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Abstract: Woody alien plant species have been deliberately introduced globally in many arid and
semi-arid regions, as they can provide services and goods to the rural poor. However, some of these
alien trees and shrubs have become invasive over time, with important impacts on biodiversity,
ecosystem services, and human well-being. Prosopis was introduced in Baringo County, Kenya, in the
1980s, but since then, it has spread rapidly from the original plantations to new areas. To assess
land-use and land-cover (LULC) changes and dynamics in Baringo, we used a combination of dry
and wet season Landsat satellite data acquired over a seven-year time interval between 1988–2016,
and performed a supervised Random Forest classification. For each time interval, we calculated the
extent of Prosopis invasion, rates of spread, gains and losses of specific LULC classes, and the relative
importance of Prosopis invasion on LULC changes. The overall accuracy and kappa coefficients of the
LULC classifications ranged between 98.1–98.5% and 0.93–0.96, respectively. We found that Prosopis
coverage increased from 882 ha in 1988 to 18,792 ha in 2016. The highest negative changes in LULC
classes were found for grasslands (−6252 ha; −86%), irrigated cropland (−849 ha; −57%), Vachellia
tortilis-dominated vegetation (−3602 ha; −42%), and rainfed cropland (−1432 ha; −37%). Prosopis
invasion alone directly accounted for over 30% of these negative changes, suggesting that Prosopis
invasion is a key driver of the observed LULC changes in Baringo County. Although the management
of Prosopis by utilization has been promoted in Baringo for 10–15 years, the spread of Prosopis has not
stopped or slowed down. This suggests that Prosopis management in Baringo and other invaded
areas in East Africa needs to be based on a more integrated approach.

Keywords: biological invasion; prosopis; landsat; random forest; land use land cover change; Kenya

1. Introduction

Woody alien plant species have been deliberately introduced in many arid and semi-arid regions
of the world, as they can provide services and goods to the rural poor. Many of these have become
invasive and continue to invade new regions at an unprecedented rate, exerting strong impacts on
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ecosystems and human welfare [1,2]. These species are a major threat to the environment, because
they can: (1) suppress or replace native biodiversity, (2) alter ecosystem functions and services, and (3)
cause significant economic damage, costing economies millions of dollars [3].

African arid and semi-arid lands (ASALs) were severely degraded by the prolonged Sahelian
drought of the 1970s [4–6], which prompted the prioritization of tree planting. In Kenya, species from
the South and Central American genus Prosopis were selected for screening because they had shown
potential in the rehabilitation of quarries [7,8]. Prosopis spp., also known as Mesquite and locally as
‘Mathenge’ or ‘Promi’, are perennial, multi-stemmed shrubby or single-canopy trees [9] which are
nitrogen-fixing and tolerant to arid conditions [10]. In the 1980s, Prosopis juliflora (Sw.) DC., Prosopis
pallida (Willd.), and Prosopis chilensis (Molina) Stuntz were planted in Baringo County [11]. The planted
Prosopis trees were initially appreciated due to their ability to grow in degraded and barren landscapes
where native vegetation could not grow, thus reducing soil erosion and dust storms, while providing
shade and pods that served as fodder for livestock [12,13]. However, over time, trees of the evergreen
Prosopis juliflora–Prosopis pallida complex [9] (hereafter called Prosopis) escaped cultivation and became
unmanageable due to their fast proliferation and ability to survive cutting by coppicing [14].

Recently, the analysis of plant invasions at the landscape level has received considerable attention
because the spatial and temporal invasion patterns can be correlated to proximate causes [15,16]. This
has allowed the quantification of rates and patterns of spread and the assessment of efficiency of different
management practices [17,18]. The early detection and mapping of invasive species are essential to
formulating effective management strategies and preventing further spread into non-invaded lands [19].
As such, remote sensing (RS) offers cost-efficient means to assess the distribution of alien plant species
and monitor their spread [20] while allowing monitoring areas that are inaccessible.

Very High Resolution (VHS) sensors, which collect data at metric or sub-metric resolution,
can provide very high accuracy data for landscape change analysis and can distinguish Prosopis from
native tree species, such as Vachellia tortilis [17,21–23]. However, these data can’t be used to study
historical changes of Prosopis cover, as the data are tasked, and the archives do not date back to early
introduction periods (e.g., to the 1980s). Therefore, we must rely on satellite data that have been
captured over a long time and in a consistent manner, such as the Landsat or the moderate-resolution
imaging spectroradiometer (MODIS) missions. Several studies have used such satellite data to
capture spatiotemporal Prosopis distribution in various regions in Africa. Van den Berg et al. [24]
assessed Prosopis invasion in South Africa by combining MODIS data with soil and terrain data.
Shiferaw et al. [16] used Landsat 8 Surface Reflectance, Climate Data, topographic, and landscape
structure data to assess Prosopis invasion over time in Afar, Ethiopia.

In Kenya, Kyuma [25] mapped the spatiotemporal changes in Prosopis distribution between
2000–2013 in the southern part of Kenya using MODIS NDVI and net primary productivity products
at 250m spatial resolution. Other studies, although not spatiotemporal in nature, mapped P. juliflora
using Landsat 8 imagery and ground information [26,27], and evaluated the effectiveness in Landsat 8
data to map Prosopis in Somaliland.

These examples show that the mapping and monitoring of Prosopis invasion has received increasing
attention in the last years in Africa. However, a reliable estimate of the spatial evolution and dynamics
of Prosopis invasion and its effects on the land-use/land-cover dynamics, and thus on rural livelihoods,
is currently lacking for Kenya and other parts of the invaded range. A better understanding of the
invasion process and the current distribution of Prosopis in Baringo would be particularly revealing,
as it would also help evaluate what extent the ‘management by utilization’ approach, which has
been promoted in this county for the last 10–15 years [28,29], has slowed down or even stopped
Prosopis invasion.

Thus, in this study, we aim at enhancing the understanding of the spatial evolution and dynamics
of Prosopis invasion in Marigat subregion, which is the most heavily invaded subregion in Baringo
County, by assessing its distribution in regular time intervals, calculating rates of spread, and analyzing
which LULC classes are the most affected. Our study builds on the work of [30], who assessed LULC
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changes in the same area. Besides assessing LULC changes, we investigated how an exotic woody plant
invaded, and the role that it played in fueling further LULC changes in the area. In order to achieve
these goals, we use a time-series of multispectral and bi-seasonal Landsat data in combination with
other important auxiliary data, and apply a novel machine learning classifier. A rigorous validation
procedure makes sure that the obtained classification results are of high accuracy and allow for an
accurate multi-temporal change analysis.

2. Materials and Methods

2.1. Study Area

This study was conducted in Baringo County, located along the Great Rift Valley system in Kenya
(large map, Figure 1). It is characterized by a unique combination of altitude, precipitation, soil,
and vegetation. The lowland “Njemps flats” are slightly undulating and dominated by rangeland,
with an average altitude of 700 m above sea level. They are surrounded by Laikipia Escarpment on the
east and Tugen Hills and Elgeyo Escarpment on the west, as well as the ridges and plateaus of the
Lake Baringo catchment with peaks of over 3000 m a.s.l. [31]. The Tugen Hills form a conspicuous
topographic feature which trends north–south and mainly consists of volcanic rocks. The steep slopes
on escarpments end down the valleys forming prominent gullies and very deep gorges. The total
annual precipitation is between 1000–1500 mm in the highlands [31] and between 300–700 mm in the
lowlands, and is characterized by a bimodal distribution with two peaks in April and November [32].
Temperatures range from 10 ◦C to 35 ◦C. Presently, the vegetation is predominantly a woody mixture
of indigenous and exotic species. It ranges from Vachellia-dominated deciduous shrubland on the
valley floor to the evergreen forests in the highlands [33]. Prosopis juliflora currently dominates the
lowland flats around the mid-east and mid-west of Lake Baringo and further stretching southwards up
the northern tip of Lake Bogoria [10,21,31,33]. Historically, the flat parts in the lowlands of Baringo
County consisted of a mosaic of grasslands and Vachellia-dominated shrubland [34,35].

Prosopis was introduced at these lowland zones between 1982–1983 through the Fuelwood
Afforestation Extension Project [36,37]. The major objective of the project was to involve local
communities in tree planting for mitigating problems such as lack of firewood and desertification [36].
In total, more than 20 plantations were established, covering an area of over 250 ha [10].

Our study area (red polygon area, Figure 1) focuses on the Marigat subregion because a) it is the
zone where Prosopis was first introduced and invasion progress can be observed, b) Baringo County
has three distinct eco-regions, but Prosopis is predominantly found in the lowlands, and c) because the
most important LULC classes for local communities’ livelihoods are concentrated in this zone, while
the surrounding hilly and rocky escarpments are predominantly arid and have limited ecosystem
services to offer. To analyze the relevant LULC changes, we focused on the LULC classes that are
present in the invasion hotspot region around Lake Baringo and toward Lake Bogoria.
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Figure 1. Overview of the study area (red box) covering the Marigat subregion, located in Baringo 
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[38]—details are provided in supplementary material SI2—by visual interpretation of the Landsat 
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distinct species occurrence characteristics such as along rivers, roads, vegetation differentiation 
because of elevation and soil types, homogeneity, and contiguity. Being a semi-arid zone, the 
vegetation is scanty; this is largely associated with historical degradation in the study area [30], 
which is a factor that enhanced identification. Additionally, the dominant vegetation is the generic 
species of Vachellia and Prosopis. Their identification was enhanced by seasonality as described in 
Section 2.2.2. For historical dates where VHR was not available, we heavily relied on local expert 
knowledge and vegetation occurrence characteristics to collect reference data. After the visual 
interpretation, we digitized small polygons, i.e. regions of interest (ROIs) for each LULC class 
(supplementary material SI2). We performed a classification on 13 LULC classes that were later 
aggregated to eight classes. ‘Mixed vegetation’, for example, is an aggregation of several landscape 

Figure 1. Overview of the study area (red box) covering the Marigat subregion, located in Baringo
County, Kenya.

2.2. Assessment of Land-Use and Land-Cover Changes

2.2.1. Field Reference Data

Field reference data were collected in the field between October 2015 and June 2016, which is a
period that cuts across the dry and wet seasons. Reference points distributed across the study area
were collected using a handheld GPS receiver. For the historical imagery, reference data was collected
by the visual interpretation of VHR satellite imagery available via Google Earth Pro [38]—details are
provided in Supplementary Materials SI2—by visual interpretation of the Landsat satellite data itself
in combination with field verification from local long-term residents familiar with the study area and
its historic LULC. The selection of reference data was also highly informed by the distinct species
occurrence characteristics such as along rivers, roads, vegetation differentiation because of elevation
and soil types, homogeneity, and contiguity. Being a semi-arid zone, the vegetation is scanty; this is
largely associated with historical degradation in the study area [30], which is a factor that enhanced
identification. Additionally, the dominant vegetation is the generic species of Vachellia and Prosopis.
Their identification was enhanced by seasonality as described in Section 2.2.2. For historical dates
where VHR was not available, we heavily relied on local expert knowledge and vegetation occurrence
characteristics to collect reference data. After the visual interpretation, we digitized small polygons,
i.e., regions of interest (ROIs) for each LULC class (Supplementary Materials SI2). We performed
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a classification on 13 LULC classes that were later aggregated to eight classes. ‘Mixed vegetation’,
for example, is an aggregation of several landscape components (i.e., sub-classes). The criteria for
aggregation were informed by our study objectives and the LULC present in the invaded areas. The
defined classes are presented and described in Table 1. We did not include settlements because the area
is sparsely populated, and settlements are pastoral in nature; they are small semi-permanent structures
that are generally not easily identifiable on 30m Landsat data.

Table 1. Land-use and land-cover (LULC) classes present in the study area.

Class ID LULC Classification Description

1 Prosopis
Refers to P. juliflora, which is an evergreen woody

alien shrub predominating the lowland areas around
Lake Baringo

2 Vachellia tortilis An indigenous tree species predominantly found
within the tropical arid and semi-arid lands (ASALs)

3 Mixed Vegetation
A combination of natural trees and shrubs that exist

as a mix of single stands or as small patches and
water weeds

4 Grassland Areas predominantly under grass cover

5 Bareland Degraded areas usually with little or no vegetation
(uncovered soils)

6 Rainfed cropland Areas for farming that depend on rainfall for water
7 Irrigated cropland Areas for farming equipped to provide water
8 Water Rivers, lakes, and dams

2.2.2. Satellite Data Selection and Pre-processing

This study focuses on a period between 1988–2016, for which Landsat satellite data with a spatial
resolution of 30m were available. We chose cloud-free good quality imagery of 1988 (base year) because
before this date, Prosopis was barely visible on Landsat data, and invaded areas were small and mostly
within the plantations’ perimeter.

We downloaded Landsat data from the Landsat Surface Reflectance Climate Data Record (Landsat
CDR), which has been atmospherically corrected [39,40]. For all Landsat datasets, we selected the
bands blue, green, red, near infrared (nir), as well as the two shortwave infrared bands (swir1 and
swir2). In consideration of the limitation posed by multispectral sensors such as Landsat in mapping
vegetation species, we enhanced the ability of our data to detect the species in our study area by
additionally calculating the normalized difference vegetation index (NDVI) for both the dry and wet
season. NDVI is a ratio-based index, which introduces information about biophysical properties,
thereby increasing the separability of landscape components [41]. We considered both the dry and
wet season because our study context is a semi-arid zone with two distinct seasons. The choice of
the two periods allowed the maximization of the spectral differences between Prosopis and other
native vegetation such as the dominant Vachellia spp. and seasonal herbaceous vegetation. Prosopis
is evergreen, unlike the deciduous Vachellia; hence, it tends to maintain a higher vigor and canopy
than the native vegetation during the dry season [26]. Per temporal step, satellite images were selected
between January and March for the dry season, and between April and August for the wet season
(Table 2). To further improve our data in each combined dataset, we also included the digital elevation
model generated by the Shuttle Radar Topography Mission (SRTM). In the study region, Prosopis grows
exclusively at elevations below 1500 m a.s.l [42]. In total, we created five data stacks consisting of 15
bands each. Pre-processing included mosaicking, cloud masking, and the stacking of dry and wet
season bands. To ensure optimal data quality, we manually selected the best images; the main criteria
were (i) the acquisitions date, and (ii) the absence of cloud cover.
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Table 2. Characteristics of satellite images used for classification.

Sensor
Acquisition Date Year Assigned to

ClassificationDry Season Wet Season

Landsat 5 TM Mar, 1989 July, 1987 1988
Landsat 5 TM Jan, 1995 Mar,1995 1995
Landsat 5 TM Feb, 2002 July, 2002 2002
Landsat 5 TM Jan, 2010 June, 2008 2009
Landsat 8 OLI Feb, 2016 July, 2015 2016

2.2.3. Classification of Satellite Data

For classification, we used the Random Forest (RF) algorithm, which we implemented using the
function provided in the randomForest package in R statistical software version 3.4.4 [43,44]. RF is a
non-parametric machine learning algorithm that consists of an ensemble of randomly grown trees,
whereby predictions are made by each individual tree, which are then averaged [45]. Each tree is
grown using a different random bootstrap sample with two-thirds used for building the random forest
model, and one-third used for estimating the prediction and the associated error, which is also known
as the ‘out-of-bag’ (OOB) error [46–48]. Once the RF model is built using reliable reference samples for
training, the RF model can then be applied to the data to be classified. In this study, we generated a
model for each point in time. We used 70% of the manually delineated ROIs described in Section 2.2.1
for training each RF model, and then applied it to the corresponding satellite data stack. Nearly
one-third (30%) of training samples were used for validation purposes. For each RF model, we used
1000 trees. All the other arguments of the randomForest function were kept at the default setting [48].

2.2.4. Accuracy Assessment

Besides the calculation of the OOB, we performed an additional and independent 10-fold
cross-validation accuracy assessment. Cross-validation (CV) is a robust statistical method that is
used to evaluate the model accuracy by dividing the reference data into a training and a validation
set. It assumes that data are identically distributed and that training and validation samples are
independent [47]. In k-fold cross-validation, data are first randomly partitioned into k equally (or nearly
equally) sized folds. Subsequently, k iterations of training and validation are performed such that
within each iteration, a different fold of the data is used for validation, while the remaining k-1 folds
are used for learning [49]. The validation is performed on a pixel level, so that each pixel inside a
validation polygon is compared with the reference class. Then, the k results from the folds can be
combined to produce a single estimation. In this study, we ran a 10-fold cross-validation, where the
training dataset was randomly split 10 times with 90% for training and 10% for validation, respectively.
Then, the 10 results for each classification were summarized, and confusion matrices were generated
for the calculation of overall, users’, and producers’ accuracies (OA, UA, PA) as well as Cohen’s kappa
(K). Cross-validation was performed independently for each of the five classification outputs.

2.3. Land-Use and Land-Cover Change Analysis

We assessed LULC change by creating cross-tabulation matrices for the intervals from 1988 to
1995, 1995 to 2002, 2002 to 2009, 2009 to 2016, and 1988 to 2016, and subsequently calculated gains,
losses, net changes, and rates of change. LULC gains and losses were visualized using charts and tables.
In addition, interval-specific Prosopis areal coverage and invasion rates were determined. To determine
how Prosopis invasion impacted individual LULC and at which time interval, the net changes per class
per time interval were derived from subtracting the contributions of each class to Prosopis (Losses to P)
from their respective gains from Prosopis (Gains from P).

To understand the invasion pattern originating from the initial plantations, we analyzed change
statistics and visually assessed the LULC maps. Knowledge of seasonal socio-economic activities such
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as irrigation farming, charcoal production, and flood events also informed the interpretation of the
change output and distribution patterns. This knowledge was acquired through field observations,
focus group discussions, and interactions with the host community.

3. Results

Random Forest classifier achieved acceptable to good producer’s and user’s accuracies of above
70% for all classes, except for V. tortilis (Forssk) Galasso and Banfi in 2016 (PA = 53.5%) and for Prosopis
in 2002 (PA = 64.8%). Overall accuracy ranged between 98.1–98.5%. The kappa coefficient ranged
between 0.93–0.96. Generally, the highest accuracies were realized for the 2016 classification, and the
lowest accuracies were realized for the 1988 classification (Tables S1–S5: Supplementary Materials).

3.1. Invasion History of Prosopis from 1988 to 2016

In 1988, the dominant LULCs in the 180,000-ha large study area were mixed vegetation and
bareland at 71.5% and 8.3% of total study area, respectively (Figure 2). At that time, there was subtle
Prosopis coverage mainly on the shores of Lake Baringo and a few Prosopis patches in the Eldume
and Kailer sublocations. Initially, the prominent invasion pathways were mostly along the rivers
(i.e., Molo, Perkerra, Loboi, Endao, Lembus, Chemeron, and Sandai), road networks, and irrigation
canals (Figure 2B). In Figure 2C, an invasion corridor from Lake Baringo southwards to Lake Bogoria
through the water marshes (that currently form Lake 94, which is located between lakes Baringo and
Bogoria) and the riparian zones of rivers draining into the lakes can be identified. From this corridor,
Prosopis continued to spread into the surrounding areas, covering largely bareland predominantly on
the south and southwestern zones of Lake Baringo. This led to the invasion of the Perkerra irrigation
scheme (indicated in Figure 2A), which is a key agricultural facility that was established during
the colonial times in the 1950s. In contrast to the rapid spread of Prosopis in the southeastern part
of the study area, its spread toward the northern and eastern zones of Lake Baringo appears to be
considerably slower.

Over the study period, there was a sharp and steady increase in Prosopis coverage, from 882 ha in
1988 to 18,792 ha in 2016 (Table 3, Figure 3A,B). However, Prosopis did not spread at the same rate over
that time (Figure 3). The rate in the seven-year intervals increased continuously from 4.7% until 1988
to 13.1% in 1995 and stabilized at around 27% since 2002. This can be translated into a yearly spread
rate of 3.8–4.0% per year since 2002.
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Figure 2. Overview map (A) and LULC maps (B–F) of the Marigat subregion, Baringo County, Kenya,
for the years 1988, 1995, 2002, 2009, and 2016. The overview map shows the topography, waterways,
lakes, and the Perkerra irrigation scheme. The red boundary zone is the extent of the study area.
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Table 3. LULC proportions for each class in hectares (ha) and percent share of the total area for 1988, 1995, 2002, 2009, and 2016.

1988 1995 2002 2009 2016
LULC Classes ha % Share ha % Share ha % Share ha % Share ha % Share

Prosopis 882 0.5 3345 1.9 8375 4.7 13,568 7.5 18,792 10.4
Vachellia tortilis 8517 4.7 6809 3.8 3158 1.8 3718 2.1 4915 2.7

Mixed vegetation 128,727 71.5 130,385 72.4 132,969 73.9 124,392 69.1 123,310 68.5
Grassland 7229 4.0 5652 3.1 1194 0.7 691 0.4 977 0.5
Bareland 15,001 8.3 16,904 9.4 14,130 7.9 13,420 7.5 8503 4.7

Rainfed cropland 3840 2.1 3189 1.8 5531 3.1 5453 3.0 2408 1.3
Irrigated cropland 1501 0.8 473 0.3 1463 0.8 3708 2.1 652 0.4

Water 14,325 8.0 13,264 7.4 13,204 7.3 15,071 8.4 20,464 11.4
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Figure 3. (a) LULC trends in hectares for each class from 1988 to 2016. (b) Invasion spread rate for each
observed seven-year time interval (not per year) from Prosopis introduction until 2016 (with the totally
invaded area in 2016 considered as 100%).

3.2. Land-Use and Land-Cover Changes between 1988 and 2016

During the 28-year period, two of the eight LULC classes (Prosopis and water) increased in spatial
coverage by 2031% and 42%, respectively, while the rest decreased (Table 4 and Figure 3A). Increases in
the Prosopis invaded area is more or less constant since 1995, and was not affected by the implementation
of ‘management by utilization’ and the flooding event in 2013 (Figure 3A,B). Water levels first declined,
but started to increase again since 2009 (Figure 3A).
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Table 4. The overall net changes of LULC in hectares (ha) and percent class shares of total study area and percent class shares of base class area in 1988. Changes were
calculated for 1988–1995, 1995–2002, 2002–2009, 2009–2016, 1988–2016.

Net Changes 1988–1995 1995–2002 2002–2009 2009–2016 1988–2016

LULC ha % Total
Area

% of
Class

Area in
1988

ha % Total
Area

% of
Class

Area in
1988

ha % Total
Area

% of
Class

Area in
1988

ha % Total
Area

% of
Class

Area in
1988

ha % Total
Area

% of
Class

Area in
1988

Prosopis 2463 1.4 279.4 5030 2.8 570.4 5193 2.9 589.0 5224 2.9 592.5 17910 10.0 2031.3
Vachellia tortilis −1708 −1.0 −20.1 −3651 −2.0 −42.9 560 0.3 6.6 1197 0.7 14.1 −3602 −2.0 −42.3

Mixed
vegetation 1658 0.9 1.3 2583 1.4 2.0 −8576 −4.8 −6.7 −1082 −0.6 −0.8 −5417 −3.0 −4.2

Grassland −1577 −0.9 −21.8 −4458 −2.5 −61.7 −503 −0.3 −7.0 286 0.2 4.0 −6252 −3.5 −86.5
Bareland 1903 1.1 12.7 −2774 −1.5 −18.5 −709 −0.4 −4.7 −4917 −2.7 −32.8 −6498 −3.6 −43.3

Rainfed cropland −651 −0.4 −17.0 2342 1.3 61.0 −78 −0.0 −2.0 −3045 −1.7 −79.3 −1432 −0.8 −37.3
Irrigated
cropland −1027 −0.6 −68.5 989 0.6 66.0 2246 1.3 149.7 −3056 −1.7 −203.7 −849 −0.5 −56.6

Water −1061 −0.6 −7.4 −61 −0.0 −0.4 1868 1.0 13.0 5393 3.0 37.6 6139 3.4 42.9
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Overall, the highest losses were found in grasslands by 86%, followed by irrigated cropland at
57%, bareland at 43%, V. tortilis at 42%, rainfed cropland at 37%, and the least was mixed vegetation at
4% (Table 4). However, some the classes that generally declined also showed some spontaneous slight
increases during certain intervals such as bareland in 1995, croplands in 2002 and 2009, and V. tortilis
in 2016 (Figure 4). Prosopis showed a steady increase across all the intervals (Table 4 and Figures 3A
and 4). In the early years (1988–2002) of invasion, the most affected LULCs were V. tortilis (–5359 ha)
and grasslands (–6035 ha) which are key resources for pastoralists, while in the latter years (2002–2016),
mixed vegetation (–9659 ha), bareland (–5626 ha), rainfed cropland (–3123 ha), and irrigated cropland
(–811 ha), registered the most changes (Figure 3A).   
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3.3. Prosopis-Specific Induced Changes on other LULC

Our results show that V. tortilis and grasslands were mostly lost to Prosopis during the period
1995 to 2002 (by 22% and 12% respectively), while mixed vegetation, bareland, and irrigated cropland
were mostly lost to Prosopis during the period 2009 to 2016 (by 1.94%, 18%, and 74%, respectively;
Table 5 and Figure 5). Generally, Prosopis induced the most changes in LULC in the study area between
2009–2016, while the least impacts were observed between 1988–1995.

Cumulatively, within almost three decades, Prosopis invasion has resulted in LULC losses of
V. tortilis by 3452 ha (41%), grasslands by 2675 ha (37%), bareland by 5351 ha (36%), irrigated cropland by
373 ha (25%), mixed vegetation by 6215 ha (5%), and rainfed cropland by 129 ha (3%). The three largest
donors to Prosopis were, in order of ranking, mixed vegetation, which comprises mostly indigenous
trees and shrubs, bareland, and V. tortilis, with a mean annual loss of 222 ha/a, 191 ha/a, and 123 ha/a,
respectively. Grasslands and irrigated croplands, which are the basic livelihood support system for the
agro-pastoral community, annually lost 96 ha and 13 ha, respectively.
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Table 5. The net impact of Prosopis invasion on individual LULC for 1988–1995, 1995–2002, 2002–2009,
2009–2016, and for 1988–2016. The numbers represent the time interval, V (Vachellia tortilis), P (Prosopis),
M (Mixed vegetation), G (Grassland), B (Bareland), R (Rainfed cropland), I (Irrigated cropland), W
(Water). Rows in bold represent periods with highest change, rows in italics periods with lowest change.
The rows with border line represent the overall net changes associated with Prosopis invasion from 1988
to 2016.

Time Period Losses to P (ha) Gains from P (ha) Net Change (ha) % of Class Area in
1988

V88-P95 984 235 −750 −8.8
V95-P02 2146 237 −1909 −22.4
V02-P09 789 409 −381 −4.5
V09-P16 913 281 −633 −7.4
V88-P16 3478 26 −3453 −40.5

M88-P95 651 227 −424 −0.3
M95-P02 2183 725 −1458 −1.1
M02-P09 3837 1340 −2498 −1.9
M09-P16 4247 1753 −2494 −1.9
M88-P16 6308 93 −6215 −4.8

G88-P95 510 82 −428 −5.9
G95-P02 1042 163 −879 −12.2
G02-P09 341 170 −171 −2.4
G09-P16 126 285 159 2.2
G88-P16 2688 13 −2675 −37

B88-P95 50 5 −44 −0.3
B95-P02 1009 124 −885 −5.9
B02-P09 2977 856 −2121 −14.1
B09-P16 3644 974 −2670 −17.8
B88-P16 5361 10 −5351 −35.7

R88-P95 17 0.7 −17 −0.4
R95-P02 5 16 11 0.3
R02-P09 709 139 −571 −14.9
R09-P16 423 136 −287 −7.5
R88-P16 131 3 −129 −3.4

I88-P95 44 0 −44 −2.9
I95-P02 7 58 51 3.4
I02-P09 456 368 −89 −5.9
I09-P16 1287 173 −1115 −74.3
I88-P16 378 5 −373 −24.9

W88-P95 758 1 −757 −5.3
W95-P02 44 84 40 0.3
W02-P09 0.1 637 636 4.4
W09-P16 7 1822 1814 12.7
W88-P16 10 295 285 2
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4. Discussion

4.1. Spatial Evolution of Prosopis Invasion

Owing to its invasive nature, Prosopis has the potential to colonize and dominate a variety of
landscapes, especially in the tropical ASALs [50]. However, despite this well-known fact, there remains
a significant lack of understanding of the rate of invasion in affected regions and the consequences for
LULC dynamics. We assessed the evolution of Prosopis invasion and the associated LULC changes
over time and space by using multi-temporal and multispectral Landsat satellite imagery as well
as by verification of mapping outputs with historical Google Earth Imagery [38] and local expert
knowledge. Applying Random Forest on the Landsat data provided good estimations and reliable
accuracies, which has also been reported in other studies [21,51–54]. This provides potential for the
long-term monitoring of Prosopis invasion. Moreover, its processing chain can be easily repeated,
which is particularly useful when performing time-series analysis, and can also be applied to other
studies with some fine-tuning [21]. Our study covered the entire invasion history, and used rigorous
methods to assess the evolution of Prosopis. We showed how the invasion dynamics have influenced
LULC in the study area, which was information that was lacking in previous studies. The use of
seasonality, especially the dry season information, was very useful in the accurate mapping of Prosopis
from the coexisting native vegetation and other LULC. However, we would like to note that our
study was limited by inaccessibility to the areas to the east of Lake Baringo. This is a hotspot zone
for community-based violence [55] and at the time of field data collection, the area was quarantined.
Therefore, we did not succeed in collecting ground truth information for that particular zone.

Zooming into a heavily invaded region with original Prosopis plantations further illustrates how
the combination of multi-temporal Landsat satellite imagery and Random Forest helped in identifying
and visualizing invasion processes at multiple scales (Figure 6). Both the temporal and spatial patterns
detected at the case study level and at smaller scales revealed that Prosopis initially spread away from
plantations mainly along roads and waterbodies or lakeshores. This is in line with findings from the
Afar region in Ethiopia, where waterbodies and roads have been identified as key drivers of Prosopis
invasion [16]. Subsequently, it invaded areas away from waterbodies, particularly V. tortilis, grassland,
and mixed vegetation and more recently also, mixed vegetation on the slopes of the surrounding hills,
particularly by following riverbeds upstream. This raises the question of to what extent and at what
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rate Prosopis will also be able to displace mixed vegetation on the surrounding hills and escarpments,
which was facilitated by Prosopis seed dispersal by migrating livestock [16].   
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Figure 6. Invasion pattern of Prosopis from original plantations of 1982 and 1983. The blue trees
represent the plantations, and the Prosopis invaded areas are shown in deep red. The sequence of
LULC maps showing a zoom view south of Lake Baringo illustrates the gradual increase in Prosopis
spatial coverage and a general decline in most of the other LULC, particularly grassland and V. tortilis
over time (A–E). Locations Loruk*, Logumgum**, and Sandai*** are indicated with a symbol in the
1988 map.

It is likely that in our analysis, grasslands were partially under-represented or over-represented
at certain intervals. This is because some grasslands in the study area are dominated by annuals,
while the perennial grasses are stressed due to overgrazing. As such, grasslands are more abundant
during the wet season when weather conditions are favorable, which is a time when other herbaceous
vegetation is also at its peak. Furthermore, it was challenging to separate dry perennial grasses from
bareland. Another challenge in our analysis was the differentiation between V. tortilis and Prosopis
along rivers and in wetlands. It was relatively easy to differentiate V. tortilis from Prosopis during the
dry season in areas away from water, because, unlike Prosopis, it sheds leaves. However, in riparian
habitats, V. tortilis, as well as another common native, Balanites aegyptica, sometimes behaves similar to
evergreen species, due to the close proximity to water. All these species are closely related in spectral
reflectance [21], which posed a challenge in their effective discrimination in the riparian and wetland
zones using Landsat data.

4.2. Spatial Changes in Prosopis Coverage

In 1982 and 1983, Prosopis was introduced in 31 locations in the study area [10] to alleviate
fuelwood scarcity and to rehabilitate heavily overgrazed drylands [13,36,50]. These plantations were
established within the productive lowland zones along rivers, grasslands, and irrigation schemes in
order to enhance the tree survival rate in this harsh semi-arid environment. These zones are more prone
to invasion than other areas, because they are convergent zones for waterborne and animal-dispersed
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seeds, and are more conducive for plant growth [22]. Our findings that by 1988 Prosopis covered some
882 ha is comparable to estimates reported by Mwangi and Swallow [33] (739.5 ha by 1990). Our
estimate of the average annual increase in Prosopis coverage (640 ha) is within the range reported by
Kyuma et al. [25], who reported that Prosopis spread at an average annual rate of around 532 ha/a
on hillslopes and of 13 to 1309 ha/a in the floodplains in Kajiado County in southern Kenya. Visual
comparisons of our Prosopis map with the mapping output from Ng et al. [21] using higher spatial
resolution data (Sentinel-2 and Pléiades) also show an agreement of the invasion distribution. Hence,
our results confirm that Prosopis is an aggressive invader in Baringo County, which is in line with
observations from other regions in Africa [16,27,56–59]. The rapid spread of the species can be
explained by different factors: (a) the massive reproduction of seeds, (b) effective seed dispersal agents
(e.g., livestock and wildlife) and pathways (rivers and roads), or (c) favorable climatic conditions. The
flooding event in 2013 [21] may also have contributed to the further spread of Prosopis.

Figure 6 reveals a discriminative invasion pattern from the plantations. As already observed by
Andersson [10], the establishment of an initial plantation did not automatically result in the invasion of
the surrounding habitats. However, the areas (Sandai, Logumgum and Loruk) that initially remained
free from Prosopis invasion became invaded eventually, i.e., about a decade after these plantations
were established (Figure 6). It should be noted that some sites received P. juliflora only, some received
P. pallida only, and some sites received both species [13,60]. Prosopis juliflora is known to be highly
invasive, while Prosopis pallida appears to be less invasive, or not invasive at all in Baringo County
(Purity Rima Mbaabu, personal observations). It remains to be shown whether the varying level of
invasion around plantations is driven by the taxonomic composition of the plantations or by variation
in the local environmental conditions [10], which may lead to a ‘time lag’ in the invasion process.
Our findings suggest that Prosopis invasion in our study area follows a regular and gradual pattern
of increase.

4.3. LULC Changes in the Study Area

The Lake Baringo ecosystem presents a good example of a semi-arid landscape experiencing
remarkable LULC changes over the course of a few decades [30]. While the area invaded by the alien
Prosopis increased more than 20-fold since 1988, LULC classes with native vegetation and agricultural
areas decreased. Thus, the local communities have been losing land-cover classes that form part of
their key livelihood support system, such as grasslands and irrigated croplands, at an alarming rate.
Our results corroborate the findings of Kiage et al. [30], who assessed LULC changes around Lake
Baringo also using Landsat imagery, and found that the forest area (which corresponds to our V. tortilis
class) dropped by 40% within a 14-year period (1986–2000). Our study shows that Prosopis invasion
directly accounts for over 30% of the LULC changes in the study area. We would like to note that this
may be an underestimation of the current state of invasion, because, a) considering that there is usually
a lag-phase between Prosopis introduction and the actual detection on satellite image, and b) the use of
a 30 m Landsat imagery poses a challenge in detecting young but sparse Prosopis invasions.

Besides Prosopis invasion, human activities such as deforestation, land clearing, and overgrazing,
together with climate change, are likely to have contributed to the observed LULC dynamics in
Baringo County [30,61]. Yet, regardless of the factors triggering the LULC dynamics, Prosopis tends
to be more adaptive to the observed environmental change than native plant species [62,63]. This is
because, due to its deep-reaching roots, Prosopis is able to survive in areas where nothings else seems to
grow [14,64]. In addition, Prosopis has been shown to directly interfere with the survival of native plant
species, probably via competition for water or allelopathy [65]. Losses in key agro-pastoral livelihood
supporting LULCs (i.e., V. tortilis, grassland, and irrigated cropland) showed variable patterns across
the study period; while the decline in areas covered by V. tortilis and grasslands was more prevalent
during the first decade after Prosopis introduction (1988–2002), the highest losses in rainfed and irrigated
cropland occurred between 2009–2016 (Table 3). Most of the V. tortilis and grassland areas still present
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at the beginning of the study period were at close proximity to the plantations (Figure 6), which may
explain why they were first invaded by Prosopis.

Over the last 100 years, Baringo County has experienced a history of land degradation [10,61], and
the increase in bareland between 1988–1995 may be considered as a continuation of this trend (Table 3).
This matches with the findings of Kiage et al. [30], who observed that bare areas increased around
Lake Baringo area between 1986–2000. Land degradation in Baringo County was likely to be caused
by a combination of an increase in human population and livestock numbers, as pastoralism used to
be the main economic activity for local communities [66]. Additionally, low levels of precipitation
experienced in the area between 1978–1996 (annual average = 51.7 mm) may have further contributed
to the increase of bareland [67]. Variation in rainfall is particularly pronounced in semi-arid areas
such as the Baringo lowlands. Moreover, the long-term average precipitation in the region shows a
slight downward trend since the 1960s [68]. This may also explain why the lakes’ water levels declined
between 1988–2002.

However, since 2009, the area under water increased again, which was a phenomenon that has
also been observed in other waterbodies within the Great Rift Valley system. While the causes of
this increase remain unclear to date, some sources attribute the increase to increased rainfall, to plate
tectonic movements, or to land-use changes and its associated siltation downstream [69].

Agricultural activities started to increase in Baringo County at the beginning of the 21st century,
but the cultivated area considerably decreased again after 2009 (Tables 3 and 4). The initial increase in
irrigated cropland resulted from an expansion of irrigation schemes in the study area [70]. Small-scale
irrigated farming activities in the area are largely seasonal in nature. They depend on water availability
and seed production demand by the contracting seed companies such as Kenya Seed [71]. These
companies contract farmers for various seed production, which is usually on a rotational and annual
basis. However, if in a certain year farmers are not engaged in this activity, their farms usually remain
idle, which leaves the farms vulnerable to Prosopis invasion, particularly after crop harvesting, when
the livestock keepers freely graze their animals, which is a key vector of Prosopis seed dispersal, on crop
residues [72]. For instance, in 1995, there were minimal farming activities in the Perkerra irrigation
scheme. This coincided with the start of Prosopis invasion in the irrigation scheme, which eventually
resulted into rapid Prosopis spread in subsequent years (Figure 7). It should be noted that most of the
irrigated and rainfed cropland within the boundaries of the area invaded by Prosopis actually also bear
a significant Prosopis soil seed bank, and will thus need increased maintenance efforts; otherwise, this
land will be reinvaded within a few months (Purity Rima Mbaabu, personal observations).Remote Sens. 2019, 05, x FOR PEER REVIEW    3 of 26 
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In the study area, charcoal production is a thriving economic activity with charcoal from V. tortilis
being preferred on the market to that from Prosopis [21]. As such, V. tortilis was intensively harvested
for charcoal production in the years before the millennium. Around 2007, during a National Field Day,
the Kenya Forest Service (KFS) in Marigat expressed the need to ban the utilization of V. tortilis [73].
As an alternative, the communities were encouraged to utilize Prosopis, which was also regarded as a
way of managing Prosopis invasion. The observed increase in V. tortilis after 2009 might be an effect of
this ban, but we would like to point out that our accuracy assessment suggests a slight overestimation
of V. tortilis in the southeast of our study area in the 2016 image. This arose due to misclassifications of
this particular class, as depicted by the low producers’ accuracy of 53.5% (Supplementary Materials;
Table S5), which may partly be explained by our study limitation already described in paragraph 1,
Section 4.1.

By 2005, Prosopis invasion had intensified, and was perceived by the pastoralists as the cause of
the dwindling grasslands for their livestock, which prompted a legal suit between the host pastoral
community and the Kenyan government [74]. In response, the government began a sensitization
program through which the affected communities were trained on Prosopis management by manual
or physical removal and reseeding the cleared areas with grass species [13,29,75]. This practice was
gradually adopted by the pastoralists as a new way of enhancing the fodder that was available for
their livestock and income generation through commercial grass seed production. It has consequently
led to an increase in the number of grass fodder farms in the area [75], and might explain the increase
of grasslands in the last observed interval, between 2009–2016. However, our results show that the
adoption of the ‘management by utilization’ approach promoted by the Kenyan government has
not been effective in curtailing the further spread of Prosopis. On the contrary, utilization results
in the coppicing of multiple Prosopis stems from the harvested stem, which creates impenetrable
thickets and fuels the further spread of Prosopis through multiplied seed production by coppiced
stems [59,76,77]. Building on the long-term management experience gained in Australia, we propose
that sustainable and effective Prosopis management can only be achieved by combining different
management options such as chemical, biological, and mechanical control. In addition, a regular
inspection of areas at risk of invasion and the targeted removal of small Prosopis populations at the
invasion front is recommended [77].

Another interesting observation was the expansion of agricultural activities, particularly irrigated
cropland, which increased between 2002–2009. During this time, several seed companies contracted
farmers to produce cereal seeds. Small-scale irrigated farming activities in the area are largely seasonal
in nature. They depend on water availability and levels of seed demand by the contracting seed
companies, which vary from one year to another. As such, if in a certain year farmers are not engaged
in this activity, their farms usually remain idle. This inactivity leaves the farms vulnerable to Prosopis
invasion, particularly after crop harvesting, when the livestock keepers freely graze their animals on
crop residues, which is a key pathway for Prosopis seed dispersal in the croplands [72,78]. For instance,
we observed that in 1995, there were minimal farming activities in the Perkerra irrigation scheme. This
coincided with the start of Prosopis invasion in the irrigation scheme, which eventually resulted into
rapid Prosopis spread in the subsequent years (Figure 7). Our observation suggests that active land use
plays a critical role in controlling Prosopis spread.

Finally, the drylands of Baringo are often characterized by inter-community violence [55]. The
main cause of these conflicts is competition for scarce but vital resources, particularly water and fodder
for livestock. Invasion into the grasslands has significantly reduced available fodder, because high
densities of Prosopis (>50% canopy cover) have been reported to suppress grass growth and reduce
understory species diversity [10,79–81]. This is likely to exacerbate these resource-use conflicts between
the local communities. Moreover, high-density Prosopis cover impedes accessibility to water points for
people and livestock, and limits livestock mobility to grazing areas [50]. Further, Prosopis is known
to consume substantial amounts of groundwater [82–85], but the effect of Prosopis invasion on the
groundwater level in Baringo County is currently unknown.
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5. Conclusions

Baringo County has a long history of LULC changes, even prior to Prosopis invasion. Historically,
the main drivers of LULC changes are considered to be a growing human population and an increase
in livestock numbers, which lead to an unsustainable exploitation of the natural resources in the region.
This in turn prompted the introduction of Prosopis and other exotic tree species in Baringo County and
other parts of Kenya.

Our study provides evidence that over the last 30 years, Prosopis has become an additional driver
of LULC changes in Baringo County. While Prosopis has become a key source of wood and the invasion
of bareland can improve the microclimate in the area and increase soil stability, the substantial invasion
of grasslands, Vachellia tortilis-dominated land, and cropland as revealed in this study has serious
consequences for the delivery of traditional ecosystem services provided to (agro-)pastoralists, and thus
on the livelihood of rural people living in the invaded area. Based on our findings, we draw the
following conclusions:

1. Freely available Landsat data analyzed with the implementation of Random Forest machine
learning algorithm in the open source R software are useful in assessing spatial temporal LULC
changes, especially in regions where commercial data and software is economically inaccessible.
The RF algorithm has the ability to separate various landscape components with reliable accuracies.

2. The use of bi-seasonal (dry and wet) multispectral data combinations and the Random Forest
algorithm allowed us to spatially and quantitatively investigate the evolution of Prosopis invasion,
its current extent, and the changes in LULC in the semi-arid environment. The use of dry season
images enhanced the ability to differentiate the evergreen Prosopis from deciduous native Vachellia
species on the medium-resolution Landsat imagery.

3. Prosopis has rapidly increased in the study area since its introduction in 1982. It currently stands
at approximately 18,792 ha, invading at a rate of 640 ha per annum. This rapid spread was
facilitated by effective seed dispersal agents such as livestock and wildlife, a lack of natural
enemies, and favorable climate, among other factors. Our findings indicate that Prosopis has been
a key driver of LULC changes in the semi-arid lowlands of Baringo, directly accounting for over
a third of the LULC changes observed over the last three decades.

4. The LULC classes most vulnerable to Prosopis invasion are grasslands, V. tortilis-dominated zones,
and fallow irrigated agricultural fields. Their vulnerability is enhanced by their ecological niche
also favoring Prosopis growth and the presence of Prosopis seed dispersal vectors such as livestock,
wildlife, water, and humans.

Our study provides important baseline data and information for policy management. The
results indicate that the ‘management by utilization’ approach that has been promoted in Baringo
for 10–15 years has not curtailed the further spread of Prosopis. In order to achieve the sustainable
management of Prosopis and reverse its adverse impacts manifested in the loss of ecosystem services
and livelihood to the local communities, we suggest that this species be targeted with an integrated
and coordinated management strategy.
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