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Abstract: High-resolution satellite imagery enables decametric-scale quasi-circular vegetation patch
(QVP) mapping, which greatly aids the monitoring of vegetation restoration projects and the
development of theories in pattern evolution and maintenance research. This study analyzed the
potential of employing five seasonal fused 5 m spatial resolution CBERS-04 satellite images to map
QVPs in the Yellow River Delta, China, using the Random Forest (RF) classifier. The classification
accuracies corresponding to individual and multi-season combined images were compared to
understand the seasonal effect and the importance of optimal image timing and acquisition frequency
for QVP mapping. For classification based on single season imagery, the early spring March imagery,
with an overall accuracy (OA) of 98.1%, was proven to be more adequate than the other four individual
seasonal images. The early spring (March) and winter (December) combined dataset produced the
most accurate QVP detection results, with a precision rate of 66.3%, a recall rate of 43.9%, and an F
measure of 0.528. For larger study areas, the gain in accuracy should be balanced against the increase
in processing time and space when including the derived spectral indices in the RF classification
model. Future research should focus on applying higher resolution imagery to QVP mapping.

Keywords: CBERS-04; multi-seasonal images; quasi-circular vegetation patch; random forest; Yellow
River Delta

1. Introduction

In arid and semi-arid regions of the world, vegetation usually appears as patches due to the
environmental constraints such as a limited water supply, soil salinization or local microtopography.
According to size, area and spatial distribution, vegetation patches are characterized as banded
(i.e., tiger vegetation) or spotted (i.e., leopard vegetation) [1]. Compared with banded vegetation
patterns, the spotted vegetation pattern has not as yet attracted equivalent attention [2]. Patchy
vegetation patterns have been reported in America, Africa, Asia, Australia, and Spain [3–16], where the
range of annual precipitation is from 50 to 750 mm, and appears to be unrelated to any particular soil
type or plant species [14]. In general, it is considered as the result of plant-oil feedback occurring in
water-limited regions [12,14–16]. Although there is an ongoing debate concerned with the mechanisms
for the formation of patchy vegetation patterns, vegetation patchiness can generally increase primary
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production, influence biodiversity, affect surface runoff and soil erosion, and suggest key indices
for ecosystem function and for the management of arid and semi-arid lands [1,16–18]. Mapping
vegetation patches is, therefore, important for a better understanding of patch patterns, mechanisms
for formation and evolution, and function. Moreover, such mapping can provide valuable information
for the development of adaptive vegetation recovery and re-establishment strategies for increasingly
degraded ecosystems in arid and semi-arid zones [19].

Remote sensing is an effective technology for the creation of vegetation maps. Due to the relatively
small size, vegetation patch mapping most frequently involves the application of aerial photographs
and high-resolution satellite images. Aerial photographs have long been recognized as an important
data source for mapping patchy vegetation patterns since aerial photographs first became accessible
in the early 1940s [2,20]. The circular patches (with an area of approximately <90 m2 to >3000 m2)
of Spartina patens on Cox Island, Siuslaw Estuary, Oregon were mapped using sequential air photos
(scale 1:1500) from 1939 to 1980 and their area determined by planimetry [9]. Vegetation patches
(with spatial scales of 2–3 m) on the eastern flanks of Mt. Carmel were derived from orthorectified
aerial photographs with a 75 cm pixel resolution using a Maximum Likelihood Classifier (MLC) [20].
The fairy circles (with an average diameter of 5–8 m) of Kaokoland, Namibia were detected from a
set of aerial photographs (Scale 1:78,000) [21]. Two-dimensional wavelet combined with a 1 m aerial
photograph was used to identify individual juniper trees (crown diameter of 2–9 m) and thereby to
analyze the encroachment of juniper plants on to a sagebrush steppe landscape [22]. A set of historical
aerial photographs have also been used to analyze the onset and trends of an invasion by Pteronia incana
into the dry Karoo region of South Africa [19]. Multi-temporal aerial color infrared high-resolution
images with a spatial resolution of 1 m were used to validate a distinct discrimination of Pteronia incana
from other surfaces in an invaded area in Eastern Cape, South Africa [23]. Previous studies have proved
that aerial photograph with a pixel size of 2 m are sufficient to study decametric-scale vegetation patch
patterns [24,25]. With the launch of high spatial resolution civil commercial satellites in 1999, increasing
numbers of studies have been carried out concerning the dynamics of vegetation patch patterns either
by combining historical aerial photographs with multi-temporal high-resolution satellite images in
recent years, or with the sole use of multi-temporal high-resolution satellite images. For example,
a set of historical aerial photographs with a spatial resolution of 86 cm and a QuickBird satellite image
with a spatial resolution of 60 cm were used to monitor shrub encroachment from 1937 to 2003 in
southern New Mexico using the Object-Based Image Analysis method (OBIA), and approximately
87% of all shrubs of more than 2 m2 were identified [26]. Shekede et al. [25] used a discrete wavelet
transform to map dynamics in the encroachment of woody patches (with an average diameter of
between 8 m and 32 m) onto Zimbabwean savanna through the integration of multi-temporal aerial
photographs (Scale 1:20,000) with the resample high spatial resolution (a spatial resolution of 2 m)
GeoEye satellite images. High spatial resolution SPOT 5 (for which sharpened imagery has a spatial
resolution of 2.5 m), QuickBird and IKONOS (with a spatial resolution of 80 cm) satellite imagery
has been successfully used to map tree canopy cover patterns in savannas, and tree canopy sizes
mapped with SPOT 5 imagery using the OBIA method had a similar distribution to those observed
with QuickBird detection [27]. SPOT 5 (a spatial resolution of 2.5 m), ALOS (a spatial resolution of
2.5 m), ZY-3(a spatial resolution of 5.8 m), and QuickBird imagery have been also successfully used to
detect the quasi-circular vegetation patches (QVPs, with an area of 115 m2 to more than 1200 m2) in the
Yellow River Delta (YRD), China [28–30]. The WorldView-2 satellite imagery (with a spatial resolution
of 2 m) was recognized as more appropriate for the mapping to be used for a global estimation of giant
reed invasion [31].

The above-mentioned studies use single-date high-resolution imagery to map vegetation patches.
Multi-date images are not generally used for the detection of such patches, but are mainly used to
analyze the dynamics of vegetation patch patterns according to differences between the bi-temporal
images. The phenological information for vegetation derived from multi-seasonal imagery is very
useful for mapping tree species [32–39], forest cover [40–42], crop types [43–49], bush encroachment [25],
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grassland [50–54], and land use/land cover and changes [55–62]. Despite the different conclusions
obtained from a few studies [36,63,64], generally, multi-spectral and seasonal imagery can largely
support higher classification accuracy than single-date imagery. During the temporal series classification
procedure, it is necessary to find the optimal number of images and the optimal seasonal composition
periods for mapping the target research objects in a region [46,58,65], because the acquisition of a
large number of images may not be feasible due to cloud contamination, the satellite revisiting cycle,
the high price, and the fact that long image composition periods may be less informative and lead to
information redundancy [43,48,66].

Temporal series approaches involve the pixel-based and OBIA classification using several
algorithms: principal component analysis, multi-temporal tasseled cap transformation, ISODATA,
K-Means, maximum likelihood classification, linear discriminant analysis, multinomial logistic
regression, discrete wavelet transform, deep neural network, spectral unmixing, spectral angle
mapping, decision trees (DT), classification and regression trees, k-nearest neighbor (KNN), support
vector machine (SVM), and random forest (RF). Accuracy assessments from previous studies suggest
that there were inconsistent conclusions on the respective performance of these algorithms [34,56,67].
Fassnacht et al. [36] stated that the selection of the classifier itself was usually of low significance if
the remotely sensed data met the demands of the classifier and study subject. Among these temporal
series approaches, the RF classifier has been the most often used in recent years, and was demonstrated
to produce higher classification accuracy with multi-seasonal images for a range of applications,
including tree species detection [38,68,69], identification of crop types [48,66,70], and land cover
classification [56,58,59]. In addition to the spectral bands, the spectral indices, temporal anomalies of
spectral indices, biophysical variables, texture information, and topographic data were often stacked
and used as input to the RF classifier. After random forest variable importance measures and the
repeated classification accuracy assessment procedure were implemented, the optimal composition for
input variables was determined as the input to the RF classifier to produce the final high classification
result. Although temporal series approaches have received increasing attention, the multi-spectral and
seasonal imagery-based classification for vegetation patches is still lacking.

The QVPs are visible with various composition components and spatial structures within the
unused land of the YRD and were initially found through high spatial resolution SPOT 5 fusion-ready
imagery in 2011 [71]. The QVPs appear to have a rapid succession rate and are ideal for studying the
mechanism of spontaneous plant colonization and growth in this region, which will benefit the adaptive
active restoration strategies implementation in the degraded wetland ecosystem of the YRD initiated
in July 2002 [72]. Mapping QVPs is therefore important for a better understanding of vegetation patch
patterns, formation and evolution mechanisms, and patch functioning. The single-date high-resolution
imagery from different satellites such as SPOT 5, ALOS, ZY-3, QuickBird, China-Brazil Earth Resource
Satellite (CBERS) 04, Gaofen (GF) 1 and GF-2 has been used to map the QVPs [16,28–30,71]. CBERS-04
imagery (with a spatial resolution of 5 m) is suitable for detecting the QVPs that are commonly found
in an area of 25 km from the Bohai Sea of the YRD [16]. However, the classification accuracies for
K-Means, DT, and SVM, are not stable, and are low in some cases [16,73]. Although comparison of the
different seasonal CBERS-04 images for mapping QVPs has been carried out [73], the multi-spectral
and seasonal imagery-based classification of QVPs remains unclear. For these reasons, the aim of
this study was to explore the potential of multi-seasonal CBERS-04 images for mapping QVPs using
the widely used RF classifier. CBERS-04 imagery acquired in the early spring, spring, summer, late
autumn, and winter was used individually and the results were compared to provide insights into the
optimal season for image acquisition. The different combinations of the different seasonal images were
then used to evaluate the potential for using a multi-seasonal approach for mapping the QVPs.



Remote Sens. 2019, 11, 1216 4 of 24

2. Materials and Methods

2.1. Study Area

The study site is located 63 km northeast of Dongcheng District of Doongying City (118◦7′

E–119◦10′ E and 36◦55′ N–38◦10′ N) in Shandong Province, China (Figure 1a) and covers an area of
2.85 km2 (Figure 1b). This area is a low and flat unused land formed after the cofferdam of the Gudong
Oil Field was built to prevent sea water erosion and facilitate oil exploration in 1988. The soil types in
this area are Fluvisols and Solonchaks, and the soil textures vary from sandy loam to silty clay [74].
This area has a warm temperate continental monsoon climate, with distinct seasons, a mean annual
evaporation of 1962 mm, and a mean annual rainfall of 580 mm; about 70% of the rain falls during
the summer [74]. It has an aridity index (the ratio between mean annual rainfall and mean annual
evaporation) taken by the United Nations Convention to Combat desertification (UNCCD) of 0.30,
which belongs to semi-arid areas [75]. Suaeda salsa (the growing season from late April to middle
November), Tamarix chinensis (the growing season from late March to early December), and Phragmites
australis (the growing season from early April to middle November) are the three most common and
widely distributed types of native plant species over the study area, and are also the main plant species
in the QVPs (photo in Figure 1a). The landscape of this area is characterized by a two-phase mosaic
composed of the QVPs interspersed in the bare soil matrix (Figure 1b). The formation mechanisms on
the QVPs and pattern is under study now, the hypotheses of QVP occurrence attributed to the seismic
exploration of Gudong Oil Field in the YRD still needs to be confirmed [76,77].
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(band 4), G-Red (band 3), and B-Green (band 2). 
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2017 [77], and May 2018 were used to identify the QVPs in the CBERS-04 imagery for inclusion in the 
reference dataset. The collection of georeferenced data were equally divided into a training dataset 
(the number of QVPs, bare soil, and bodies of water were 816 pixels, 1875 pixels, and 609 pixels, 
respectively) and an independent validation dataset (the number of the QVPs, bare soil, and the water 
area were 516 pixels, 536 pixels, and 358 pixels, respectively) for the RF classification and accuracy 
assessment. 

Figure 1. (a) Map showing the location of the study area in Dongying City, Shandong Province, China
(photograph taken on 30 May 2018); (b) Subset of the CBERS-04 fusion imagery (18 May 2017) acquired
over the study area shown as a false color RGB composite consisting of R-Near infrared (band 4), G-Red
(band 3), and B-Green (band 2).

A total of 32 georeferenced data from three field surveys carried out in October 2013 [76], August
2017 [77], and May 2018 were used to identify the QVPs in the CBERS-04 imagery for inclusion in the
reference dataset. The collection of georeferenced data were equally divided into a training dataset (the
number of QVPs, bare soil, and bodies of water were 816 pixels, 1875 pixels, and 609 pixels, respectively)
and an independent validation dataset (the number of the QVPs, bare soil, and the water area were
516 pixels, 536 pixels, and 358 pixels, respectively) for the RF classification and accuracy assessment.
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2.2. CBERS-04 Data

The CBERS-04 satellite launched on 7 December 2014 has four sensors, one of which is a
panchromatic and multispectral camera, characterized by a 5 m spatial resolution panchromatic band
(band 1, 510–850 nm), three 10 m spatial resolution multispectral bands (band 2, 520–590 nm; band 3,
630–690 nm; band 4, 770–890 nm), and a swath width of 60 km [78]. Due to the limitation of cloud
coverage and data acquisition, and considering image quality, only five CBERS-04 images acquired
in 2015, 2016, and 2017 were used in the study, including an image from the early spring in March,
one from the spring in May, one from the summer in July, one from the late autumn in October, and one
from the winter in December (Table 1).

Table 1. Acquisition dates of the CBERS-04 imagery used in this study.

Sensor Acquisition Date Season

a panchromatic and multispectral camera

27 March 2017 early spring
18 May 2017 spring
10 July 2016 summer

24 October 2015 late autumn
13 December 2016 winter

Twenty GCPs selected by the image-to-image approach (with a mean root mean square error of
0.35 pixels) were used to register the multispectral bands at 10 m × 10 m pixel size to the panchromatic
bands at 5 m × 5 m pixel size using a quadratic polynomial near neighbor method in ENVI v5.1.
Pan-sharpened 5 m multispectral images were then produced for the five acquisition dates using the
Gram–Schmidt spectral sharpening technique, which is one of the usual image sharpening methods
used for preserving the spectral information of images [38,73,79], embedded in ENVI v5.1. The quick
atmospheric correction method embedded in ENVI v5.1 was used to convert the digital numbers of
the CBERS-04 images to the spectral reflectance, which needs no extra aided data, and implements
significantly faster than the physics-based approaches, generally creating spectral reflectance within
approximately 15% of the most widely used physics-based approach, fast line-of-sight atmospheric
analysis of spectral hypercubes [80]. To reduce data processing time, a subset of the CBERS-04 fusion
imagery was clipped to focus on the study site (Figure 1b), which included QVPs, bare soil and bodies
of water.

Due to the flat terrain and the difficulty in obtaining fine resolution digital elevation model data for
the research area, topographic data were not used in this study. The variables from texture information
were often low on the list of variable importance [33,34]. The spectral bands and the derived spectral
indices were, therefore, most commonly applied [35,46,56]. In this study, three bands of pan-sharpened
5 m multispectral imagery, and nine spectral indices were used as predictive variables for the RF
classification of the QVPs (Table 2), which can be derived from three multispectral bands (Near infrared
(band 4), Red (band 3), and Green (band 2)) of CBERS-04, and have repeatedly been demonstrated
to improve classification accuracy due to sensitivity to vegetation characteristics, insensitivity to soil
effect, and the ability to capture both land surface features and the seasonal changes in the growth
of vegetation [47,64,81–84]. Because there are no tasseled cap coefficients for spectral reflectance in
the fusion CBERS-04 imagery for deriving the tasseled cap brightness (TCB) and greenness (TCG),
the combined coefficients from five-date images used in this study were derived (Table 2) according to
the Gram-Schmidt orthogonalization based method used in the previous study [85], and the TCB and
TCG components were, thus, produced.
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Table 2. Predictive variables used in mapping the quasi-circular vegetation patches.

Predictive Variables Description Wavelength (nm)/Formula Reference

CBERS-04 bands Green (G) 520–590

Red (R) 630–690

Near-infrared (NIR) 770–890

Spectral indices Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R) [81]

Two-band enhanced vegetation index (EVI2) 2.5 (NIR − R)/(NIR + 2.4 R + 1) [81]

Optimized soil adjusted vegetation index (OSAVI) 1.16 (NIR − R)/(NIR + R + 0.16) [81]

Modified triangular vegetation index (MTVI2) 1.5 (1.2 (NIR −G) − 2.5 (R −G))/Square ((2
NIR + 1)2

− (6 NIR − 5 square (R)) − 0.5) [81]

Red-Green (RG) R/G [64]

Normalized difference water index (NDWI) (G − NIR)/(G + NIR) [84]

Green chlorophyll vegetation index (GCVI) NIR/G − 1 [47]

Tasseled cap component Tasseled cap brightness (TCB) 0.447 × G+0.540 × R + 0.713 × NIR Proposed in this paper

Tasseled cap greenness (TCG) 0.699 × NIR − 0.507 × G − 0.504 × R Proposed in this paper

Notes: NDVI is sensitive to green vegetation even for low vegetation covered areas, and was first used in 1973
by Rouse et al. [86]. EVI2 is sensitive to green vegetation and can simultaneously reduce soil and atmospheric
effects [87]. OSAVI is proposed to minimize the effects of soil background [88]. MTVI2 is sensitive to high leaf area
index, and relatively insensitive to leaf chlorophyll content and soil effect [89]. RG emphasizes the spectral change
in foliage color from green to red [90]. NDWI is sensitive to water features and eliminates the effects of soil and
vegetation features [91]. GCVI is related to total pigment concentration in the canopy at plant community level [92].
TCB is sensitive to surface brightness, and TCG is sensitive to vegetation greenness [93].

2.3. Random Forest Classification

As described in Section 1, the RF classifier was selected to classify the QVPs in this study. The RF
classifier consists of an ensemble of multiple decision trees, each of which is built using a bootstrapped
sample of the reference data and is assessed from the remaining sample of the reference data. The RF
classifier has four main advantages, such as the small number of parameters that need to be adjusted,
a low tendency to over-fit data, no data distribution assumptions that need to be met, and an ability
to measure the importance of the input variables. The detailed introduction and theories on the
RF classifier can be found in literature [94–96]. The RF classification was implemented using the
ImageRF embedded in the EnMAP-Box v2.02, which is a freely available processing and analysis
toolbox and can be integrated into the ENVI v5.1 classic menu to enhance the range of available
applications [97]. The two main tuning parameters in RF, ntree (number of trees to be grown, the default
value in ntree = 500) and mtry (number of possible splitting variables to be considered at each tree
node, the default value of mtry = the number of the square root of the total predictive variables), were
set to their default values because previous studies have demonstrated that the default values are
generally a good choice [34,35,98].

The use of combined multi-season images for detecting QVPs has been lacking, and the potential
of multi-seasonal CBERS-04 images remain unclear. It is necessary to compare the differences between
the data acquisition periods and to find optimal composition periods, classifications were carried out
on the CBERS-04 data separately from the five different dates and the twenty-six combined datasets (all
possible combinations of the five images were the ten two-season combined images, the ten three-season
combined images, the five four-season combined images, and the one five-season combined image) in a
multi-date approach. A backward variable removing procedure was used to select the optimal feature
datasets for every dataset for building a RF model through an assessment of variable importance
produced by the RF model based on mean decrease in classification accuracy and the minimum
mean square error calculated from the out-of–bag data and RF model classification accuracy. On the
basis of ranking the importance of predictive variables, firstly, the least important predictive variable
was removed, and the remaining variables were used to reclassify, then, the second least important
predictive variable was removed, and the remaining variables were used to reclassify. This process was
repeated until only the three most important predictive variables for single season image (the predictive
variables at least containing one variable of every image for multi-season combined images) were
left and the classification was stopped. Finally, the variables that can obtain the highest classification
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accuracy were selected as the predictive variables for the final RF classification model. During the
process of classification and accuracy assessment, the same training and validation dataset was used to
avoid differences induced by the reference dataset variability. Accuracy assessment of the classification
results was presented in a confusion matrix and measured according to the producer’s (PA) and user’s
accuracy (UA), overall accuracy (OA), and the Kappa coefficient.

Next a successive identification was performed, where a majority analysis with a 3 × 3 kernel
size was first used to match the salt and pepper noise pixels within a large single class with a large
single class, followed by a change in the classification to vector analysis in order to separate the QVPs
from the non-QVP vegetation based on the thresholds of area (less than 3000 m2) and perimeter/area
(less than 0.54), as determined by previous results [16,28,73]. The precision rate (Ad), recall rate (Ar),
and F measure (F) were then used to analyze the final detection accuracy of the QVPs; these factors
have often been used for performance measures in pattern recognition, information retrieval, machine
learning and binary classification [73,99].

3. Results

3.1. Single Season Image

3.1.1. Predictive Variable Importance

The effects of the different predictive variables on the land cover classification results from
five single season data are listed in Figure 2. The importance of the predictive variables diverges
considerably between the seasons of image acquisition. The best important variable for the classification
success was the green band (G) for the early spring month of March, the TCG for the spring and summer
months of May–July, and the MTVI2 for the late autumn and winter months of October–December.
This reflects the seasonal characteristics of the two-phase mosaic of the study area and the best spectral
indices for monitoring them. This may be explained by the fact that in early spring the vegetation
begins to grow, and the original spectral bands can reflect the landscape features well. In spring and
summer, the vegetation becomes green and dense, and the TCG can better monitor QVPs and bare
soils. In late autumn and winter, the vegetation becomes yellow and sparse, and the MTVI2 is sensitive
to high leaf area index and relatively insensitive to leaf chlorophyll content and soil effect [81,89],
and therefore, can effectively monitor landscape features.
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3.1.2. Predictive Variable Selection

The outcome of the predictive variable selection is listed in Table 3. Several of the predictive
variables were identified as redundant in each of the datasets, and were therefore, removed from the
final RF classification model. The number of predictive variables included in the final RF classification
models was similar between the five datasets. Another observation was that the green band (G) was
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included in all of the five final RF classification models. The NDVI, NDWI, EVI2, OSAVI, MTVI2 and
GCVI vegetation indices appeared to contribute relatively little to the classification success for all
of five datasets. For the late autumn October and the winter December datasets, the three original
spectral bands (red, near-infrared, and green bands) were slightly better for RF classification (for the
October image, OA = 92.8%, Kappa = 0.890; for the December image, OA = 93.9%, Kappa = 0.906)
than all twelve predictive variables and the minimum predictive variable datasets derived from all
twelve predictive variables (for the October image, OA = 91.3%, Kappa = 0.867; for the December
image, OA = 93.7%, Kappa = 0.903). Therefore, only the three original spectral bands were used in the
final RF classification model for the October and December image.

Table 3. Variable selection results for the final RF classification model for the five single season datasets.

Dataset No. Variables Selected Variables

27 March 2017 3 G, R, TCG
18 May 2017 4 TCB, NIR, G, R
10 July 2016 3 TCB, RG, G

24 October 2015 3 1 R, NIR, G
13 December 2016 3 1 NIR, G, R

1 Indicates that the overall classification accuracy and Kappa coefficient derived from the original spectral bands are
better than those from all twelve predictive variables and the minimum predictive variable datasets.

3.1.3. The QVP Classification Results

The overall classification accuracies and Kappa coefficients resulting from the use of the five
predictive variable datasets are presented in Figure 3. The results show that land cover classification
based on the early spring data acquired on 27 March 2017 (OA = 98.1%, Kappa = 0.971) was more
accurate than the classification based on the other four seasonal data. The lowest classification
accuracy was obtained from the late autumn data, acquired on 24 October 2015 image (OA = 92.8%,
Kappa = 0.890). Due to limited space, only the confusion matrix of the 27 March 2017 is presented
in Table 4. The error of commission and omission was mainly because of the confusion between the
QVPs and the bare soil, and the error of commission and omission between the QVPs and bodies of
water were only found in the May and July images. This may be attributed to growth of aquatic plants
during these periods. The error of commission and omission between the bare soil and the bodies of
water existed only in the December image.
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Table 4. Confusion matrix showing the producer’s and user’s classification accuracies for three land
cover classes obtained from the selected early spring (27 March 2017) predictive variable datasets.

Reference
Classified The QVPs Bare Soil Water Sum Producer’s

Accuracy (%)
User’s

Accuracy (%)

The QVPs 493 4 0 497 95.5 99.2
Bare soil 23 532 0 555 99.3 95.9

Water 0 0 358 358 100 100
Sum 516 536 358 1410

Through the visual interpretation of the Quickbird image (with a spatial resolution of 0.6 m)
carried out with ENVI 5.1 software with the multi-temporal finer spatial resolution images from Google
Earth and the multi-temporal CBERS-04 images, we identified 139 QVPs distributed in the study
area [16,73], which was used as the correct number of QVPs to calculate the precision rate, recall rate,
and F measure for assessing the final detection accuracy of the QVPs. The precision rate, recall rate,
and F measure resulting from the use of the five predictive variable datasets are presented in Figure 4,
which displays a similar curve to the overall classification accuracies and Kappa coefficients for land
cover classification presented in Figure 3. The results show that the QVP detection based on the early
spring data acquired on 27 March 2017 (Ad = 56.1%, Ar = 43.2%, F = 0.488) was more accurate than the
classification based on the other four seasonal datasets. The lowest detection accuracy was obtained
from the late autumn data acquired on the image from the 24 October 2015 (Ad = 40.7%, Ar = 25.2%,
F = 0.311).
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3.2. Two-Season Combined Images

3.2.1. Predictive Variable Importance and Selection

There were ten combined datasets in a two-season approach. The influence of the different
predictive variables on land cover classification results from the ten combined datasets and the outcome
of the predictive variable selection are shown in Figure 5 and Table 5. The number of predictive
variables included in the final classification models differs considerably between the ten datasets
(Table 5). The four datasets, including the March image, showed that the importance of the predictive
variables for March was similar to that for May, and was relatively higher than for the July, October,
and December images. From the three datasets, including the May image, it appeared that the
importance of the predictive variables for May was relatively higher than those for the July, October,
and December images. The number of predictive variables for the October and December images,
including in the final classification models of the two datasets with the July image, exceeded that
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associated with the July image. For the October–December combined dataset, the number of predictive
variables for the October image exceeded that of the December image. These results demonstrate the
different effects that the different seasonal images have on the classification success.
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20 
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May + July TCB5, NIR5, G5, G7 4 
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20 

1 RG10 is Red-Green spectral index derived from 24 October 2015, where the subscript 10 stands for 
the acquisition month of 24 October 2015. 
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Table 5. Variable selection results for the final RF classification model for the ten two-season
combined datasets.

Dataset Selected Variables No. Variables

March+ May G5, TCG3, NIR3, TCB5, R5, NIR5, TCB3, GCVI3, NDWI3, G3, GCVI5,
OSAVI5, EVI25, NDWI5, NDVI5, NDVI3, R3, EVI23, OSAVI3

19

March + July TCB7, G7, G3, RG7, TCG3, OSAVI3, EVI23, R3, NDVI3, NIR3, TCB3,
GCVI3, NDWI3

13

March + October
OSAVI3, EVI23, R3, NDVI3, TCG3, MTVI23, TCB10, G3, TCB3, NIR3,

TCG10, EVI210, MTVI210, OSAVI10, NDVI10, R10, NIR10, GCVI3, GCVI10,
NDWI3

20

March + December EVI23, R3, OSAVI3, NDVI3, TCG3, G3, NIR3, TCB3, RG12, OSAVI12,
NDWI12

11

May + July TCB5, NIR5, G5, G7 4

May + October TCB5, NIR5, G5, R5, TCB10, RG5, TCG10, MTVI210, R10, NIR10 10

May + December TCB5, NIR5, G5, NDWI12, R5, GCVI12, RG12, MTVI212, OSAVI12, NDVI12,
TCG5, TCG12, NDWI5, RG5, OSAVI5, EVI25, GCVI5, NDVI5

18

July + October TCB7, R7, G7, TCG10, RG7, NIR7, OSAVI10, NDVI10, MTVI210, EVI210,
NDWI10, R10, RG10

1 13

July + December R7, TCB7, G7, OSAVI12, EVI212, NDVI12, TCG12, NDWI12, NIR7 9

October + December
TCB12, RG12, R12, TCG10, NDWI10, R10, NIR12, GCVI10, TCG12, MTVI212,
GCVI12, TCB10, OSAVI10, G10, NDWI12, MTVI210, EVI210, G12, NDVI10,

NIR10

20

1 RG10 is Red-Green spectral index derived from 24 October 2015, where the subscript 10 stands for the acquisition
month of 24 October 2015.

3.2.2. The QVP Classification Results

The overall classification accuracies and Kappa coefficients resulting from the use of the ten
predictive variable datasets are presented in Figure 6. The results show that land cover classification
based on the combined March–October dataset (OA = 99.4%, Kappa = 0.990) was more accurate than
the classification based on the other nine combined two-season datasets. The lowest classification
accuracy was obtained from the combined May–December dataset (OA = 96.8%, Kappa = 0.951). Due
to limited space, only the confusion matrix of the combined March–October dataset is presented in
Table 6. The error of commission and omission was mainly from the confusion between the QVPs and
bare soils.
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Figure 6. Overall classification accuracies and Kappa coefficient values for land cover classification
from the ten combined two-season images using the ten predictive variable selection datasets listed
in Table 5.

Table 6. Confusion matrix showing the producer’s and user’s classification accuracies for
three land cover classes obtained from the selected predictive variable datasets of the combined
March–October images.

Reference
Classified The QVPs Bare

SOIL Water Sum Producer’s
Accuracy (%)

User’s
Accuracy (%)

The QVPs 508 1 0 509 98.5 99.8
Bare soil 8 535 0 543 99.8 98.5

Water 0 0 358 358 100 100
Sum 516 536 358 1410

The precision rate, recall rate, and F measure resulting from the ten combined two-season datasets
are presented in Figure 7. The highest precision rate, recall rate, and F measure were from the combined
March–December image (Ad = 66.3%), the combined March–July image (Ar = 47.5%), and the combined
March–December image (F = 0.528), respectively. The lowest precision rate, recall rate, and F measure
were from the combined May–December image (Ad = 37.2%), the combined October–December image
(Ar = 23.7%), and the combined October–December image (F = 0.313), respectively. The results show
that the detection of QVPs based on the combined March–December image (Ad = 66.3%, Ar = 43.9%,
F = 0.528) was more accurate than the classification based on the other nine two-season datasets.
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3.3. Three-Season Combined Images

There were ten combined datasets in the three-season approach. The number of predictive variables
included in the final RF classification models was 34 for March–May–July, 17 for March–May–October,
35 for March–May–December, 24 for March–July–October, 27 for March–July–December, 25
for March–October–December, 27 for May–July–October, 17 for May–July–December, 35 for
May–October–December, and 31 for July–October–December combined datasets, respectively.
The overall classification accuracies and Kappa coefficients resulting from the use of the ten predictive
variable datasets are presented in Figure 8. The results show that land cover classification based on the
combined March–July–December dataset (OA = 99.8%, Kappa = 0.997) was more accurate than the
classification based on the other nine combined two-season datasets. The lowest classification accuracy
was obtained from the combined March–May–December dataset (OA = 97.0%, Kappa = 0.954). Due to
limited space, only the confusion matrix for the combined March–July–December dataset is presented
in Table 7. The error of commission and omission was mainly from the confusion between the QVPs
and bare soils.

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 24 

 

classification accuracy was obtained from the combined March–May–December dataset (OA = 97.0%, 
Kappa = 0.954). Due to limited space, only the confusion matrix for the combined March–July–
December dataset is presented in Table 7. The error of commission and omission was mainly from 
the confusion between the QVPs and bare soils. 

 
Figure 8. Overall classification accuracies and Kappa coefficients for land cover classification from the 
ten combined three-season datasets. 

Table 7. Confusion matrix showing the producer’s and user’s classification accuracies for three land 
cover classes obtained from the selected predictive variable datasets of the combined March–July–
December images. 

Reference 
Classified The QVPs Bare soil Water sum 

Producer’s 
Accuracy (%) 

User’s 
accuracy (%) 

The QVPs 515 2 0 517 99.8 99.6 
Bare soil 1 534 0 535 99.6 99.8 

Water 0 0 358 358 100 100 
Sum 516 536 358 1410   

The precision rate, recall rate, and F measure resulting from the ten combined three-season 
datasets are presented in Figure 9. The results show that the detection of QVPs based on the combined 
March–October–December dataset (Ad = 64.0%, Ar = 41.0%, F = 0.500) was more accurate than the 
classification based on the other nine three-season datasets. The lowest detection accuracy was 
obtained from the combined Match–May–October dataset (Ad = 37.5%, Ar = 28.1%, F = 0.321). 

 
Figure 9. Precision rate, recall rate, and F measure values for the QVP detection from the ten combined 
three-season datasets. 

  

Figure 8. Overall classification accuracies and Kappa coefficients for land cover classification from the
ten combined three-season datasets.

Table 7. Confusion matrix showing the producer’s and user’s classification accuracies for
three land cover classes obtained from the selected predictive variable datasets of the combined
March–July–December images.

Reference
Classified The QVPs Bare soil Water Sum Producer’s

Accuracy (%)
User’s Accuracy

(%)

The QVPs 515 2 0 517 99.8 99.6
Bare soil 1 534 0 535 99.6 99.8

Water 0 0 358 358 100 100
Sum 516 536 358 1410

The precision rate, recall rate, and F measure resulting from the ten combined three-season
datasets are presented in Figure 9. The results show that the detection of QVPs based on the combined
March–October–December dataset (Ad = 64.0%, Ar = 41.0%, F = 0.500) was more accurate than the
classification based on the other nine three-season datasets. The lowest detection accuracy was obtained
from the combined Match–May–October dataset (Ad = 37.5%, Ar = 28.1%, F = 0.321).
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3.4. Four-Season Combined Images

There were five combined datasets for the four-season approach. The number
of predictive variables included in the final RF classification models was 46 for
March–May–July–October, 21 for March–May–July–December, 27 for March–May–October–December,
26 for March–July–October–December, and 42 for May–July–October–December, respectively.

The overall classification accuracies and Kappa coefficients resulting from the use of the five
predictive variable datasets are presented in Figure 10. The results show that land cover classification
based on the combined March–July–October–December dataset (OA = 99.8%, Kappa = 0.997) was more
accurate than the classification based on the other four combined two-season datasets. The lowest
classification accuracy was obtained from the combined March–May–October–December dataset
(OA = 97.8%, Kappa = 0.967). The confusion matrix, Producer’s and User’s accuracies of the three
land cover classes from the combined March–July–October–December dataset were similar to those
of the combined March–July–December dataset displayed in Table 7. The error of commission and
omission was mainly from the confusion between the QVPs and bare soils.
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The precision rate, recall rate, and F measure resulting from the five combined four-season
datasets are presented in Figure 11. The results show that the QVP detection based on the combined
March–July–October–December dataset (Ad = 60.2%, Ar = 40.3%, F = 0.483) was more accurate than the
classification based on the other four four-season datasets. The lowest precision rate, recall rate, and F
measure were from the combined May–July–October–December dataset (Ad = 38.2%), the combined
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March–May–July–October dataset (Ar = 26.6%), and the combined March–May–July–October dataset
(F = 0.316), respectively.
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3.5. Five-Season Combined Image

The number of predictive variables included in the final RF classification models was fifty-eight for
the combined five-season dataset. The land cover classification accuracy was OA = 98.7%, Kappa = 0.978.
The confusion matrix for the combined March–May–July–October–December dataset is presented in
Table 8. The error of commission and omission was mainly from the confusion between the QVPs
and bare soils. The precision rate, recall rate, and F measure resulting from the combined five-season
dataset were Ad = 37.3%, Ar = 27.3%, and F = 0.315, respectively.

Table 8. Confusion matrix showing the producer’s and user’s classification accuracies for
three land cover classes obtained from the selected predictive variable datasets of the combined
March–May–July–October–December images.

Reference
Classified The QVPs Bare Soil Water Sum Producer’s

Accuracy (%)
User’s

Accuracy (%)

The QVPs 501 3 0 504 97.1 99.4
Bare soil 15 533 0 548 99.4 97.3

Water 0 0 358 358 100 100
Sum 516 536 358 1410

3.6. Comparisons

Table 9 shows the comparison analyses of the optimal classification results for the five different
combinations in the number of seasons using the overall accuracy (OA), Kappa coefficient (Kappa),
precision rate, recall rate, and F measure values. The comparison in the results indicates that the
influence from the March image is significant. The OA and Kappa values increased slightly from
the optimal individual seasonal imagery to season combined image datasets, and the precision rate,
recall rate, and F measure values increased moderately, except for those associated with the combined
five-season dataset. Finally, the results suggest that the March–December combination dataset was the
optimal choice for the detection of QVPs (Figure 12).
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Table 9. A summary of the QVP classification accuracies from the individual season imagery and
season combined images using the random forest classifier.

Index Imagery OA Kappa Precision
Rate (%) Recall Rate (%) F Measure No. Predictive

Variables

March 98.1 0.971 56.1 43.2 0.488 3

March + October/March + December 99.4 0.990 66.3 43.9 0.528 20/13

March + July + December/March +
October + December 99.8 0.997 64.0 41.0 0.500 27/25

March + July + October + December 99.8 0.997 60.2 40.3 0.483 26

March + May + July +
October + December 98.7 0.978 37.3 27.3 0.315 58
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4. Discussion

Previous research results for the YRD had demonstrated that different seasonal QVP classification
from CBERS-04 imagery had variable accuracy, and that the spring imagery could detect the QVPs more
precisely and completely when compared with the other seasonal images [73], but the use of combined
multi-season images for detecting QVPs has been lacking. In fact, the use of multi-seasonal images has
been demonstrated as statistically important for the mapping of tree species [35,37,38]. The importance
of this study was in demonstrating that the seasonal influence in multi-season CBERS-04 images for
classifying land cover and detecting QVPs was significant. This study showed that accurate land cover
classification can be achieved for the distribution of QVPs in the YRD by applying both single season
and multi-seasonal fusion CBERS-04 high spatial resolution (5 m) multispectral images (best result
OA = 99.8%, Kappa = 0.997). Errors in the classification mainly existed between the QVPs and the bare
soil. However, as in previous studies [16,73], the detection accuracy of the QVPs was low (best result
precision rate = 66.3%, recall rate = 47.5%, F measure = 0.528). This low detection accuracy may be
attributed to the omission of the smaller size QVPs (less than 3 × 3 pixels), or the coalescence between
the QVPs with other QVPs or other vegetation.

Our comparison analysis demonstrates that both the March image and multi-seasonal fusion
CBERS-04 high spatial resolution multispectral images including the March image, can produce high
overall classification accuracies for land cover, and the multi-season combined images only increased
0.6–1.7% in overall accuracy as compared to the use of the March image alone. The research result
of this study indicated that March and May were more suitable acquisition periods for single date
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imagery used for land cover mapping and QVP detection in this study area, which was consistent
with that of Liu [73]. The reason for the higher accuracies of the spring season classification over
the summer season (the peak of growing season of vegetation with the greatest difference between
vegetation and bare soil) are unpredictable, but some key observations during the field investigation
can be used to explain this phenomenon. (1) Bare soil becomes brighter because of desiccation and soil
salt accumulation in the spring, which increases the contrast between QVPs and bare soil, whereas
the summer rainfall results in increases in soil moisture, therefore decreasing the contrast between
the QVPs and the bare soil. (2) The gap between the QVPs and other strips of vegetation can be
blurred due to the coalescence between vegetation elements in either summer or autumn season [73].
For single season imagery, the October (autumn season, the end of growing season of vegetation)
produced the lowest overall classification accuracy for land cover, which through visual inspections
and comparisons on five images (Figure 13) could be attributed to the small difference between
the vegetation and bare soil area and more coalescence between vegetation elements. The highest
classification accuracies for land cover from two-season, three-season, and four-season combined
datasets were obtained from the May–October (OA = 99.4%), March–July–December (OA = 99.8%),
and the March–July–October–December (OA = 99.8%) combined images respectively. The lowest
classification accuracies for land cover from two-season, three-season, and four-season combined
datasets were obtained from the MayvDecember (OA = 96.8%), March–May–December (OA = 97.0%),
and the March–May–October–December (OA = 97.8%) combined images, respectively. These results
indicated that adding imagery into classification could help to improve the accuracies for mapping
land cover, which is consistent with the previous researches [45,46,55,58], but the increase in accuracy
was limited. The March–May–October–December combined data had the lowest classification accuracy
of all four-season combined datasets, which indicated that the combined data consisting of images with
less contrasts or similar phenological features had the low capability for mapping land cover. It also
showed that the combination of different season images with the higher classification accuracy for land
cover was not necessarily an optimal combination of multi-season images, whereas the combination of
the different season images with the different landscape temporal features, especially the phenological
features of vegetation may be an optimal combination of multi-season images, and could further
improve the classification accuracy for mapping land cover and detecting the QVPs.
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Through one-sample t test analysis on Kappa values in SPSS 19.0 software (SPSS, Chicago, IL.,
USA), it indicated that the land cover classification results were statistically significant different for
among single season images (p = 0.041), among two-season combined data (p = 0.002), and among
three-season combined data (p = 0.025), and those from four-season combined data were not statistically
significant different (p = 0.243). The independent-samples T test detected statistically significant
differences of Kappa values between the single season and two-season (p = 0.039), the single season
and three-season (p = 0.025), and the single season and four-season (p = 0.018) combined data, and no
significant differences of Kappa values between the other combined data.

In general, the optimal seasonal combination data which had a high accuracy for classifying
land cover could produce a high accuracy for detecting the QVPs (shown in Figures 3, 4, 10 and 11).
However, for the two-season and three-season combination datasets, the optimal seasonal combination
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data which had a high accuracy for classifying land cover did not necessarily produce a high accuracy
for detecting the QVPs (Figures 6–9). The main possible reason may be due to the coalescence
between the QVPs and other vegetation elements which made the thresholds of area and shape less
effective for detecting the QVPs from land cover map. The March–December spring-winter season
combined images had the best result for detecting the QVPs compared to the single season and other
multi-season combined images. Except the high difference between the QVPs and bare soil in the two
images, one possible reason may be that Tamarix chinensis, one of the main plant species composed
of the QVPs, is easier to be identified in late fall and early winter [100]. This is not consistent with
the higher classification results for tree species mapping by applying the dry-wet season combined
images [35,37,38], which may be due to the different geographical and phenological characteristics,
and soil salinization. In general, increasing temporal imagery acquisition frequencies can help to
improve the classification accuracies [46,55,58]. However, there still is an optimization of image
acquisition timing and frequency for different research objects with different resolution imagery in
different regions [58,66]. Our assessment results indicated that the March–December spring-winter
season combined images produces optimal multi-season combined data when the multi-season images
are to be used for detection of QVPs, and that the combined images including those of more than two
seasons could not effectively improve the classification accuracy, which is in line with the conclusion
that adding more images could not increase the value for classifying tree species [36]. This finding
must be interpreted with caution because there were only five images used in this study.

Figure 14 shows the thirty-one pairs of comparison analyses of the optimal classification results for
mapping land covers with and without nine spectral indices using the overall accuracy (OA) and Kappa
coefficient (Kappa). The optimal classification results for mapping land covers including nine spectral
indices had higher OA and Kappa values than those without nine spectral indices, except for the
October and December images. However, the difference of 0–2.3% for OA and 0–0.035 for Kappa was
small between the thirty-one pairs with and without those indices, and twenty-eight of the thirty-one
pairs had less than 1% OA difference and less than 0.02 Kappa difference. The paired-sample t test
detected no statistically significant differences of Kappa values between the land cover classification
results from the combined data with and without nine spectral indices (p = 0.003). This result indicated
that the nine spectral indices derived from the three original spectral bands contributed low value for
land cover classification. It must be especially considered that when a classification is to be carried out
over a large study area, larger data storage and longer processing times are required.

Although the optimal seasonal CBERS-04 images along with effective predictive variable datasets
were used, the low detection accuracies presented in this study are similar to previous research results
where the individual seasonal high spatial resolution data, including those from CBERS-04, have been
used for detecting QVPs using the OBIA classification with K-Means, KNN and SVM classifiers [16,73].
This indicated that the choice of the classifier itself could not greatly improve the classification accuracy
of the QVPs, which is in line with the opinion that the selection of the classifier itself was of low
significance if the data is adequate in meeting the demands of the classifier [36].

It is possible to improve QVP mapping through three approaches in the future. (1) Additional
texture features are included in the RF classification for the QVPs. Texture features have been
proved important in the mapping of invasive Fallopia japonica [32], larch plantations [33], urban tree
species [34] and plastic-mulched farmland [101]. (2) The sub-meter level resolution data are applied.
When the gaps between QVPs or between QVPs and other strips of vegetation are less than 5 m, or the
diameter of a QVP is less than 10 m, the 5 m spatial resolution of CBERS-04 imagery is not enough to
detect the QVPs. Therefore, it is necessary to further improve spatial resolution [16,38]. (3) Higher
spectral resolution data are applied. The WorldView-2 imagery has higher spectral resolution and
unique spectral bands such the red edge band, shortwave bands, and has therefore demonstrated
higher accuracy for the classification of tree species than other images with a similar or higher spatial
resolution [35,38]. This is therefore a good choice for detecting QVPs in the YRD in the future.
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Figure 14. Overall classification accuracies and Kappa coefficients for land cover classification from
the thirty-one pairs with and without nine spectral indices. (1–5 stands for singe season March (1),
May (2), July (3), October (4), December (5), 6–15 identifies two-seasons combined March + May (6),
March + July (7), March + October (8), March + December (9), May + July (10), May + October (11),
May + December (12), July + October (13), July + December (14), October + December (15), 16–25
identifies three-seasons combined March + May + July (16), March + May + October (17), March +

May + December (18), March + July + October (19), March + July + December (20), March + October +

December (21), May + July + October (22), May + July + December (23), May + October + December
(24), July + October + December (25), 26–30 identifies four-seasons combined March + May + July +

October (26), March + May + July + December (27), March + May + October + December (28), March +

July + October + December (29), May + July + October + December (30), and 31 stands for five-seasons
combined March + May + July + October + December (31), respectively).

5. Conclusions

This study has investigated the potential of multi-season CBERS-04 imagery for mapping the
QVPs commonly found in the YRD, which extends from the Liaohe Delta to the coastal salt marshes in
Northern Jiangsu Province, China. Classification was performed using the RF classification approach.
Thirty-one different datasets including three spectral bands and nine spectral indices derived from the
five fusion 5 m CBERS-04 multispectral images were compared for their capabilities of classifying land
covers and detecting QVPs to evaluate the seasonal influences on classification accuracy. The main
conclusions resulting from this research are as follows:

The early spring season image (March) produced a higher classification accuracy compared to all
other individual season CBERS-04 images.

All of the optimal classifications resulted from the different combinations that include the
early spring season image, which indicated that the early spring season image contributed much to
classification success.

A typical early spring-winter (December and March) combined CBERS-04 images performed
better for mapping the QVPs than the other multi-season combined image datasets.

The five-season combination images (March, May, July, October, and December) had the lowest
classification accuracy for mapping QVPs.

Although the optimal classification results including nine spectral indices had higher OA and
Kappa values than those without those indices, the improvement in overall accuracy was small.
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Therefore, the gain in accuracy should be balanced against the increase in processing time and storage
space when using the derived spectral indices.

The choice of the classifier itself could not greatly improve classification accuracy from the
CBERS-04 imagery. Improved classification accuracy will most likely be achieved through use
of the higher spatial and spectral resolution data such as GF-2, WorldView-2, and WordView-3.
The improvement in spectral resolution is more important for mapping QVPs than the improvement
in spatial resolution.

Our work shows that it is important to choose suitable seasonal imagery for mapping of QVPs.
The research results from this study also indicated that there is an optimization of image acquisition
timing and frequency, and that adding more seasonal data for mapping the QVPs may not be worth
the gain in classification accuracy, and may even reduce the classification accuracy. Future research
should focus on (1) comparison analysis based on more seasonal data and more areas, (2) applying
higher spatial and spectral resolution imagery to map the QVPs, and (3) map the components and
structure of the QVPs, which is important for studying the evolution models of the QVPs.
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