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Abstract: Limited by the existing imagery sensors, hyperspectral images are characterized by
high spectral resolution but low spatial resolution. The super-resolution (SR) technique aiming
at enhancing the spatial resolution of the input image is a hot topic in computer vision. In this paper,
we present a hyperspectral image (HSI) SR method based on a deep information distillation network
(IDN) and an intra-fusion operation. Specifically, bands are firstly selected by a certain distance and
super-resolved by an IDN. The IDN employs distillation blocks to gradually extract abundant and
efficient features for reconstructing the selected bands. Second, the unselected bands are obtained
via spectral correlation, yielding a coarse high-resolution (HR) HSI. Finally, the spectral-interpolated
coarse HR HSI is intra-fused with the input HSI to achieve a finer HR HSI, making further use
of the spatial-spectral information these unselected bands convey. Different from most existing
fusion-based HSI SR methods, the proposed intra-fusion operation does not require any auxiliary
co-registered image as the input, which makes this method more practical. Moreover, contrary to
most single-based HSI SR methods whose performance decreases significantly as the image quality
gets worse, the proposal deeply utilizes the spatial-spectral information and the mapping knowledge
provided by the IDN, which achieves more robust performance. Experimental data and comparative
analysis have demonstrated the effectiveness of this method.

Keywords: hyperspectral image (HSI); super-resolution (SR); deep information distillation network
(IDN); intra-fusion

1. Introduction

Hyperspectral imagery sensors usually collect reflectance information of objects in hundreds
of contiguous bands over a certain electromagnetic spectrum [1], and the hyperspectral image (HSI)
can simultaneously obtain a set of two-dimensional images (or bands) [2]. These rich bands play
an important role in discriminating different objects by their spectral signatures [3], and making
them widely applicable in classification [4] and anomaly detection [5]. However, limited by the
existing imaging sensor technologies, HSIs are characterized by low spatial resolution, which results
in limitation of their applications’ performance. As a type of signal post-processing technique, HSI
super-resolution (SR) can improve the spatial resolution of the HSI without modifying the imagery
hardware, which is a hot issue in computer vision.

HSI SR has been studied for a long time in remote sensing and many methods have been proposed
to improve the spatial resolution of the HSIs. According to the number of input images, these methods
can be roughly classified into two types: the fusion-based HSI SR methods and the single-based ones.

The fusion-based approaches are based on the assumption that multiple fully-registered
observations of the same scene are accessible. Dong et al. [6] proposed a nonnegative structured
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sparse representation approach, which jointly estimates the dictionary and sparse code of the
high-resolution(HR) HSI based on the input low-resolution (LR) HSI and HR panchromatic (PAN) image.
By utilizing the similarities between pixels in the super-pixel, Fang et al. [7] proposed a super-pixel based
sparse representation method. Dian et al. [8] presented a non-local sparse tensor factorization HSI SR
method, which achieves a fuller exploitation of the spatial-spectral structures in the HSI. For matrixing
three-dimensional HSI and multispectral image (MSI) that are prone to inducing loss of structural
information, Kanatsoulis et al. [9] addressed the problem from a tensor perspective and established
a coupled tensor factorization framework. Zhang et al. [10] discovered that the clustering manifold
structure of the latent HSI can be well preserved in the spatial domain of the input conventional image,
and proposed to super-resolve the HSI by this discovery. Considering that the sparse based methods
tackle each pixel independently, Han et al. [11] utilized a self-similarity prior as the constraint for
sparse representation of the HSI and MSI. With the auxiliary HR image being another input of this
kind of methods, more information is obtained, and this type of methods often achieves a better spatial
enhancement. However, in reality, the auxiliary fully-registered HR description of the same scene is
always hard or impossible to be achieved, which restricts the practicability of this type of methods.

The single-based HSI SR methods can be further divided into the sub-pixel mapping ones and the
direct single-based ones. Sub-pixel mapping methods aim at estimating the fractional abundance of
pure ground objects within a mixed pixel, and obtain the probabilities of sub-pixels to belong to different
land cover classes [12]. Irmak [13] firstly utilized the virtual dimensionality to determine the number
of endmembers in the scene and computed the abundance maps. The corresponding HR abundance
maps are firstly obtained by maximum a posteriori method. Then, they are utilized to reconstruct the
HR HSI. This kind of methods tackles the SR problem from the endmember extraction and fractional
abundance estimation. However, the noise generated by the unmixing operation is inevitable during
the mapping operation, which makes a negative influence on the SR process. Additionally, sub-pixel
mapping methods are usually applied to certain applications, such as classification and target detection,
for overcoming the limitation in spatial resolution. Arun et al. [14] explored convolutional neural
network to jointly optimize the unmixing and mapping operation in a supervised manner. Xu et al. [15]
presented a joint spectral-spatial mapping model to obtain the probabilities of sub-pixels to belong to
different land cover classes, and obtained a resolution-enhanced image.

The direct single-based HSI SR methods aim at reconstructing an HR HSI with only one LR HSI.
Inspired by the achievements in deep learning based RGB image SR methods, Yuan et al. [16] and
He et al. [17] proposed to super-resolve each band individually by transfer learning. Considering
the three-dimensional data characteristics of HSIs, Mei et al. [18] proposed a 3D-CNN to exploit both
the spatial context and the spectral correlation. However, as there are usually hundreds of bands in
the HSI, super-resolving the bands individually consumes much complexity. Moreover, as the image
quality decreases, super-resolving each single band will be much more difficult, which will induce
severe performance degradation.

In this paper, we propose an HSI SR method by combining an information distillation network
(IDN) [19] with an intra-fusion operation to make a deep exploitation of the spatial-spectral
information. During the implementation process, bands are firstly selected by certain interval, and then
super-resolved by taking advantage of their spatial information and the spatial mapping learnt by
the IDN model. The IDN was trained by 91 images from Yang et al. [20] and 200 images from the
Berkeley Segmentation dataset [21]. Three data augmentation ways were applied to make full use of
the training data and 2619 images were obtained. The IDN was designed to learn the spatial mapping
between Y channels of the low-resolution RGB images and those of the corresponding high-resolution
RGB images. Each single band in HSI can also be tackled as its Y channel at current wavelength. In this
way, it is reasonable to transfer the IDN for the HSI SR. Secondly, spectral correlation is utilized to
achieve a complete but coarse HR HSI. In addition, the information these unselected bands convey is
further exploited by intra-fusing with the coarse HR HSI, resulting a finer HR HSI. In this way, both
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spatial and spectral information of the input LR HSI is fully-utilized, which contributes to the robust
and acceptable performance.The main contributions of this work are summarized as follows:

1. We adopt a scalable SR strategy for super-resolving the HSI. Firstly, an IDN is used for
super-resolving the interval-selected bands individually, a process exploiting their spatial information
and the mapping learned by the IDN. Secondly, the unselected bands are fast interpolated via cubic
Hermit spline method, which uses the high spectral correlation in the HSI to obtain a coarse HR HSI.
Both spatial and spectral information is utilized. Meanwhile, contrary to super-resolving the HSI band
by band via some certain methods, this scalable SR strategy achieves a tradeoff between high quality
and high efficiency.

2. Most existing single-based methods super-resolve bands in the HSI individually, which neglects
the spectral information. In this way, their performance is highly correlated to the images’ spatial
quality. The proposed method deeply utilizes both the spatial and spectral information in the HSI,
and its performance is more robust.

3. To deeply use the information the input LR HSI conveys, intra-fusion is made between the
spectral-interpolated coarse HR HSI and the input LR HSI. Different from most fusion methods, which
require another co-registered image as the input, the other input of the proposed intra-fusion is an
intermediate outcome of the SR processing, which fully exploits the information the LR HSI conveys
in a subtle way.

The remainder of the paper is organized as follows: Section 2 describes the proposed method. We
present the experimental results and data analysis in Section 3. Conclusions are drawn in Section 4.

2. Proposed Method

In this section, we present the four main parts of the proposed method: framework overview,
bands’ selection and super-resolution by IDN, unselected bands’ super-resolution, and intra-fusion.
Detailed descriptions of these four parts are presented in the following subsections.

2.1. Framework Overview

Figure 1 illustrates the workflow of the proposed HSI SR method. The input data are one LR HSI.
Bands are first selected by a certain distance and super-resolved via IDN with respect to their spatial
information. Then, unselected bands are super-resolved by utilizing their spectral correlation to obtain
a coarse but integrated HR HSI. Furthermore, this coarse HR HSI is intra-fused with the input LR HSI
to further use the information these unselected bands convey.

Band 
selection

selected bands

unselected bands

Spectral 
Interpolation

…

Intra-
fusion

…

…

…

…

…

…

... +

Bicubic

FBlock DBlock 1 RBlock

IDN

C
o

n
v

+
R

elu

C
o

n
v

+
R

elu

E
n

h
a

n
cem

en
t

C
o

m
p

ressio
n

D
B

lo
ck

 2

D
eco

n
v

D
B

lo
ck

 n

Figure 1. Workflow of the proposed method.

To facilitate discussion, we clarify the notations of some frequently used terms. The input LR HSI
and the desired HR HSI are represented as L ∈ Rw×h×n and H ∈ Rsw×sh×n, where w and h denote
the width and height of the input LR HSI. s and n denote the scaling factor and the number of bands,
respectively. H̄ and Ĥ denote the coarse HR HSI and the intra-fused fine HR HSI, respectively.
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2.2. Bands’ Selection and Super-Resolution by IDN

This part firstly analyzes the correlation between the bands in the HSI and depicts the rationality
of interval setting, and then super-resolves the selected bands via IDN.

2.2.1. Correlation Analysis

For HSIs, their neighboring bands are highly correlated in the spectral domain [22]. Figure 2
plots the correlation coefficient curves of the Pavia university scene HSI, a remote-sensing HSI widely
applied in classification [23].
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Figure 2. Correlation between neighboring bands in the Pavia university scene.

The value on the x-axis is the index of the current band Hi. The legend denotes the interval
between Hi and the other neighboring band Hi+d. The value on the y-axis is the correlation coefficient
between Hi and Hi+d. According to the three curves in Figure 2, although correlation decreases as the
band gets further from the current one, most bands are highly correlated to their neighboring bands,
whose correlation coefficients are larger than 0.95. Moreover, as the image quality decreases, most
high-frequency in the images are damaged, the correlation coefficient between neighboring bands
is supposed to be higher (related experiments have been described in Section 3). Hence, to achieve
a high efficiency without performance loss, it is rational and necessary to firstly select some bands by
certain distance and super-resolve the selected bands by utilizing their spatial information. Contrary to
super-resolving each bands in the HSI, this operation will highly reduce the computational complexity
with negligible performance degradation.

2.2.2. Super-Resolution via IDN

Figure 3 has shown the general architecture of the IDN, a process consisting of three parts, i.e.,
a feature extraction block, multiple stacked information distillation blocks and a reconstruction block.
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Figure 3. General architecture of the deep IDN.

The feature extraction block applies two 3× 3 convolution layers to extract the feature maps from
the original LR images. The extracted features maps act as the input of the information distillation
blocks. Several information distillation blocks are composed by using chained mode, in which each
block contains an enhancement unit and a compression unit with stacked style. Finally, a transposed
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convolution layer without activation function acts as the reconstruction block to obtain the HR image.
Compared with the other networks, the IDN extracts feature maps directly from the LR images and
utilizes multiple DBlocks to generate the residual representations in HR space. The enhancement unit
in each DBlock gathers as much information as possible, and the remaining compression unit distills
more useful information, which achieves competitive results with a concise structure.

It should be noted that the network considered two loss functions during the training process.
The first one is the widely used mean square error (MSE):

lossMSE =
1
N

N

∑
i=1
||Ii − Îi||22 (1)

in which N, Ii, and Îi represent the number of training samples, the ith input image patch and the label
of the ith input image patch, respectively. Meanwhile, mean absolute error (MAE) is also applied to
train the IDN model. The MAE is formulated as:

lossMAE =
1
N

N

∑
i=1
||Ii − Îi||1 (2)

Specifically, the IDN is first trained with lossMAE, and then fine-tuned by the lossMSE.
Having the trained IDN, the spatial resolution of the selected bands in the LR HSI can be enhanced

in a fast and efficient way, and the IDN super-resolved HR bands can be denoted as

H̄ = {H̄1, [], ..., [], H̄1+d, [], ..., [], H̄2d+1, [], ...} (3)

where the unselected bands are temporarily missing.

2.3. Spectral-Interpolation for the Unselected Bands

Given the super-resolved interval-selected bands, the proposal applies a cubic Hermite spline
method f (x) to achieve a continuous and smooth entire HR HSI. Cubic Hermite splines are typically
used for interpolation of numeric data specified at given argument values, to obtain a smooth
continuous function. Compared with the linearity, it can better hold and analyze the mean of the the
dependent variables and capture the nature of their relationships [24].

Suppose that the following nodes in the cubic Hermite spline function and their values are given:

x :a = x0 < x1 < ... < xn = b

y : y0 y1 yn
(4)

in which n denotes the number of the given nodes minus 1, thus it starts from 0. The proposed
cubic Hermite spline function f (x) describes the mapping between x and y, and is a partition-
defined formula.

With these IDN-super-resolved HR bands acting as the given nodes, the cubic Hermite spline
function f (x) can be applied to obtain one coarse but integrated HR HSI, which can be denoted as:

H̄ = [H̄1, f (L2), f (L3), ..., H̄1+d, ...] (5)

2.4. Intra-Fusion

According to the above descriptions, the HR HSI H̄ is reconstructed by utilizing the spatial
information of the selected bands, the mapping learned by the IDN model and the spectral correlation.
The information these unselected bands convey is directly neglected. If further utilization of these
information is made, it is supposed that a spatial enhancement will be gained. In this way, we propose
to get an HR HSI Ĥ through intra-fusing the spectral-interpolated H̄ with the input LR HSI L via
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the non-negative matrix factorization (NMF) method. Different from most existing fusion methods,
the input of the proposed fusion is an intermediate output of the super-resolution process, which is
why it is named as intra-fusion. This intra-fusion is more flexible and more practical.

Because of the coarse spatial resolution, pixels in the HSI are usually mixed by different materials.
Spectral curves of the HSI usually are mixtures of different pure materials’ reflectance, and these pure
materials are called endmembers. Considering the mathematics simplicity and physical effectiveness,
each spectral curve can be modeled by a linear mixture model. Let matrix Hα ∈ Rn×s2wh represent
the desired HR HSI by concatenating the pixels of HSI H: H ∈ Rsw×sh×n → Hα ∈ Rn×s2wh. The same
operation is implemented on the spectral-interpolated HR HSI H̄ ∈ Rsw×sh×n and the input LR HSI
L ∈ Rw×h×n to obtain the H̄α ∈ Rn×s2wh and Lα ∈ Rn×wh. In this way, the desired HR HSI Hα can be
denoted as

Hα = WC + N (6)

where W ∈ Rn×D is the endmember matrix, and C ∈ RD×s2wh is the abundance matrix. N denotes
the residual. D is the number of endmembers and each column in W represents the spectrum of an
endmember. Here, D is obtained by the Neyman–Pearson lemma [25]. Given an HSI with n bands,
eigenvalues of its correlation matrix Rn×n and covariance matrix Kn×n are computed and sorted as
{λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn} and {ξ1 ≥ ξ2 ≥ ξ3 ≥ · · · ≥ ξn}, respectively. According to the binary
hypothesis testing, assume H0: λi − ξi = 0 , H1: λi − ξi > 0. According to the preset false alarm rate,
a threshold α can be computed to maximize the detection rate. In this way, when λi − ξi is greater
than α, a signal signature is considered to exist. The number of endmembers is obtained by counting
the number of eigenvalues that satisfy λi − ξi > α. In the proposal, the given false alarm rate is set as
5× 10−2. Meanwhile, all elements in the matrix W and C are nonnegative.

The spectral-interpolated HR HSI H̄α and the input LR HSI Lα can be denoted as:

H̄α = QHα + Eq (7)

Lα = HαP + Ep (8)

in which Q is the spectral transform matrix, and P ∈ Rs2wh×wh is the spatial spread transform matrix.
Eq and Ep are the residual matrices. When substituting Equation (6) into Equations (7) and (8), H̄α and
Lα can be reformulated as

H̄α ≈WTC (9)

Lα ≈WCT (10)

where WT and CT denote the spatial degraded abundance matrix and the spectrally degraded matrix,
respectively.

During the HSI unmixing procedure, it is expected that the HSI reconstructed by the endmember
and coefficient matrices should be close to input image. In this way, the cost functions about the
input LR HSI Lα and spectral-interpolated H̄α are formulated as ||H̄α −WTC||2F and ||Lα −WCT ||2F,
respectively. NMF was developed to decompose a nonnegative matrix into a product of nonnegative
matrices [26]. When applied to the H̄α, the cost function is formulated as

arg min
WT ,C

||H̄α −WTC||2F

s.t.WT(i, j) ≥ 0, C(i, j) ≥ 0
(11)

During the solving process, both WT and C are firstly initialized as nonnegative matrices. If WT is
smaller than the desired matrix WTd, a variable k whose value is larger than 1 will be multiplied by WT
to make it next to the WTd. On the other hand, if WT is larger than WTd, k should be larger than 0 but
smaller than 1 to make sure all the elements in WT are nonnegative. In this way, k is defined as

k = (H̄αCT)./(WTCCT) (12)
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where (.)T denotes the transposition of the matrix. “./” denotes the element-wise division. According
to Equation (7), it is noted that the relation between k and constant 1 changes with that between WT
and WTd. Hence, WT can be updated by the following expression:

WT =
WT H̄vCT

WTCCT (13)

The same update strategy is operated on C, W and CT .

C =
CWT

T H̄
WT

TWTC
(14)

W =
WLvCT

T

WCTCT
T (15)

CT =
CTWT Lv

WTWCT
(16)

When W and C are obtained, the HR HSI Ĥ intra-fused by H̄ and L is also achieved, which
contains both the conveyed spatial information L and the IDN learned spatial mapping correlation.
Moreover, this fusion operation does not require any auxiliary HR image as the input, which is more
practical. The complete algorithm is summarized in Algorithm 1.

Algorithm 1: Pseudocode of the proposal.
Input: LR HSI L, bands’ selection interval d, bands’ number n
Output: reconstructed HR HSI Ĥ

1 for i = 1; i ≤ n; i ++ do
2 if mod(i, d + 1) == 1 then
3 up-sample Li → H̄i via IDN;

4 t =
⌊

n
d+1

⌋
;

5 for k = 1; k ≤ t; k ++ do
6 for j = 2; j ≤ d; j ++ do
7 up-sample Li → H̄i via cubic Hermite spline function;

8 for i = t(d + 1) + 2; i ≤ n; i ++ do
9 up-sample Li → H̄i via IDN;

10 return H̄;
11 reshape H̄ → H̄α, and L→ Lα;
12 Initialize W and HT via vertex component analysis method and randomly, respectively;
13 Update CT via Equation (16), with W fixed;
14 Optimize W and CT via Equation (15) and Equation (16);
15 for i = 1; i ≤ q; i ++ do
16 Set WT = W;
17 Update C via Equation (14), with WT fixed;
18 Optimize WT and C via Equation (13) and Equation (14);
19 Update W via Equation (15), with CT fixed;
20 Optimize W and CT via Equation (15) and Equation (16);

21 Ĥα = WC;
22 return Ĥα;
23 reshape Ĥα → Ĥ;
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3. Experimental Setup and Data Analysis

3.1. Experimental Setup

The performance of this proposed method was mainly evaluated on outdoor HSIs obtained via
airborne, spaceborne and the ground-based platforms. The outdoor HSIs utilized in the experiments
are the Pavia University, Washington DC Mall, Salinas, Botswana and Scene02 datasets. They were
acquired by the Reflective Optics Imaging Spectrometer (ROSIS), the Hyperspectral Digital Image
Collection Experiment (HYDICE), the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),
the Hyperion sensor on the NASA EO-1 satellite and the Spectral Imagery (SPECIM) hyperspectral
camera, respectively. The geometric resolution of the ROSIS and HYDICE are 1.3 m and 1 m,
respectively. There are 610 × 610 × 103 pixels in the original Pavia University, but we selected
a 200 × 200 × 100 region with rich detail to validate the performance. The Washington DC Mall
acquisition measured the pixel response from 400 nm to 2400 nm region. Bands in the 900 nm and
1400 nm region where the atmosphere is opaque were omitted from the dataset, leaving 191 bands.
The Salinas dataset was collected by the 224-band AVIRIS sensor and 20 water absorption bands
were abandoned. The Botswana dataset was acquired at 30 m pixel resolution over a 7.7 km strip
in 242 bands covering the 400–2500 nm portion of the spectrum in 10 nm windows. The scene02
HSI consists of 1312× 1174 pixels and 396 spectral reflectance bands in the wavelength range from
378 nm to 1003 nm. It is noted that these outdoor HSIs cover three different types of surface. Both the
Pavia University and Washington DC Mall datasets refer to the building typologies, the Salinas and
Botswana datasets refer to the land cover typologies, and the scene02 dataset refers to the man-made
material typologies.

Moreover, to validate the proposal’s robustness to the image quality, we also validated the
performance on the ground-based HSIs with finer spatial detail. We randomly selected two HSIs
from the CAVE database: flowers and f ake_and_real_ f ood. Their spectral resolution is from 400 nm to
700 nm at 10 nm steps (31 bands in total).

Figure 4 depicts the high-resolution RGB images of the HSIs from the CAVE database and the
gray images of the other HSIs, in which all these gray images are visual exhibitions of the 15th band in
the corresponding HSIs. The RGB images of the HSIs from the CAVE database are provided in the
database. To make the exhibition more appealing, we rotated the Washington DC Mall and Botswana
HSIs by 90◦ counterclockwise.

flowers fake_and_real_food Pavia University HYDICE Washington DC MALL

Salinas Botswana

Scene02

Figure 4. Visual exhibition of the HSIs used for validating the performance, in which all the gray
images are generated by the 15th band in the corresponding HSIs.

The low-resolution HSIs were simulated by bicubic down-sampling the original HSIs with the
scaling factor s = 2, 4 and 8. To comprehensively evaluate the performance of the proposed method,
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comparisons were made with several state-of-the-art deep learning-based single SR methods, including
SRCNN [27], VDSR [28], LapSRN [29], and IDN [19]. The parameters in the competing methods were
chosen as described in their corresponding references. The single-based methods provide a solid
baseline with no auxiliary images.

In [30], Lim et al. experimentally demonstrated that training with lossMSE is not a good choice.
Thus, the IDNs were first trained with the lossMAE, and then fine-tuned by the lossMSE. During the
training process, the learning rate was initially set to 10−4 and decreased by a factor of 10 during
fine-tuning phase.

The following six quantitative measurements were employed to evaluate the performance of
reconstructed HR HSIs: Correlation Coefficient (CC), Root Mean Square Error (RMSE), Erreur Relative
Globale Adimensionnelle de Synthese (ERGAS) [31], Peak Signal-to-Noise Ratio (PSNR), Structure
Similarity Index Measurement (SSIM), and Spectral Angle Mapper (SAM) [32]. CC, RMSE, PSNR and
SSIM are universal measurement matrices for image quality assessment, and their detailed descriptions
are omitted in this paper. ERGAS is a global statistical measure of the super-resolution quality with
the best value at 0. The ERGAS of H and Ĥ is calculated by

ERGAS(H, Ĥ) = 100s

√√√√1
b

b

∑
k=1

(
RMSEk

µk
)

2
(17)

in which RMSEk = (||Ĥk − Hk||F/
√

n). Here, n is the number of pixel in any band of the HR HSI H,
and µk is the sample mean of the kth band of H. SAM evaluates the spectral information preservation
at each pixel. The SAM at the kth pixel is determined by

SAM(a, b) = arccos(
< a, b >

||a||||b|| ) (18)

in which < a, b >= aTb is an inner product between a and b, and ||.|| is the l2 norm. The optimal
value of SAM is 0. The values of SAM reported in our experiments were obtained by averaging the
values obtained for all the image pixels [33]. Among these six indices, larger CC, PSNR and SSIM
indicate better quality, while SAM, RMSE and ERGAS are the opposite. All experiments were run
on a desktop with Intel core i5 2.8 GHZ CPU and 16.0 GB RAM using MATLAB(R2015b). It is noted
that the computation time of the bicubic method was excluded in the comparison process for its poor
performance. Thus, all times of the bicubic method are marked with ∗.

3.2. Data Analysis

Correlation coefficients between neighboring bands in the LR HSIs were firstly measured to select
the most proper interval. Figure 5a describes the variation of CC with the interval for the two-times
down-sampled Pavia. It is noticed the CC decreased as the interval increased. This validated that the
neighboring bands were highly correlated. However, as their interval became wider, their correlation
coefficients decreased. Meanwhile, as the scaling factor increased, more high frequency details in
the input LR HSIs were damaged, and the differences between different bands narrowed. Figure 5b
plots the difference between the CC of the four-times down-sampled Pavia and that of the two-times
down-sampled one, when interval was set as 1 and 2. It is noticed that the values of most differences
were larger than 0. This validated that the bands in the four-times down-sampled HSIs were more
correlated than those of the two-times down-sampled ones at the same interval. Thus, a larger interval
can be set for the larger down-sampling factor, which would reduce the computational complexity
with negligible performance loss.
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Figure 5. (a) CCs of two-times down-sampled Pavia with different intervals; and (b) CCs of four-times
down-sampled Pavia minus that of two-times down-sampled Pavia with different intervals.

Table 1 is obtained by comparing the quality indices of the spectral-interpolated coarse HR HSIs
with those of the IDN band-by-band super-resolved HR HSIs at different intervals. It is noticed
that, at the same scaling factor, as the interval grew, the quality indices’ gap became bigger, which is
consistent with what Figure 5a describes. Table 2 depicts the tendency of quality indices’ gap between
the spectral-interpolated HR HSI and those of the IDN band-by-band super-resolved HR HSI at the
same interval but different scaling factor. It is noticed that, with the same interval, the performance of
the coarse HR HSI at scaling factor of 8 was closer to that of the IDN super-resolved than at the scaling
factor of 4, and scaling factor of 4 was closer than scaling factor of 2, a phenomenon consistent with
what shows in Figure 5b, which further validated the rationality of larger-interval setting for larger
scale from a vertical perspective. In this way, setting for the “d” follows two principles: (1) for the
HSIs with coarser spectral resolution, it is better to set a smaller “d”; and (2) for the HSIs with coarser
spatial resolution, most high frequency differences between neighboring bands are lost, and their
spectral correlation would be higher than the HSIs with finer spatial detail. A larger “d” can be set
for these HSIs. Figure 6 shows the variation of PSNR and computation time with the band’s selection
interval “d” for the Pavia University at the scaling factor of 2. It is noticed, as the “d” became larger,
the computation time became less, but the PSNR of the reconstructed HSI became smaller, which
validated our proposal’s tradeoff between high quality and high efficiency.

Table 1. Performance gap between HIDN and H̄ with different intervals.

Interval d Scaling Factor CC SAM RMSE ERGAS PSNR SSIM

d = 2
2× −0.005% 0.507% 0.100% 0.052% −0.026% −0.037%
4× 0.003% −0.017% −0.003% −0.048% 0.001% −0.017%
8× 0.009% −0.090% −0.011% −0.053% 0.004% −0.010%

d = 3
2× −0.014% 1.239% 0.223% 0.283% −0.058% −0.071%
4× −0.005% 0.195% 0.018% 0.075% −0.006% −0.058%
8× −0.005% −0.060% −0.006% 0.054% 0.002% −0.056%

d = 4
2× −0.026% 2.461% 0.549% 0.227% −0.143% −0.110%
4× −0.008% 0.599% 0.083% −0.228% −0.027% −0.073%
8× 0.004% 0.160% 0.030% −0.260% −0.011% −0.087%

d = 9
2× −0.134% 14.244% 3.408% 3.390% −0.879% −0.648%
4× −0.080% 4.823% 0.611% 0.192% −0.197% −0.559%
8× −0.047% 1.254% 0.155% −0.283% −0.057% −0.499%
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Figure 6. Variation of PSNR and computation time with “d” for the Pavia University at the scaling
factor of 2.

Table 2. Performance variation at the same intervals but with different scaling factors.

Interval d Scaling Factor CC SAM RMSE ERGAS PSNR SSIM

d = 2 4× − 2× 0.008% −0.525% −0.104% −0.100% 0.027% 0.020%
8× − 4× 0.006% −0.072% −0.007% −0.006% 0.003% 0.007%

d = 3 4× − 2× 0.009% −1.043% −0.204% −0.209% 0.052% 0.013%
8× − 4× 0.000% −0.255% −0.024% −0.020% 0.008% 0.002%

d = 4 4× − 2× 0.017% −1.862% −0.466% −0.455% 0.117% 0.037%
8× − 4× 0.013% −0.439% −0.053% −0.032% 0.016% −0.013%

d = 9 4× − 2× 0.053% −9.421% −2.797% −3.198% 0.682% 0.089%
8× − 4× 0.034% −3.568% −0.456% −0.475% 0.140% 0.060%

For the Pavia University HSI, there are 115 bands in the 430–860 nm, of which 12 bands were
neglected and the remaining 103 bands were used for the experiment. There are 31 bands in the
spectral range of 400–700 nm for the HSIs from the CAVE database, and 210 spectral bands covers the
400–2400 nm for the original Washington DC Mall HSI. In this way, from a horizontal perspective,
under the same scaling factor, a larger interval was set for the spectrally more correlated Pavia
University, and smaller interval is set for the Washington DC Mall and the HSIs from the CAVE
database. Detailed interval settings for the experimental HSIs are displayed in Table 3.

Table 3. Interval d set for the HSI under different intervals.

Pavia University CAVE Washington DC Mall Salinas Botswana scene02

2× 3 2 2 2 2 2
4× 9 3 3 3 3 3
8× 9 3 3 3 3 3

3.2.1. Pavia University

In Figure 7, we present a visual exhibition of the fourth band of the reconstructed Pavia University
HSIs via various single based methods, with the scaling factor of 4.

As shown in Figure 7, the proposed method achieved a better spatial enhancement. Table 4 shows
the averaged performance on the Pavia University HSI with comparison to the single-based methods.
When compared with the SRCNN, VDSR and LapSRN, the proposed method achieved a better spatial
enhancement of nearly 0.3–1 dB at the scaling factor of 2. In addition, the proposal only required about
half the time of the IDN to achieve a comparable or better performance.
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proposal referenceIDN

bicubic SRCNN VDSR LapSRN

Figure 7. Visual exhibition of the fourth band created by the Pavia University HSIs, which are
reconstructed by different single methods when scaling factor is 4.

Table 4. Comparison with single-based methods on all the bands of the Pavia University.

Scaling Factor Algorithm CC SAM RMSE ERGAS PSNR SSIM Time (s)

2×

Bicubic 0.9478 4.1099 0.0312 10.2627 30.1239 0.9024 0.0113 *
SRCNN 0.9670 3.8253 0.0246 8.0368 32.1771 0.9359 146.4056
VDSR 0.9715 3.6195 0.0229 7.4459 32.8153 0.9449 53.2367

LapSRN 0.9710 3.4385 0.0231 7.4874 32.7146 0.9457 81.1535
IDN 0.9737 3.4503 0.0219 7.1422 33.1886 0.9503 47.5715

Proposal 0.9731 3.5608 0.0221 7.2108 33.1264 0.9482 22.9895

4×

Bicubic 0.8632 6.2994 0.0508 8.0125 25.8874 0.7182 0.0045 *
SRCNN 0.8802 6.1240 0.0473 7.5101 26.5115 0.7551 135.9020
VDSR 0.8814 6.3009 0.0470 7.4961 26.5508 0.7613 50.8616

LapSRN 0.8890 5.7116 0.0458 7.2154 26.7848 0.7776 24.0806
IDN 0.8906 5.7168 0.0452 7.1654 26.8934 0.7831 11.8475

Proposal 0.8907 5.6563 0.0452 7.1565 26.9029 0.7837 6.6167

8×

Bicubic 0.7272 9.2785 0.0711 5.4737 22.9664 0.5081 0.0105 *
SRCNN 0.7292 9.2148 0.0707 5.4644 23.0061 0.5107 152.1849
VDSR 0.7232 9.3343 0.0713 5.4955 22.9329 0.5030 50.6967

LapSRN 0.7489 9.0115 0.0682 5.3306 23.3192 0.5289 19.3687
IDN 0.7709 8.6351 0.0652 5.0774 23.7182 0.5710 13.9152

Proposal 0.7739 8.2311 0.0646 5.0448 23.7915 0.5759 5.4009

The asterisk * in the tables denote the best performance for the time measurement among all the methods.
However, limited by its poor performance, we eliminated it from the comparison and make another time
comparison among the other methods, in which we emphases the next least time in a bold format.
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Figure 8. PSNRs of different bands in: (a) the 8× reconstructed Pavia University HSIs; an (b) 8×
reconstructed Washington DC Mall HSIs via different single based methods.
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The proposed method achieved the best performance when the scaling factors were 4 and 8.
The reason is that, as the scaling factor grew, less spatial information was contained in the input
HSI. The performance of methods that super-resolve the LR HSI band by band would be severely
damaged. The proposed method fully exploits the spatial-spectral information, achieving more
acceptable performance.

Figure 8a depicts the PSNRs of different bands in the 8× reconstructed Pavia University HSIs
via different single based methods. It can be seen that the performance of the proposed method was
superior to the other methods for each band.

3.2.2. Washington DC Mall

In Figure 9, we present a visual exhibition about the 90th band of the reconstructed Washington
DC Mall via various single based methods, with the scaling factor of 4.

ReferenceproposalIDNLapSRNbicubic SRCNN VDSR

Figure 9. Visual exhibition of the 90th band created by the Washington DC Mall HSIs, which are
reconstructed by different single methods when scaling factor is 4.

As shown in Figure 9, the proposed method achieved an HR HSI whose features are more distinct
than the HSIs reconstructed by the other methods. Meanwhile, we randomly selected one point from
the boundary of a region in the image and plotted its spectral curves (Figure 10). in Figure 10 “ref”
represents the ground truth spectral curves. Because the spectral curve reconstructed by the IDN
method seriously deviated from the reference one, we eliminated it in Figure 10 to have a better
comparison with the other methods. The proposed method well preserved the spectral information.
Contrary to the spectral curves reconstructed by the other methods, the locations of almost all the
reflectance peaks and the reflectance troughs in the the spectral curve generated by the proposal are
consistent with those of the reference curve, which ensures the correctness of their future applications.
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Figure 10. Spectral curves of the randomly selected point in the 8× reconstructed HR HSIs without
IDN method.
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Figure 8b depicts the PSNRs of different bands in the 8× reconstructed Washington DC Mall HSIs
via different single-based methods. It can also be seen that the performance of the proposed method
was superior to the other methods for each band.

Table 5 shows the averaged performance on the reconstructed Washington DC Mall with
comparison to the other single-based methods. When compared with the SRCNN, VDSR and LapSRN,
the proposal achieved a better spatial enhancement of nearly 0–0.5 dB at the scaling factor of 2.

Table 5. Comparison with single-based methods on all the bands of the Washington DC Mall.

Scaling Factor Algorithm CC SAM RMSE ERGAS PSNR SSIM Time (s)

2×

Bicubic 0.9146 3.9147 0.0067 132.1512 43.4877 0.9755 0.1141 *
SRCNN 0.9278 4.3988 0.0068 37.7941 43.3780 0.9741 1368.6865
VDSR 0.9248 4.5313 0.0064 60.8111 43.8360 0.9779 467.5891

LapSRN 0.9064 3.4886 0.0056 137.4491 45.0408 0.9828 187.9704
IDN 0.9472 3.4280 0.0054 95.1557 45.2791 0.9837 438.5749

Proposal 0.9190 3.4311 0.0056 79.2654 45.0717 0.9833 286.9364

4×

Bicubic 0.8255 6.5297 0.0107 72.3078 39.4441 0.9374 0.0991 *
SRCNN 0.8186 7.1202 0.0108 239.5115 39.3414 0.9329 1268.5417
VDSR 0.8138 7.7250 0.0116 47.0651 38.7003 0.9316 468.6285

LapSRN 0.7216 7.2031 0.0106 2533.9007 39.4647 0.9289 225.3079
IDN 0.8514 6.4612 0.0101 46.0912 39.8993 0.9443 64.0762

Proposal 0.8310 6.2754 0.0101 60.8714 39.9268 0.9447 69.6417

8×

Bicubic 0.7181 9.0515 0.0144 35.0310 36.8363 0.9011 0.0807 *
SRCNN 0.6821 9.8476 0.0149 681.0136 36.5157 0.8959 1365.1717
VDSR 0.7095 9.1466 0.0144 24.4473 36.8106 0.9004 469.7174

LapSRN 0.5078 11.9678 0.0152 7.9641 36.3660 0.8064 169.2427
IDN 0.7213 9.0498 0.0140 29.7419 37.0500 0.9054 137.0598

Proposal 0.7219 8.7892 0.0138 34.7061 37.1833 0.9069 85.9309

The asterisk * in the tables denote the best performance for the time measurement among all the methods.
However, limited by its poor performance, we eliminated it from the comparison and make another time
comparison among the other methods, in which we emphases the next least time in a bold format.

At the scaling factors of 4 and 8, the proposal also achieved the best performance. As the
selection interval for Washington DC Mall is smaller than that of Pavia University, the computational
complexity’s superiority over the IDN was smaller than that for Pavia University, but still reduced
about 40% at the scaling factor of 8.

3.2.3. Salinas

In Figure 11, visual exhibition about the 99th band of the reconstructed Salinas HSIs is presented,
with the scaling factor set to 4.

bicubic SRCNN VDSR LapSRN

IDN proposal Reference

Figure 11. Visual exhibition of the 99th band created by the Salinas HSIs, which are reconstructed by
different single methods when scaling factor is 4.
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As the land cover in Salinas is quite smooth, no big visual difference in the main body between
different methods can be noticed. However, for the junction of different land covers, its geometric
shape reconstructed by the proposal is much more distinct than that of the other methods. Figure 12a
depicts the PSNRs of each band in the 4× reconstructed Salinas via different methods. According to
the data in Figure 12a, the proposal achieved a better spatial enhancement performance on most bands
for super-resolving the 4× down-sampled Salinas HSI.

Table 6 shows the averaged performance of the Salinas HSI at different scaling factors.
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Figure 12. PSNRs of different bands in: (a) the 4× reconstructed Salinas HSIs; and (b) the 8×
reconstructed Botswana via different single based methods

Table 6. Comparison with single-based methods on all the bands of the Salinas.

Scaling Factor Algorithm CC SAM RMSE ERGAS PSNR SSIM Time (s)

2×

Bicubic 0.9833 0.8145 0.0073 2.8216 42.6932 0.9881 0.0875 *
SRCNN 0.9845 0.7838 0.006044008 2.9319 44.3735 0.9910 478.2165
VDSR 0.9855 0.7296 0.0056 2.6816 45.0141 0.9923 285.4522

LapSRN 0.9851 0.7027 0.0056 2.7610 45.0584 0.9927 93.4594
IDN 0.9899 0.6862 0.0054 2.1774 45.2783 0.9930 153.7260

Proposal 0.9831 0.7937 0.0055 2.7174 45.1159 0.9927 142.5217

4×

Bicubic 0.9618 1.3393 0.0126 2.1649 38.0198 0.9671 0.0656 *
SRCNN 0.9647 1.2653 0.0105 2.3292 39.5892 0.9733 474.2595
VDSR 0.9669 1.2002 0.0098 2.0414 40.2124 0.9773 288.5284

LapSRN 0.9595 1.1927 0.0095 4.7102 40.4442 0.9774 112.7037
IDN 0.9709 1.1292 0.0095 1.9040 40.4857 0.9796 40.9700

Proposal 0.9690 1.2063 0.0095 1.9272 40.4898 0.9799 28.2351

8×

Bicubic 0.9325 1.9881 0.0177 1.4398 35.0562 0.9469 0.0624 *
SRCNN 0.9376 1.8607 0.0155 1.4626 36.2152 0.9509 493.3159
VDSR 0.9328 1.9848 0.0176 1.4311 35.0677 0.9470 278.9407

LapSRN 0.9164 1.8910 0.0146 2.2318 36.7126 0.9457 75.7862
IDN 0.9457 1.5874 0.0139 1.2972 37.1265 0.9600 47.2434

Proposal 0.9466 1.6081 0.0139 1.2685 37.1643 0.9608 23.1352

The asterisk * in the tables denote the best performance for the time measurement among all the methods.
However, limited by its poor performance, we eliminated it from the comparison and make another time
comparison among the other methods, in which we emphases the next least time in a bold format.

When compared with the SRCNN, VDSR, and LapSRN method, the proposal achieved a better
spatial quality of nearly 0.06–0.74 dB at the scaling factor of 2. When it comes to the scaling factors
of 4 and 8, the proposal achieved the best performance by utilizing the least time. It is demonstrated
that the proposal also achieved an acceptable performance on the remote-sensing HSI with land cover
typology, besides for the building typology.
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3.2.4. Botswana

Figure 12b depicts the PSNRs of each band in the 8× reconstructed Botswana via different
methods. The proposal achieveD the best PSNRs for most bands. Table 7 depicts the performance
comparison with the alternative methods on the spaceborne Botswana. According to the data in
Table 7, the IDN’s performance superiority over the proposal gradually diminishED. When IT comes to
the scaling factor of 8, the proposal outperformED the IDN in less time. When combining Figure 12b
with the data in Table 7, it is convincing that the proposal achieved high performance with high
efficiency. In addition, from the data in Table 7, the computational complexity of VDSR and SRCNN
was always stable for scaling factors 2, 4 and 8. For the IDN and the proposal, as the size of the input
image decreased, less computational complexity was required, which is more practical. Both the
experimental data of Salinas and Botswana demonstrated the proposal’s effectiveness on the HSIs of
land cover typology.

Table 7. Comparison with single-based methods on all the bands of the spaceborne Botswana.

Scaling Factor Algorithm CC SAM RMSE ERGAS PSNR SSIM Time (s)

2×

Bicubic 0.9749 1.5638 0.0027 3.2346 51.4286 0.9936 0.1697 *
SRCNN 0.9726 1.7866 0.0027 4.7684 51.3234 0.9930 1841.7661
VDSR 0.9733 1.7494 0.0026 3.6777 51.5523 0.9938 665.7049

LapSRN 0.9613 1.5565 0.0024 4.8883 52.2804 0.9947 215.5832
IDN 0.9790 1.5057 0.0025 2.9631 52.1939 0.9946 382.3559

Proposal 0.9750 1.6567 0.0025 3.3550 52.1000 0.9945 194.3229

4×

Bicubic 0.9360 2.2719 0.0041 2.5785 47.6567 0.9852 0.1545 *
SRCNN 0.9264 2.7466 0.0044 4.0511 47.1981 0.9830 1837.1380
VDSR 0.9333 2.4853 0.0043 2.6621 47.3913 0.9845 664.6281

LapSRN 0.8693 2.8898 0.0044 17.7117 47.0433 0.9784 260.7957
IDN 0.9359 2.3089 0.0041 2.5866 47.7809 0.9857 100.8897

Proposal 0.9348 2.3693 0.0041 2.6304 47.7727 0.9857 110.1546

8×

Bicubic 0.8849 2.8682 0.0054 1.7057 45.3479 0.9776 0.1050 *
SRCNN 0.8768 3.3473 0.0056 1.8735 45.0566 0.9743 1937.2458
VDSR 0.8849 2.8933 0.0054 1.7005 45.3436 0.9774 649.2971

LapSRN 0.7188 5.6478 0.0068 4.4614 43.3178 0.9264 181.4325
IDN 0.8849 2.8926 0.0053 1.7069 45.4540 0.9780 111.4147

Proposal 0.8842 2.9210 0.0053 1.7239 45.4730 0.9780 95.1863

The asterisk * in the tables denote the best performance for the time measurement among all the methods.
However, limited by its poor performance, we eliminated it from the comparison and make another time
comparison among the other methods, in which we emphases the next least time in a bold format.

3.2.5. Scene02

Although the spectral resolution of the Scene02 is finer than 10 nm per band, we still set small
and conservative band interval for this HSI to obtain a better spatial enhancement. Figure 13 presents
the visual exhibition about the 198th band for the 8× reconstructed Scene02. We amplified a square
region that contains both the letter and the grid to make a comparison with the reconstructed HSIs via
different methods. Both the contour of the letter and the boundary of the grid in the HSI reconstructed
by the proposal are sharper than that of the other methods. Figure 14 depicts the PSNRs of each band
in the 8× reconstructed Scene02. The proposal achieved the best performance for most of the single
bands, especially for the bands locating at the middle wavelengths.

Table 8 shows the averaged performance on the reconstructed Scene02 via different methods.
Limited by the memory, the running time of this HSI was much longer than the others, and the
proposal achieved a significant computational reduction. This demonstrated that, as the image size
grows, the proposal will achieve a notable computational advantage over the IDN.
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Figure 13. Visual exhibition of the 198th band created by the Scene02 HSIs, which are reconstructed by
different single methods when scaling factor is 8.
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Figure 14. PSNRs for different bands in the 8× reconstructed Scene02 HSIs via different single
based methods.

Table 8. Comparison with single-based methods on all the bands of the ground-based Scene02.

Scaling Factor Algorithm CC SAM RMSE ERGAS PSNR SSIM Time (s)

2×

Bicubic 0.9893 1.3497 0.0038 2.5991 48.3610 0.9893 1.7652 *
SRCNN 0.9883 1.3526 0.0034 2.5906 49.3194 0.9902 22,196.9520
VDSR 0.9894 1.8098 0.0033 2.4903 49.6012 0.9906 7087.1100

LapSRN 0.9894 1.2918 0.0033 2.5009 49.6579 0.9907 2453.7132
IDN 0.9891 1.5624 0.0032 3.3076 49.8186 0.9872 31,600.1253

Proposal 0.9864 1.6264 0.0041 3.3196 47.7878 0.9871 16,385.2456

4×

Bicubic 0.9882 1.6586 0.0085 1.6540 41.4224 0.9758 2.3729 *
SRCNN 0.9884 1.6882 0.0066 1.5514 43.6492 0.9797 19,569.4504
VDSR 0.9887 1.6641 0.0070 1.5190 43.0552 0.9801 7088.5478

LapSRN 0.9879 1.6623 0.0065 1.6303 43.7951 0.9806 2967.9555
IDN 0.9890 1.6544 0.0067 1.4828 43.5267 0.9810 1043.8702

Proposal 0.9853 1.8455 0.0069 1.7098 43.2549 0.9800 837.5474

8×

Bicubic 0.9813 1.9210 0.0170 1.2834 35.4108 0.9522 1.3983 *
SRCNN 0.9840 1.9561 0.0123 2.1736 38.1769 0.9631 20,230.4446
VDSR 0.9823 1.9240 0.0159 2.4345 35.9543 0.9543 7078.2086

LapSRN 0.9827 1.9827 0.0110 2.2127 39.2082 0.9661 1995.0681
IDN 0.9855 1.9431 0.0112 1.9610 39.0254 0.9682 1263.6725

Proposal 0.9825 2.0155 0.0108 2.0875 39.3101 0.9687 794.5077

The asterisk * in the tables denote the best performance for the time measurement among all the methods.
However, limited by its poor performance, we eliminated it from the comparison and make another time
comparison among the other methods, in which we emphases the next least time in a bold format.
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3.2.6. CAVE Database

For the ground-based remote sensing HSIs in the CAVE database, their spatial quality is much
finer than that of the other HSIs. In this case, according to the data in Table 9, the performance
of super-resolving the HSI band by band via the IDN method was slightly better than that of the
proposed method.

Table 9. Comparison with single-based methods on all the bands of the two HSIs from the
CAVE database.

Scaling Factor Algorithm CC SAM RMSE ERGAS PSNR SSIM Time (s)

flowers

2×

Bicubic 0.9984 2.2374 0.0077 4.7471 42.2459 0.9903 0.0336 *
SRCNN 0.9989 3.4207 0.0063 4.1371 44.0429 0.9909 291.4331
VDSR 0.9947 3.3941 0.0147 8.8671 36.6603 0.9667 104.7910

LapSRN 0.9994 2.5744 0.0048 3.0139 46.4618 0.9951 41.9354
IDN 0.9994 1.8481 0.0045 2.8960 46.8784 0.9957 99.0016

Proposal 0.9992 2.5642 0.0051 3.4598 45.9336 0.9939 66.4343

4×

Bicubic 0.9927 3.7917 0.0172 5.1599 35.2872 0.9563 0.0304 *
SRCNN 0.9939 5.1345 0.0152 4.7506 36.3380 0.9598 294.0630
VDSR 0.9923 4.1526 0.0170 5.3323 35.3768 0.9507 105.5385

LapSRN 0.9955 6.5766 0.0133 4.1492 37.5383 0.9631 49.7823
IDN 0.9959 2.9697 0.0128 3.8981 37.8402 0.9733 24.3753

Proposal 0.9957 4.3377 0.0129 3.9524 37.7836 0.9711 21.0441

8×

Bicubic 0.9765 6.3186 0.0308 4.5832 30.2423 0.8855 0.0282 *
SRCNN 0.9766 7.6651 0.0300 4.6077 30.4565 0.8838 304.0369
VDSR 0.9765 6.2937 0.0305 4.5635 30.3116 0.8876 104.5376

LapSRN 0.9833 12.2898 0.0259 3.7601 31.7479 0.8482 37.3913
IDN 0.9851 4.6558 0.0247 3.6355 32.1417 0.9249 28.4277

Proposal 0.9849 6.6257 0.0248 3.6574 32.1266 0.9221 20.1004

fake_and_real_food

2×

Bicubic 0.9974 2.2996 0.0076 7.4718 42.4225 0.9905 0.0334 *
SRCNN 0.9979 2.7596 0.0068 6.6207 43.3160 0.9907 277.1336
VDSR 0.9982 2.5201 0.0063 6.1294 44.0514 0.9919 105.6183

LapSRN 0.9988 2.1301 0.0052 5.0164 45.7448 0.9944 41.4651
IDN 0.9989 1.8804 0.0050 4.7845 46.0583 0.9950 98.3872

Proposal 0.9986 2.6043 0.0056 5.3368 45.1141 0.9927 68.0450

4×

Bicubic 0.9898 3.5765 0.0153 7.3000 36.3087 0.9641 0.0230 *
SRCNN 0.9931 4.0173 0.0127 5.8726 37.8964 0.9701 296.6172
VDSR 0.9915 4.0963 0.0140 6.5949 37.0649 0.9666 104.8076

LapSRN 0.9953 3.9114 0.0105 5.0602 39.5662 0.9761 49.7072
IDN 0.9954 2.8206 0.0104 4.8477 39.6913 0.9816 24.5117

Proposal 0.9951 3.8955 0.0106 4.9266 39.4917 0.9781 22.3028

8×

Bicubic 0.9704 5.4984 0.0270 5.9880 31.3585 0.9111 0.0305 *
SRCNN 0.9746 6.5774 0.0254 5.4663 31.8919 0.9150 298.1715
VDSR 0.9717 5.5900 0.0263 5.8597 31.6012 0.9130 104.9534

LapSRN 0.9843 8.2559 0.0200 4.1520 33.9588 0.9114 37.2533
IDN 0.9864 4.0106 0.0184 4.0935 34.6995 0.9534 28.1883

Proposal 0.9860 4.7878 0.0185 4.1123 34.6518 0.9498 20.3372

The asterisk * in the tables denote the best performance for the time measurement among all the methods.
However, limited by its poor performance, we eliminated it from the comparison and make another time
comparison among the other methods, in which we emphases the next least time in a bold format.

However, considering the input HSIs were generated by down-sampling from the original
HSIs via bicubic interpolation, as the scaling factor grew, the spatial quality of the input HSIs
decreased. Hence, it is rational to note that, as the scaling factor grew, the IDN’s superiority to
the proposed method gradually diminished. Figure 15 plots the IDN’s superiority to the proposal on
fake_and_real_food. It is noted that, as the scaling factor grew, the superiority gradually diminished
and was next to 0, validating once again our proposal’s efficiency on remote sensing HSIs with poor
spatial information. According to Kwan et al. [34], resolutions of most HSIs are limited to tens of
meters, for which the proposed method would achieve a more appealing performance.
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Figure 15. The gap of the performance between the IDN and the proposal on the “fake_and_real_food”
HSI at scaling factors of 2, 4 and 8.

4. Conclusions

In this paper, an HSI super-resolution method is proposed by deeply utilizing the spatial-spectral
information to reconstruct a high-resolution HSI from a low-resolution one. This method
firstly incorporates different strategies for super-resolving the selected bands and the unselected
ones. Compared with most of the existing single-based super-resolution methods, this scalable
super-resolution operations greatly reduces the computational complexity with little performance
degradation. Moreover, intra-fusion is operated to further improve the performance, which is more
practical and does not require any auxiliary images. Through the proposed method, spatial-spectral
information is fully exploited, and spatial details are well recovered. Experimental results and data
analyses on both ground based and remote-sensing HSIs have demonstrated that the proposed method
is especially suitable for dealing with the remote-sensing HSIs with poor spatial information.
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