6. Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational
Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [CrossRef]

7. Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of
agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [CrossRef]

8. United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations,
Department of Economic and Social Affairs: New York, NY, USA, 2015.

9. Fereres, E.; Evans, R.G. Irrigation of fruit trees and vines: an introduction. Irrig. Sci. 2006, 24, 55–57.
[CrossRef]

10. Morison, J.I.L.; Baker, N.R.; Mullineaux, P.M.; Davies, W.J. Improving water use in crop production.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 639–658. [CrossRef]

11. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z.,
Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007;
Volume 53, ISBN 9788578110796.

12. Gebbers, R.; Adamchuk, V.I. Precision Agriculture and Food Security. Science 2010, 327, 828–831. [CrossRef]
13. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining

knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [CrossRef]
14. Hsiao, T.C. Plant Responses to Water Stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [CrossRef]
15. Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444,

139–158. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0309-1708(01)00006-9
http://dx.doi.org/10.1093/aob/mcf105
http://www.ncbi.nlm.nih.gov/pubmed/12102516
http://dx.doi.org/10.3390/rs5020949
http://dx.doi.org/10.1073/pnas.1116437108
http://dx.doi.org/10.1007/s00271-005-0019-3
http://dx.doi.org/10.1098/rstb.2007.2175
http://dx.doi.org/10.1126/science.1183899
http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
http://dx.doi.org/10.1146/annurev.pp.24.060173.002511
http://dx.doi.org/10.1016/j.abb.2005.10.018
http://www.ncbi.nlm.nih.gov/pubmed/16309626


Remote Sens. 2019, 11, 1240 17 of 24

16. Yordanov, I.; Velikova, V.; Tsonev, T. Plant Responses To Drought and Stress Tolerance. Bulg. J. Plant Physiol
2003, 187–206.

17. Jones, H.G.; Schofield, P. Thermal and other remote sensing of plant stress. Gen. Appl. Plant Physiol. 2008, 34,
19–32.

18. Schulze, E. Carbon Dioxide and Water Vapor Exchange in Response to Drought in the Atmosphere and in
the Soil. Annu. Rev. Plant Physiol. 1986, 37, 247–274. [CrossRef]

19. Jones, H.G.; Vaughan, R.A. Remote sensing of vegetation: principles, techniques, and applications; Oxford
University Press Inc.: Oxford, UK, 2010; ISBN 0199207798.

20. Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: prospects for
water-saving agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [CrossRef]

21. Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997, 2, 48–54. [CrossRef]
22. Jones, H.G. Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology.

In Advances in Botanical Research; Callow, J.A., Ed.; Elsevier Academic Press: San Diego, CA, USA; London,
UK, 2004; Volume 41, pp. 107–163.

23. Porcar-Castell, A.; Tyystjarvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfundel, E.E.; Moreno, J.;
Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing
applications: mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [CrossRef]
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