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Abstract: The possibilities of chlorophyll a (Chl a) and total suspended matter (TSM) retrieval using 
Sentinel-2/MSI imagery and in situ measurements in the Gorky Reservoir are investigated. This 
water body is an inland freshwater ecosystem within the territory of the Russian Federation. During 
the algal bloom period, the optical properties of water are extremely heterogeneous and vary on 
scales of tens of meters. Additionally, they vary in time under the influence of currents and wind 
forcing. In this case, the usage of the traditional station-based sampling to describe the state of the 
reservoir may be uninformative and not rational. Therefore, we proposed an original approach 
based on simultaneous in situ measurements of the remote sensing reflectance by a single 
radiometer and the concentration of water constituents by an ultraviolet fluorescence LiDAR from 
a high-speed gliding motorboat. This approach provided fast data collection including 4087 
synchronized LiDAR and radiometric measurements with high spatial resolutions of 8 m for two 
hours. A part of the dataset was coincided with Sentinel-2 overpass and used for the development 
of regional algorithms for the retrieval of Chl a and TSM concentrations. For inland waters of the 
Russian Federation, such research was performed for the first time. The proposed algorithms can 
be used for regular environmental monitoring of the Gorky Reservoir using ship measurements or 
Sentinel-2 images. Additionally, they can be adapted for neighboring reservoirs, for example, for 
other seven reservoirs on the Volga River. Moreover, the proposed ship measurement approach can 
be useful in the practice of limnological monitoring of inland freshwater ecosystems with high 
spatiotemporal variability of the optical properties. 

Keywords: Sentinel-2; high-resolution imagery; ACOLITE; LIF LiDAR ; UFL-9; chlorophyll a; TSM; 
Gorky Reservoir; bio-optical properties of water; inland water; lakes 

 

1. Introduction 

The largest cities, industrial centers, and agricultural lands are often located on the banks of 
inland waters. Their overall prolonged impact on the aquatic environment and specific hydrological 
characteristics of inland waters lead to significant declining of water quality [1,2]. Self-purification 
mechanisms existing in the seas and oceans are weak [3] in inland waters. Due to the importance of 
freshwater bodies for human activities, much attention is paid to the monitoring of their quality. For 
these reasons, regional bio-optical algorithms for retrieval of water quality parameters from satellite 
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images [4–6] are developed for many lakes and reservoirs all over the world. In the Russian 
Federation, unlike Europe, Asia or America, such algorithms were developed for significantly fewer 
water bodies: the Ivankovo [7], the Krasnoyarsk [8], and the Gorky [9] Reservoirs, and the Lakes 
Baikal [10,11] and Ladoga [12]. These studies were limited by retrieval of Chl a concentration by 
regression to Level 2 (L2) satellite data. The radiometric measurements and atmospheric correction 
were not performed. Meanwhile, the amount of the Russian inland waters which are important for 
ensuring human activities and protection of unique flora and fauna is significant. Among them there 
a great deal of highly productive reservoirs with different sizes from tens to hundreds of kilometers. 
The presence of regular channel currents and variable wind forcing leads to significant spatial-
temporal variability of their water optical properties on scales of tens of meters and some hours. 
These factors limit the usage of the MODIS and Landsat-7,8 data due to insufficient resolution and 
low revisit interval (16 days), respectively. 

MSI (MultiSpectral Instrument) optical sensors installed on Sentinel-2 satellites are a promising 
tool for studying of inland freshwater ecosystems [13]. Despite the fact that the main purpose of 
Sentinel-2 is global land monitoring, there are some studies demonstrating the possibility of its usage 
for assessment of inland water quality. In particular, in [14] the signal-to-noise ratio of MSI bands 
relative to water bodies was estimated, the atmospheric correction (AC) in SeaWiFS Data Analysis 
System (SeaDAS) was carried out, its accuracy according to AERONET-OC was estimated, and 
vicarious calibration was performed. In [15], different AC methods for MSI images by in situ 
radiometric measurements in four Amazon lakes were evaluated. Authors showed significant 
accuracy variations for all spectral bands depending on the water optical properties of studied lakes. 
Additionally, the water reflectance above 705 nm is sensitive to the adjacency effect. Similar results 
were obtained for Lake Starnberg, Germany [16]. 

The possibility of MSI bands usage for constituent estimation and the development of 
appropriate bio-optical algorithms were studied in [17–23]. The accuracy of the Chl a retrieval 
algorithm for eutrophic waters developed for MODIS, MERIS, and other ocean color sensors was 
evaluated using MSI data by Grendaitė [17]. In [18], calibration and validation of well-proven 
algorithms [24,25] were performed by in situ measurements in the Barra Bonita Reservoir, Brazil. The 
suitability of the commonly used green to red band ratio was tested for estimation of the colored 
dissolved organic matter (CDOM), dissolved organic carbon (DOC), and water color in Estonian 
lakes with different trophic state indices in [19]. Empirical relation with CDOM absorption coefficient 
was obtained by the usage of the model radiance spectrum [20]. At the same time, Kutser showed 
that information on Chl a and TSM concentrations in CDOM-rich lakes can be obtained from peaks 
at 710 and 810 nm using B5 (705 nm) and B7 (783 nm) bands [21]. In [22], the single-band algorithm 
for TSM concentration retrieval was developed for Lake Poyang, China. In [23], the TSM retrieval 
algorithm [26] was successfully applied to B4 band and the consistency between Sentinel-2A/2B and 
Landsat-8 data was shown. 

The most part of algorithms for the processing of the MSI data is developed on the basis of in 
situ measurements for inland waters with smooth heterogeneity of optical properties. The last one 
strongly differs for the waters of the Gorky Reservoir during the algal bloom period. The spatial 
patterns of Chl a concentration vary in time so rapidly that satellite image may not correspond to in 
situ data after a few hours or faster. Another problem is the regular presence of cumulus and 
cirrocumulus clouds. In this case, some stations for sampling can appear under clouds or its shadow 
in a satellite image. Therefore, the usage of the traditional station-based measurements may not be 
rational. On the one hand, it will require a large number of expeditions to obtain statistically valid 
results. On the other hand, it will require additional significant financial and time costs for laboratory 
analysis of water samples, which may be useless due to above-mentioned reasons. Thus, another 
approach of in situ measurements may be required in order to minimize these risks and conservation 
of the results reliability. One of them is proposed in the present paper. The obtained in situ data were 
used to investigate practical possibilities of Sentinel-2/MSI for inland waters with high 
spatiotemporal variability of the water optical properties on the example of the Gorky Reservoir.  

2. Materials and Methods  
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2.1. Study Area 

The Volga River is the main waterway of central Russia and the longest European river. Its 
current ecological state is under the close attention of environmentalists due to shoaling, pollutions 
and phytoplankton blooms [27–29]. The last factor is the most pronounced in reservoirs of the upper 
and middle Volga, for example, in the Gorky Reservoir. This reservoir (56.65°–58.08°N, 38.83°–
43.37°E) has 427 km long and covers 1590 km² (Figure 1). Its volume is 8.71 km³. Average and 
maximum depths are 3.65 m and 26.6 m respectively. A shipping channel of the Volga River runs 
along the reservoir (Figure 1a). The last 100 km forms a lake (Figure 1b). The lake part is well suited 
for studying different hydrophysical processes due to the presence of unique features of hydrology, 
variety of winds and current velocities, intensive phytoplankton bloom [30–35]. Specific parameters 
that quantitatively characterize the hydrological and bio-optical regimes of the Gorky Reservoir are 
presented in Table 1.  

 
Figure 1. The Gorky Reservoir: (a) basic map; (b) the lake part map; (c) photo of a cyanobacteria 
bloom; and (d) Sentinel-2A true color image (15 July 2016) of cyanobacteria bloom.  

According to [30,31,34], the intensive phytoplankton bloom (Figure 1c) is observed from June 
through October and basically presented by algae of green, blue-green, cryptophytes, and diatom 
species. During this period there is quantitative domination of the blue-green algae, represented by 
Aphanizomenon flos-aquae (L.) Ralfs ex Born. et Flah., Anabaena sp., Anabaena flos-aquae Bréb. ex Born. 
et Flah., Merismopedia tenuissima Lemm., Microcystis aeruginosa (Kütz.) Kütz., Microcystis wessenberdgii 
(Kom.) Kom. In calm weather, the algal spatial distribution is highly heterogeneous, as demonstrated 
by the Sentinal-2A image of 15 July 2016 (Figure 1d). There are various structures in this image: sharp 
fronts with the spatial scale of tens of meters, large-scale areas of quasi-uniform distribution, and 
vortex structures with increased concentrations of algae. These structures move with average speeds 
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of 3–5 cm/s under the action of channel current [35]. This leads to algal shifting of more than 100–200 
m per 1 h and more than 2.5–5 km per day. At windy weather, shifting speed may increase and reach 
values more than 7 cm/s. As an example, large-scale algal shifting from the right bank to the left one 
under west wind proceeded four days is shown by a series of MODIS images in Figure 2. According 
to archival meteorological data [36], west and northern winds are regular and continual for this 
region. Generated wind waves have maximum fetch and effect on the vertical mixing of algae. As a 
result, it leads to a decrease of phytoplankton concentration in the near surface water layer where the 
satellite signal is formed. These factors limit the applicability of traditional station-based 
measurements of remote sensing reflectance ( ) and water sampling and require another approach 
for in situ measurements. 

Table 1. Hydrological and bio-optical characteristics of the lake part of the Gorky Reservoir according 
to authors own measurements of 2016–2018 years [34,35] and previous studies [30–33]. 

Parameter  Value 
Maximum depth, m 26.6 
Average depth, m 3.65 

Maximum current velocity, cm/s 12.0 
Average current velocity, cm/s 3.0 

Average wind speed, m/s 1.7 
Average wind gust speed, cm/s (for a 10 minutes interval) 3.3 
Average wind gust speed, cm/s (for a 1-minute interval) 14.3 

Prevailing wind direction SW  
Maximum water temperature, °С 32 

Chlorophyll a concentration, mg/m3 0.5–460 
TOC concentration, mg/L 9–21 
TSM concentration, mg/L 5–20 

Secchi depth, m 0.2–3.5 
Photic zone depth, m 1.0–4.1 
Trophic state index eutrophic 

 
 

     
          (a)                              (b)                              (c) 

Figure 2. MODIS images of the Gorky Reservoir illustrating the process of algal bloom shifting from 
the right riverside to the left one under wind forcing: (a) 29 July 2016, (b) 30 July 2016, and (c) 1 August 
2016.   

2.2. Field Measurements 

2.2.1. Approach Description  

The necessity of a suitable approach for in situ measurements in the Gorky Reservoir was 
determined by the following reasons: 

1) strong heterogeneity of phytoplankton on scales from tens to thousands of meters; 
2) short lifetime of phytoplankton distribution relative to the moment of satellite overpass due 

to river current and wind forcing; and 

rsR

Shifting direction 
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3) potential possibility to study small-scale patterns with sizes of tens of meters using Sentinel-
2/MSI radiometer. 

According to conditions #1 and #3, it is required to perform field measurements with resolution 
equal to the minimum MSI radiometer resolution or less. At the same time, with accordance to 
condition #2, the measurements should be performed within time interval equaled to the lifetime of 
phytoplankton distribution or faster. Simultaneous radiometric and water constituents’ 
measurements from a high-speed gliding motorboat completely satisfy these conditions. We used the 
single Ocean Optics USB2000+ spectrometer to measure the remote sensing reflectance and the 
ultraviolet fluorescent LiDAR UFL-9 [37] to assess Chl a and TSM concentrations. Both devices were 
installed on the bow deck (Figure 3). Motorboat length was about 9 m which, several times, exceeded 
the length of dominant long waves. In this case, the movement was stable: noticeable pitching and 
rolling were absent, and ship waves and splashes near the bow did not affect registered signals. While 
moving with a cruise speed of 8 m/s, we continuously registered field data with frequencies of 1 Hz 
for the spectrometer and 2 Hz for the LiDAR. This, the spatial data resolutions were equal to 8 m and 
4 m, respectively. 

 
Figure 3. The spectrometer and LiDAR position on a board of the high-speed gliding motorboat.   

In situ measurements were carried out from the south side of the reservoir (Figure 4) under 
Sentinel-2B and MODIS Aqua/Terra overpass on 21 and 22 September 2018, respectively (the results 
of MODIS images processing are not included in this study). They were performed from 8:00–9:00 
UTC. The sky was clear, the weather was sunny. During this time, the Sun azimuth angles and solar 
elevations varied within 162.8°–180.8° and 33.3°–34.5°, respectively (Figure 4). Wind waves were 
smooth (height was about 0.3–0.5 m) according to WMO Sea State Code on the first day and calm on 
the second one. The motorboat route began at the start point, passed along four tracks and ended at 
the Finish point, which coincides with the start point (Figure 4). Each track was about 6–8 km and 
took about 10–15 minutes, meanwhile, the Sun position changed by azimuth and elevation for 4.5° 
and 0.3°, respectively. Therefore, we considered that lighting conditions change slightly. However, 
to control this assumption, the downwelling irradiance was measured by the spectrometer at the Start 
and Finish points for each track. Simultaneous measurements of the upwelling radiance and 
fluorescence signals were performed by the spectrometer and LiDAR, respectively, along each track 
(details are shown below).  

The spectrometer with field-of-view (FOV) of 20° was installed on the bow railing in the center 
of the motorboat at the zenith angle of 30°. These conditions were chosen based on the proximity to 
the requirements of the NASA protocols [38] and practical feasibility. Its azimuth angles were 
mechanically changed to keep the angle of 90° to the Sun when motorboat changed its track. It was 
necessary to ensure the constancy of the observation geometry and illumination. The second optical 
instrument LiDAR with FOV of 1° was also installed on the bow, slightly behind the spectrometer. It 

Spectrometer  

LiDAR  
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was oriented at an angle of 30° to the zenith and at 45° to the motion direction. Such a position of 
both optical devices was necessary to perform passive optical observations and active laser sensing 
of the unperturbed water surface in front of motorboat and minimized the falling of splashes and sun 
glints to the FOV. The motorboat position was registered by onboard Chartplotter Garmin EchoMap 
721. 

  
Figure 4. Motorboat route map for 21–22 September 2018.  

2.2.2. Water Sample 

To recalculate fluorescence LiDAR signals to Chl a, and TSM concentration, surface water 
samples were collected from depth of 0–30 cm using clear polyethylene bottles at 10 stations. They 
were delivered to the shore within 1–2 hour in a refrigerator at a temperature of −4 °С. Filtration was 
realized through 47 mm Whatman GF/F fiberglass filters with a pore size of 0.7 μm with a low 
vacuum (~0.2 bar). Filtered volume was 2 L. Filters were frozen at −16 °C and stored under dark 
conditions for one week. In the laboratory, Chl a concentration was determined using the 
spectrophotometric method [39] and calculated according to the equation for mixed phytoplankton 
[40]. Chlorophyll was extracted in 10 ml of 90% aqua acetone solution twice during an hour. The 
extracts were clarified twice by centrifugation for 10 min at 8000 r/min speed. Chl a concentration 
was measured by SF-14 spectrophotometer (Russia), previously calibrated using pure chlorophyll 
(Sigma) as a standard. Despite the fact that the spectrophotometric method does not satisfy the NASA 
protocols [41], it is often used to retrieve the concentration of Chl a as the most accessible method 
providing reliable accuracy (for example [24,39,42,43]). Intercomparison of the spectrophotometric 
method with two others valid by NASA protocols, fluorimetric and high-performance liquid 
chromatography methods were performed, for example, in [44,45]. 

TSM concentrations were determined gravimetrically by weight following the drying of filtered 
samples of known volume on pre-dried and weighed GF/F filters (pore size 0.7 μm), wherein the 
organic and mineral suspended matter concentrations were obtained by their spectral absorption in 
accordance with the procedure described in [46]. 

2.2.3. LiDAR Measurements 
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Fluorescence LiDAR systems are widely used around the world for detecting bio-optical 
parameters of the oceans, seas, and inland waters. Various studies have been conducted on the 
comparison of LiDAR measurements and satellite data of MODIS, MERIS, and SeaWiFS radiometers 
in the open seas [47–51]. Especially, LiDAR systems are relevant for small inland waters where spatial 
patterns of water quality parameters change very fast.  

Mentioned LiDAR UFL-9 has been involved in field measurements worldwide: in the Atlantic 
Ocean, in the Black, the Kara, the Aral, the Caspian, the Baltic, the South China, the Barents, the North, 
and the Mediterranean Seas, on Lakes Balaton and Issyk-Kul, in the Ikshinsky and the Gorky 
Reservoirs. Recently, it was used on the Lake Balaton in Hungary, whose geometric dimensions, 
shape and the water optical properties are similar to the Gorky Reservoir. As a result, high-quality 
ground-truth LiDAR data were obtained and used for calibration L2 MODIS data [52].  

The high quality of the LiDAR data is reached due to its physical principles and technical 
characteristics. The ultraviolet fluorescence LiDAR UFL-9 analyses returned signal from dual 
excitation (355 and 532 nm) Nd:YAG laser pulses emitted at 2 Hz with the energy of 2 mJ. Detection 
is carried out consistently across 11 bands (355, 385, 404, 424, 440, 460, 499, 532, 620, 651, and 685 nm) 
on stations simultaneously with water sampling for the instrument calibration, and across four bands 
(355, 404, 440, and 685 nm) simultaneously in transect mode while the motorboat moves. Fluorescence 
intensities at 440 nm (CDOM) and 685 nm (Chl a) and the backscattering signal at 355 nm (TSM) are 
normalized to the Raman scattering at 404 nm and then calibrated using a set of laboratory-measured 
concentrations of CDOM, Chl a, and TSM. 

Tested on a great number of water bodies, it allows measuring bio-optical properties with high 
accuracy for non-contact and express methods. According to [37,52] the total relative measurement 
error of UFL-9 is 10% for TSM and CDOM and 16% for Chl a. LiDAR signals processing and its 
calibration are exhaustively described in [53]. 

Based on the results of laboratory analysis of water samples, a good correlation between couples 
“fluorescence signal at 685 nm–Chl a concentration” and “backscattered laser signal–TSM 
concentration” was established (Figure 5): 

  3.109
6850.019x Chl =a , 91.02 =R , (1)

37.50.06xTSM 355 += , 64.02 =R , (2)

where  and  are the LiDAR signals at 685 nm and 355 nm in Raman units, respectively, and 
 is the coefficient of determination.  

   
                   (a)                                      (b)  

Figure 5. Results of comparison of LiDAR signals at stations with lab-analyzed water sample 
concentrations of (a) Chl a, and (b) TSM. Black lines correspond to the best calibration fits (1), and (2), 
respectively.  

2.2.4. Radiometric Measurements  

685x 355x
2R
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For receiving the water-leaving radiance from above-water measurements it is necessary to 
measure the total radiance  and the sky radiance reflected by the water surface  [54]. Usually, 
two separate spectrometers are used for registration of these components [55]. However, an approach 
using a single spectrometer was presented in [56]. The total upwelling radiance  above the water 
surface and upwelling radiance  above water-filled cuvette are consequently measured (Figure 
6a,b). This cuvette with the sizes of 200 mm × 100 mm × 75 mm (length × width × height) is filled by 
water to the top. Its walls and bottom absorb 98% of the incident light. Therefore, the upwelling 
underwater radiance is considered to be zero, so, . Measurements of  and  are 
performed consequently within a few minutes. After that, the water-leaving radiance  can be 
obtained as a difference . 

Measurements of the downwelling irradiance  are usually made by the third spectrometer 
[57,58]. But in our case,  was estimated through the radiance of the Lambertian surface which 
was a horizontal plaque  with known reflection coefficient  close to Spectralon reflectance 
standard (Figure 6c). This method is well described in the NASA protocols [38]. The irradiance 
measurement was performed immediately after  by the same spectrometer and took a similar 
time.   

Summing up, the proposed method [56] consists in consequent measurement of , , and 
, immediately one by one, within a few minutes (Figure 6a–c). This short time interval lets us 

assume that illumination conditions do not change during measurements. 

 
       (a)                (b)                (c)     (d) 

Figure 6. Schematic explanation of radiometric measurements: (a) the total upwelling radiance, (b) 
the surface-reflected radiance, and (c) the plaque radiance. Section (d) presents a photo of a water-
filled cuvette at field measurements of the surface-reflected radiance.  

The obtained time series of ,  and  were averaged and smoothed by the median filter. 
After that these spectra were converted into  similarly to Mobley [54]: 

d

ru
rs E

LL
R

−
= , (3)

where ppd RLE /π= . 
The proposed method was used in sea expeditions when the radiometric measurements were 

performed at ship stops (for example, [59]) or from a stationary oceanographic platform [56]. At the 
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same time, this method does not require underwater measurements allowing to apply it while the 
ship moves.  

We modified this approach for continuous ship measurements as follow. The spectral radiances 
 and were measured in the spectral range of 378-760 nm with a resolution of 1 nm by the zenith 

angle of 30° with the help of Ocean Optics USB 2000 spectrometer with FOV of 20°. Such observation 
geometry goes beyond the NASA protocol [38], but not significantly. Therefore, it is often used in 
ship measurements (for example, [42]). These radiances were registered at the start and finish points 
of each track (Figure 6d). In our case, it was enough to measure  and  at one point for  
retrieval. However, each track took about 10–15 minutes on average. Therefore, in order to be sure 
that illumination conditions are constant, we used averaged spectra of  and  by data from two 
mentioned points. After that we obtained  spectra using the next equation: 

d

ru
rs E

LL
R

−
= , (4)

where ppd RLE /π= . 

2.3. Empirical Models 

2.3.1 Chl a Models 

Blue-green ratio algorithms [60] are often used to derived Chl a concentration in the open ocean 
(Case 1 waters), where absorption of phytoplankton pigments mainly affect the water-leaving 
reflectance. However, in optically-complex water (Case 2 waters) due to the absorption of CDOM 
and scattering of TSM, they have a poor accuracy [61]. To retrieve Chl a concentration in turbid high-
productive waters (eutrophic waters with phytoplankton domination) the NIR-red ratio algorithms 
are often used [24,25,61,62]. These algorithms use band combinations in the range of 665–680 and 
700–710 nm, where water-leaving reflectance maximally and minimally sensitive to the second 
absorption maximum of phytoplankton pigments, and CDOM influence are negligible. 

To develop an empirical Chl a model for the Gorky reservoir, we considered the semi-empirical 
NIR-red edge algorithms that are popular for optically complex waters: two-band (2B) and three-
band (3B) algorithms [24], the Normalized Difference Chlorophyll Index (NDCI) algorithm [25], and 
the peak height algorithm (PH) [21]. Applied to the central wavelengths of the MSI spectral bands, 
the indices (band ratio) are as follows: 

)665(/)705(2 rsrs RRB = , (5)

( ) )740()705()665(3 11
rsrsrs RRRB −− −= , (6)

( ) ( ))665()705(/)665()705( rsrsrsrs RRRRNDCI −−= , (7)

( ) 2/)665()740()705( rsrsrs RRRPH +−= . (8)

To relate results of usage indices from Equations (5)–(8) with constituent concentrations, linear 
(linear), 2nd polynomial (poly), exponential (exp), and power (power #1, #2) approximations were 
used: 

bIndexa +⋅= aTSM , Chl , (linear),  (9)

cIndexIndexa +⋅+⋅= baTSM , Chl 2 , (poly),  (10)

}exp{aTSM , Chl Indexba ⋅⋅= , (exp) (11)

rL pL

rL pL rsR

rL pL
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bIndexa ⋅= aTSM , Chl , (power #1) (12)

cbIndexa )a(TSM , Chl +⋅= , (power #2) (13)

where  denotes the MSI indices from Equations (5)–(8). 

2.3.2. TSM Models 

TSM concentration is an important indicator of water quality, as well as Chl a, especially for 
reservoirs with significant river discharges, coastal erosion, and sediment resuspension. To retrieve 
TSM concentration in optically complex waters, satellite bands in the red and NIR ranges are often 
used [26,63–65]. The widespread single-band algorithms use features of the reflectance spectrum in 
the red region and near the reflectance peaks at 560 and 810 nm. Most of these algorithms were 
obtained for sediment-rich waters, where water constituents significantly differ from those in highly 
productive waters of the Gorky Reservoir. It was found that TSM concentration strongly correlates 
with Chl a concentration (coefficient of correlation ~0.85) in our study area. Consequently B4 band 
(665 nm) of Sentinel-2/MSI will not be optimal for retrieval of TSM concentration due to strong 
absorption of phytoplankton pigments and phycocyanin fluorescence in the red region. Therefore, 
various single-band and band-ratio models of TSM in the form of Equations (9)–(13) were considered. 
B3 and B5 bands associated with reflectance maxima at 560 and 705 nm were used for single-band 
models, as well as B6 (740 nm). 

2.4. Satellite Data 

One Sentinel-2B (L1C) MSI image was downloaded from the Sentinels Scientific Data Hub [66]. 
The time of satellite acquisition 09/21/2019 was 08:29 UTC and coincided with the time of field 
measurements (from 08:00–09:00 UTC). To obtain L2 products we considered the next software for 
the processing of Sentinel-2 images: SeaDAS, ACOLITE, C2RCC, iCOR, and Sen2Cor.  

The SeaDAS [67] is a reliable atmosphere correction (AC) tool suitable for many ocean color 
sensors. The usage of the AC and vicarious calibration for Sentinel-2 is fully described in [14] and 
opens up the possibility to retrieve  spectra with high accuracy. The AC for OLI “lite” (ACOLITE) 
is a processing software developed for aquatic applications of high-resolution Landsat (5/7/8) and 
Sentinel-2 (A/B) data [68]. It allows the retrieval of the water reflectance on the bottom of the 
atmosphere and was used to solve various tasks [69–71]. The SeNtinel Application Platform (SNAP) 
software package provides several tools for processing Sentinel-2 images and supports the 
installation of external plugins. We considered C2RCC [72], iCOR [73] and Sen2Cor [74], used for 
study of inland waters in [17,19].   

Sentinel data were resampled on the resolution of 20 m. On the average, two of three in situ 
measurements were fallen in one 20 m pixel. To reduce the difference between inhomogeneous of in 
situ data and averaged satellite product, the match-up data were smoothed with a cosine filter. 

2.5. Accuracy Assessment 

Evaluating the models performance were done based upon three statistical metrics:  
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where  and  are the predicted and measured values. 

3. Results 

3.1. Statistics of Chl a and TSM Variations 

Descriptive statistics of 21502 Chl a and TSM measurements per two days are given in Table 2. 
Here. N is a number of measurements; Min, Max, and Mean are the minimum, maximum and average 
values respectively; Median is the median; STD is the standard.  

Despite the fact that measurements were performed on closed transects for 2 days (Figure 4), the 
daily variability of Chl a and TSM concentrations was great. On the second day, the concentration of 
Chl a and TSM increased by factors of 4 and 1.5, respectively. In some places, the maximum of Chl a 
concentration reached a value of 463.4 mg/m3. These variations were associated with the changes in 
the water surface state. According to the meteorological archive [36], the first day of measurement 
was the last day of prolonged wind forcing of the western direction. In that morning, surface 
roughness was characterized by waves with an average height of 0.3–0.5 m (in opposition to 0.5–1.0 
m in the previous days). In the evening the roughness was completely damped. As a result, in the 
morning of the second day of measurements, phytoplankton concentrated in the thin near-surface 
water layer and formed strong heterogeneous structures with different scales, starting from a few 
meters. These structures were observed during all day long due to calm weather. 

Table 2. Statistics of Chl a and TSM concentrations measured on 21 September 2018 and 22 
September 2018.  

Parameter N Min Max Mean Median STD 
21 September 2018 

Chl a (mg/m3) 15545 0.45 96.94 15.57 13.25 10.88 
TSМ (mg/L) 15545 5.00 26.77 5.87 5.88 1.10 

22 September 2018 
Chl a (mg/m3) 5957 4.26 463.42 57.41 38.77 52.48 
TSМ (mg/L) 5957 5.38 38.76 8.42 6.54 4.39 

3.2. Reflectance Spectra 

A total of 6020  spectra were obtained per two days. Its examples for Chl a concentration 
varied from 0–100 mg/m3 are shown in Figure 7a. These spectra are typical for inland water with 
dominant cyanobacteria bloom [60–63]. The absorption maxima of phytoplankton and CDOM in the 
blue region well expressed. Two peaks at 560–570 nm and 710–720 nm are associated with scattering 
on suspended particles (organic and mineral) and with total absorption minimum. Local minimum 
at 620–630 nm and 670–680 nm are caused by absorption of phycocyanin (PC) and phytoplankton, 
respectively. A peak at 640–660 nm is associated with PC fluorescence.  

In some points on the reservoir with Chl a > 100 mg/m3, reduction of  at 740–760 nm due to 
water absorption was weak or absent (Figure 7b). Such spectra corresponded to floating algae or 
surface accumulation (surface scum, dense mats) showed in Figure 1c. Empirical models for these 
areas should be developed separately. Therefore, 1993 spectra approaching to the vegetation 
spectrum were excluded. The ratio Rrs(755)/Rrs(705)≥0.9 was used as a criterion for exclusion.  

iy m
iy

rsR

rsR
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                 (a)                                      (b) 

Figure 7. Examples of Rrs spectra measured in the Gorky reservoir for two days: (а) spectra included 
in the temporal-synchronous dataset for calibration/validation of empirical models; and (b) spectra 
excluded from calibration/validation dataset 

3.3. In Situ Dataset 

Two datasets, including 21,502 LiDAR and 6020 radiometric measurements, were used for the 
composition of the combined dataset.  

LiDAR continuously registered fluorescent signals, including the motorboat stops between 
tracks, while the continuous recording of the upwelling radiance by the spectrometer was interrupted 
for measurements of water surface radiance and downwelling irradiance. In addition, these optical 
instruments had different temporal resolutions: 2 Hz for the LiDAR and 1 Hz for the spectrometer. 
As a result, we obtained two datasets with different dimension. Using averaging of the LiDAR data 
over one second, and temporal synchronization of two datasets, the combined dataset including 6020 
measurements per two days with a spatial resolution of 8 m was collected. After that, 1933 values 
corresponding to excluded  spectra were excluded, too. The resulting dataset including 4087 Chl 
a and TSM concentrations (Table 3), as well as  spectra were used for the development of regional 
empirical models for Chl a and TSM estimation. For this purpose, 60% of this dataset were randomly 
selected for models calibration, and the remaining 40% for its validation. For the creation of Chl a and 
TSM retrieval algorithms by Sentinel-2 imagery, we used only a certain part of this dataset, including 
671 measurements which were maximally close to the satellite overpass (within 10 minutes). These 
data corresponded to measurements at the first and half second tracks marked by an arrow line in 
Figure 4. As before, 60% of this dataset were randomly selected for model calibration and the 
remaining 40% for its validation. 

Table 3. Statistics of temporal-synchronous dataset used for the development of empirical models. 

Parameter N Min Max Mean Median STD 
Chl a (mg/m3) 4087 1.06 99.32 29.85 27.11 18.37 
TSМ (mg/L) 4087 5.00 19.48 6.55 5.88 1.65 

To develop empirical models for estimation of Chl a and TSM concentration, and assess AC 
accuracy, the hyperspectral radiometric data were resampled in Sentinel-2B/MSI bands to obtain the 
simulated remote sensing reflectance  as: 

rsR

rsR

)(λrsR
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where  is the spectral response function of Sentinel-2B/MSI;  are in situ 
hyperspectral radiometric data; and  and  are the lower and upper wavelengths of the MSI 
spectral band. Further, they were overlapped on the satellite image and averaged pixel-by-pixel. 

3.4. Calibration and Validation of Empirical Models  

3.4.1. Chl a Models 

Accuracy assessment for different empirical models on the basis of the calibration dataset (N = 
2452, 60%) and the validation dataset (N = 1635, 40%) are presented in Table 4. The exponential Chl a 
models for all indices gave the most inaccurate prediction of Chl a concentration (MAPE = 45–74% 
and Bias = 0.15–0.77 mg/m3). The power 2B and PH models showed the highest values of Bias (0.27 
and –0.13 mg/m3). Among other models, it was difficult to select the best one because of the closeness 
of their efficiency parameters. The power and polynomial 2B models gave approximately the same 
estimates (RMSE = 9.76 mg/m3; MAPE = 40.6% and MAPE = 41.6%; Bias = 0.05 mg/m3 and Bias = 0.02 
mg/m3). The linear 2B model had slightly lower accuracy (MAPE = 44.16%), but could also be used. 
The power 3B model [61] had better parameters (RMSE = 9.33 mg/m3; MAPE = 39.0%; Bias = 0.02 
mg/m3) than the linear and polynomial 3B models due to more accurate fitting for Chl a > 80 mg/m3. 
In addition, this model showed the lowest RMSE among all models. The power #2 and the polynomial 
NDCI models had the same RMSE and MAPE as similar 2B models, however, their Bias is smaller. 
At the same time, the polynomial NDCI model overestimates forecasts, but the power model 
underestimates it. RMSE and Bias of the linear NDCI models are slightly higher but its MAPE of 
37.1% is the lowest among all investigated models. For PH, the polynomial and the power #2 models 
gave the best results, but their efficiency parameters are worse than NIR-red edge models. The best 
models for each index are marked in bold in Table 4. 

Despite the fact that most of the models explain about 70% of the variation of Chl a concentration 
(R2~0.7), and RMSE~9–10 mg/m3, all of them cannot be considered as models with high prediction 
accuracy (MAPE ≥ 40%). Perhaps this result is due to insufficient consistency of radiometric and 
LiDAR data (Figure 8a) produced by two reasons. The first one is different footprints on the water 
surface: 0.4 m2 for the spectrometer and 0.02 m2 for the LiDAR. The second one is its shifting from 
each other to 1.5 m. Thus, these instruments scan different parts of the water surface. As a result, the 
difference between radiometric and LiDAR signals (Figure 8a) could lead to a significant scattering 
in the synchronous dataset used for calibration and validation of models (Figure 8b,c). 

Furthermore, it should be noted that the calibration coefficients for all models were significantly 
lower in comparison with [24,25,61,62], possibly due to features of the hydro-optical water properties 
of the Gorky Reservoir. However, the calibration coefficients of the linear PH model (y = 2231x + 12.7; 
R2 = 0.80) obtained in [19] were quite close to those obtained in our research. 

Table 4. Calibration and validation results of Chl a models. All parameters were derived from the 
calibration dataset (N = 2452, 60%) and the validation dataset (N = 1635, 40%). 

 Calibration Validation 

Index R2 a b c RMSE (mg/m3) MAPE (%) Bias (mg/m3) Fits 

2B 0.71 24.463 −8.356 - 9.86 44.1 0.03 linear 

0.71 −2.155 33.034 −15.59 9.76 41.6 0.02 poly 

0.62 12.546 0.526 - 11.19 60.5 0.59 exp 

0.70 17.346 1.198 - 9.98 47.9 0.27 power #1 

( )SRF λ )(λmeas
rsR

1λ 2λ



Remote Sens. 2019, 11, 1215 14 of 29 

 

0.71 96.806 −61.71 0.764 9.76 40.6 -0.05 power #2 

3B 0.68 35.812 19.24 - 10.26 53.6 0.06 linear 

0.73 −10.227 52.867 16.91 9.54 46.6 0.07 poly 

0.49 25.114 0.554 - 12.72 74.4 0.77 exp 

0.74 4373.068 296.6 0.479 9.33 39.0 0.02 power #2 

NDСI 0.69 90.101 13.75 - 10.13 37.1 -0.02 linear 

0.71 88.757 52.715 15.06 9.79 41.9 0.01 poly 

0.71 16.365 2.754 - 9.83 45.2 0.15 exp 

0.71 6.251 3.359 2.217 9.80 40.4 -0.01 power #2 

PH 0.69 2340.123 9.185 - 10.12 47.4 -0.02 linear 

0.69 −17567.0 2814.3
13 

7.11 10.06 45.4 -0.03 poly 

0.62 17.808 52.313 - 11.21 60.8 0.41 exp 

0.69 890.568 0.708 - 10.06 42.9 -0.13 power 1 

0.69 7834.173 8.051 0.789 10.05 44.8 0.02 power 2 

 
(а) 
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        (b)          (c)      

Figure 8. (a) Fragment (N = 520) of time-series of Chl a and 3B ratio calculated by radiometric 
measurements of 22 September 2018. Three-band model (3B) for estimation of Chl a concentration 
using bands 4,5,6 of MSI/Sentinel-2: (b) the results of calibration (N = 2452); and (c) the results of 
validation (N = 1635) of the 3B model. The dashed line on (c) represents the 1:1 line.  

3.4.2. TSM models  

Calibration and validation of these models were carried out using the same dataset (Table 3). 
Their efficiency was evaluated according to Equations (14)–(16). The main results are shown in Table 
5.  

The single-band algorithms in Table 5 showed a high correlation (R2 > 0.7). B3, B5, and B6 bands 
provided good efficiency. Among the models based on  maximum, B3 polynomial and B5 
exponential ones were more accurate. However, the B6 polynomial model (marked bold in Table 5) 
showed the highest coefficient of determination (R2 = 0.75) and the prediction accuracy (RMSE = 0.60 
mg/L; MAPE = 6.13%; Bias = -0.001 mg/L) (Figure 9a,b). Probably, this is due to the absorption by 
CDOM and phytoplankton pigments at 740–760 nm is negligible and water-leaving radiance is 
mainly determined by the absorption of pure water and scattering on suspended particles. For this 
reason, we think that B6-based models are more reliable. 

We also considered band ratio models using bands corresponding to the minimum and 
maximum absorption, and the peak at 705 nm. Despite the fact that B2 and B4 single-band models 
showed the same accuracy of TSM retrieval, B3/B2 and B3/B4 models showed different efficiency. In 
particular, coefficients of correlation  were 0.45 (not shown) and 0.82, respectively, which confirms 
the unsuitability of the blue-green band ratio algorithms for optically complex waters even in the 
presence of covariance between TSM and Chl a concentrations. At the same time, it was difficult to 
determine the best algorithm because the all band ratios presented in Table 5 have similar statistical 
parameters. We have marked italic one algorithm for each index. Finally, PH models were slightly 
worse relative to other band-ratio algorithms and, therefore, it can also be used to predict TSM 
concentrations (Figure 9c,d). 

Table 5. Calibration and validation results of TSM models. All parameters were derived from the 
calibration dataset (N = 2452) and the validation dataset (N = 1635).  

 Calibration Validation 

Index R2 a b c RMSE (mg/L) MAPE (%) Bias (mg/L) Fits 

Single band algorithms 

rsR

r
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B3 0.69 141.339 3.949 - 0.68 7.20 –0.008 linear 

0.71 2277.23 42.359 4.85 0.66 6.49 –0.001 poly 

0.71 4.437 20.386 - 0.66 6.69 –0.004 exp 

0.64 26.494 0.348  0.75 7.86 –0.057 power #1 

B5 0.71 90.735 4.646 - 0.66 6.48 –0.006 linear 

0.71 149.813 82.16 4.734 0.76 7.76 –0.376 poly 

0.70 4.98 12.356 - 0.67 6.39 0.002 exp 

0.65 18.071 0.257  0.74 7.62 –0.060 power #1 

B6 0.74 122.89 5.27 - 0.63 6.21 0.006 linear 

0.75 –871.689 157.24 5.103 0.60 6.13 –0.001 poly 

0.70 5.509 15.105 - 0.70 6.89 0.016 exp 

0.64 14.838 0.170 - 0.73 7.85 –0.056 power #1 

Band ratio algorithms 

B3/B4 0.66 3.127 1.857 - 0.72 6.93 –0.026 linear 

0.69 1.495 –1.631 5.449 0.69 6.16 –0.018 poly 

0.68 3.213 0.466 - 0.70 6.51 –0.020 exp 

B5/B4 0.68 1.683 3.751 - 0.69 6.48 –0.022 linear 

0.68 0.143 1.128 4.213 0.69 6.16 –0.019 poly 

0.68 4.341 0.239 - 0.69 6.09 –0.015 exp 

B6/B5 0.62 8.032 3.119 - 0.74 8.93 –0.008 linear 

0.71 16.955 –7.345 6.306 0.64 6.78 0.014 poly 

0.67 3.79 1.251 - 0.69 8.25 –0.006 exp 

PH 0.66 160.207 4.96 - 0.72 6.62 –0.016 linear 

0.66 788.31 139.449 5.048 0.71 6.45 –0.015 poly 

0.66 5.167 22.503 - 0.72 6.40 –0.011 exp 

   
        (a)          (b)   
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  (c)          (d)   

Figure 9. One-band model for TSM estimation using B6 band of MSI/Sentinel-2: (a) results of 
calibration (N = 2452) and (b) results of validation (N = 1635); band-ratio model for estimation of TSM 
concentration using a height of the reflectance peak near 710 nm (PH) calculated by B4, B5, B6 bands 
of MSI/Sentinel-2: (c) results of calibration (N = 2452) and (d) results of validation (N = 1635). Dashed 
line represents 1:1 line. 

3.5. Atmospheric correction 

The aerosol radiance due to scattering by aerosols has been greatly overestimated when the 
Sentinel-2 image was processed in l2gen (SeaDAS). As a result, retrieved  spectra were negative 
at all wavelengths. Therefore, we were unable to use this processing tool in our study. Examples of 
retrieved  spectra obtained by ACOLITE, C2RCC, and Sen2Cor are shown in Figure 10. In our 
case, the C2RCC algorithm, using neural network technologies, could not predict the shape of the 
spectral curve. At the same time, the magnitude of  was one order less than the measured one. 
Such difference from [5] may be related to different water optical properties of the Estonian lakes (

 = 0.003–0.02,  = 0.001–0.0065 sr-1) and the Gorky Reservoir (  = 0.04–0.11;  = 
0.013–0.035 sr-1). Two other plugins, ACOLITE and Sen2Cor, provided similar  spectra. Usually, 
they were lower than measured ones, excepting blue bands where Sen2Cor gave much higher values. 
The adjacency effects at 740 nm also appeared the same. The iCOR (not shown) did not reproduce 
the spectral shape: there was no decrease at 665 nm and values at B1–B5 bands were similar. In 
addition, iCOR had no pixel geolocation, which made it impossible for usage.  

 
        (a)            (b)   
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          (c)            (d)  

Figure 10. Comparison of Sentinel-2-retrieved  by means of atmospheric correction processors 

(ACOLITE, C2RCC, Sen2Cor) with in situ measurements in pixels depicted as stars in Figure 13a: (a) 
pixel #1, (b) pixel #2, (c) pixel #3, and (d) pixel #4. Red lines are hyperspectral measurement of , 
blue lines are measured  simulated on spectral bands of Sentinel-2/MSI according [14]. 

Based on the analysis results, we chose ACOLITE because it better reproduces the shape of the 
reflectance spectra. Additionally, ACOLITE is more flexible in configuration than SNAP plugins. It 
has the ability to apply coefficients for vicarious calibration, to choose AC algorithms (SWIR-SWIR 
or dark spectrum), to select bands for AC, etc. Table 6 shows the results of AC accuracy assessment 
by 671 match-up point. 

The retrieved reflectance at B1 and B6 bands are greater than in situ measured ones. As one can 
see from Table 5, the ratio  of the average  calculated by ACOLITE and in situ 
data at 671 match-up points for these two bands, was 0.0013 and 0.0032 sr-1, while Bias was 0.0013 и 
0.0032 sr-1, respectively. Perhaps, this overestimation at B6 band was associated with the adjacency 
effect (Figure 10 a, b). When this effect did not manifest, the retrieved values are close to the measured 
ones (Figure 10 c, d). Reflectance at B2 band almost coincides (  = 0.98, Bias  = −0.0001 
sr-1) which was mainly connected with uniform distribution of retrieved  relatively to its true 
values, i.e., about half of the points were overestimated while the other half were underestimated 
(Figure 10). At B3-B5 bands we observed regular underestimation (Figure 10c,d) but for some pixels 
where = 0.011–0.014 we had the opposite situation (Figure 10a,b). Generally, the obtained 

estimation of  was close to presented in [15]. Since the estimates of AC accuracy 
made on the basis of independent measurements coincide, we can conclude that they are not 
associated with measurement errors, but with atmospheric correction. At the same time, there was a 
significant correlation with measurements (r = 0.85, 0.75, and 0.93) so they can be used for the retrieval 
of Chl a and TSM concentrations. 

Table. 6. Atmospheric correction accuracy of ACOLITE at Sentinel-2/MSI bands based on 671 match-
up points 

  440 490 560 665 705 740 
R2 0.28 0.09 0.72 0.56 0.87 0.44 

RMSE, sr-1 0.0014 0.0008 0.0041 0.0017 0.0054 0.0039 
MAPE, % 33.6 9.4 17.5 12.1 20.3 71.5 
Bias, sr-1 0.0013 −0.0001 −0.0030 −0.0015 −0.0037 0.0032 

Slope 0.362 0.367 3.320 1.289 3.440 1.888 
Intercept, sr-1 0.002 0.004 −0.027 −0.002 −0.027 −0.012 

 1.33 0.98 0.80 0.88 0.77 1.46 

rsR

rsR

rsR
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Correlation of the band ratio was better than for individual bands (Figure 11) because AC errors 
were partly compensated. For 2B and NDCI indices R2 were 0.93, while the slopes were 2.91 and 2.47. 
According to Figure 11a, the time series of 2B ratio along the ship track had common features with 
ratio calculated by measurements, but their magnitudes differed on 50%. Probably, this difference 
was caused not only by AC errors, but also a difference between in situ point measurements and 
area-averaged satellite data. According to Figure 8a, spatial heterogeneity of Chl a concentration on 
scales of tens of meters can vary by more than 50 mg/m3. In such circumstances, satellite data will 
have lower values. 

 
        (a)        (b)         (c) 

Figure 11. Comparison of retrieved band-ratio reflectance with in situ measurements (N = 671): (a) 
time series of the two-band ratio (2B) along ship track, (b) comparison of satellite-retrieved 2B index 
with measurements ,and (c) comparison of the satellite-retrieved NDCI with measurements. Dashed 
lines on (b) and (c) represent the 1:1 line. 

3.6. Chl a and TSM Retrieval Models Using Sentinel-2 Data. 

The high correlation of  at B4 and B5 bands with in situ measurements allows us to use them 
for satellite algorithm development. Linear and polynomial algorithms based on 2B and NDCI 
indices showed similar results (Table 7), but we chose the polynomial NDCI algorithm as the best 
(Figure 12).  

Table 7. Remote sensing algorithms for Chl a retrieval and error analysis using RMSE, MAPE, and 
Bias on the basis of 671 match-up points. A total of 401 points were used for algorithm calibration, 
and the remaining 270 points for algorithm validation. 

 Calibration Validation 

Index R2 a b c RMSE 
(mg/m3) 

MAPE 
(%) 

Bias 
(mg/m3) 

Fitsa 

2B 0.84 64.536 -57.800 - 3.27 13.89 0.003 linear 

0.86 −73.669 252.808 −176.68 3.01 13.15 0.031 poly 

NDCI 0.86 167.293 4.756 - 3.11 13.21 −0.000 linear 

0.86 −300.260 235.556 1.586 3.02 13.14 −0.001 poly 

 

rsR
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        (a)          (b)  

Figure 12. Results of (a) calibration (N = 401) and (b) validation (N = 270) of the remote sensing 
algorithm on the basis of the Normalized Difference Chlorophyll Index (NDCI) for Chl a retrieval in 
the Gorky Reservoir. The dashed line represents the 1:1 line.  

2B index algorithm was used for TSM retrieval (Table 8). Since the dependence of 2B index on 
TSM concentration is close to linear, there was not noticeable difference with other regression models. 
Therefore we chose it as the best one (Figure 13). 

Table 8. Remote sensing algorithms for TSM retrieval and error analysis using RMSE, MAPE, and 
Bias on base 671 match-up points. A total of 401 points were used for algorithm calibration, and the 
remaining 270 points for algorithm validation. 

 Calibration Validation 

Index R2 a b c RMSE 
(mg/L) 

MAPE 
(%) 

Bias 
(mg/L) 

Fits 

2B 0.78 2.208 3.169  0.13 1.56 0.0003 linear 

0.78 −0.406 3.246 2.513 0.13 1.56 0.0008 poly 
 

  
        (a)          (b)  

Figure. 13. Results of (a) calibration (N = 401) and (b) validation (270) of the remote sensing two-band 
(2B) algorithm for TSM retrieval in the Gorky Reservoir. The dashed line represents the 1:1 line. 

3.7. Chl a and TSM Mapping Using Sentinel-2 Data 

The obtained algorithms were used to map Chl a and TSM concentrations (Figure 14). The white 
line in Figure 14a shows the track that was close to satellite overpass. Corresponding to it, in situ data 
were chosen for the match-up dataset and for calibration and validation of satellite algorithms. The 
stars show pixels corresponding to four spectra in Figure 10. In the study area, the maximum 
observed Chl a concentrations were about 40−50 mg/m3. At the same time, in the upstream area near 
left bank maximum Chl a concentrations reached 70 mg/m3. Pixels with Chl a > 70 mg/m3 were 
masked because  exceeded the threshold value of 0.0215, which was used to separate water ( )1600wρ
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from the clouds. Areas with high Chl a concentration corresponding to phytoplankton clusters are 
shown in Figure 1c. 

In accordance with the results of the laboratory analyses and earlier study [75], the organic 
suspended matter was the main component (~75%) of suspended matter in the Gorky Reservoir in 
that period. Therefore, TSM and Chl a maps greatly correlate with each other (Figure 14b). The 
maximum and average TSM concentrations were approximately 7–8 mg/L and 5.8 mg/L, respectively, 
and agreed with in situ measurements (Table 2). A large number of suspended constituents, likely 
phytoplankton Chl a, were concentrated along the left bank.  

 
     (a)          (b) 

Figure 14. Spatial distribution of (a) Chl a, mg/m3, and (b) TSM, mg/L, in the Gorky Reservoir on 
September 21, 2018. The white line shows to the section along which measurements were chosen for 
the match-up dataset, the stars show pixels correspond to four spectra in Figure 10.   

4. Discussion 

4.1. Weakness of Station-Based Measurements 

Basic knowledge about the relation between remote sensing reflectance and water constituents 
in inland waters are obtained on traditional station-based in situ measurements in conditions close 
to calm weather. To correct Chl a retrieval in wind-wave conditions, corrective coefficients based on 
wind speed and wave fetch can be applied [76]. However, it is not a solution for water bodies when 
the optical properties of water change rapidly due to heterogeneous currents. On the example of the 
Azov Sea, significant variations in fluorescence of Chl a within every 300-m and 1-km lengths along 
the transect were found [24]. According to the comparison with the MERIS data, the authors made 
two important conclusions: 1) within-pixel spatial heterogeneity of Chl a distribution resulting in the 
station-based in situ measurements is not representative of the satellite pixel; and 2) an actual 
biophysical change in the water body between the times of in situ data collection and satellite 
acquisition should be taken into account. As a result, they offered to account within-pixel spatial 
heterogeneity and temporal variation through taking multiple measurements around each station so 
as to characterize the spatial variation within the satellite pixel area. In the Gorky Reservoir, water 
property varied in smaller scales, i.e., from tens to hundreds of meters. Additionally, daily variability 
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of TSM and Chl a was more than 150% and 400%, respectively. Thus, for inland waters, like reservoirs 
with channel currents, this problem is more acute. Due to these examples, it becomes obvious that 
traditional station-based measurements are not effective for such water bodies. Therefore, the usage 
of remote sensing methods with known accuracy seems more reliable.  

The approach proposed in the present study has not been described in the literature before. 
However, its components, like radiometric and LiDAR measurements, are widely used in 
limnological practice. It should be noted, those continuous radiometric measurements were 
repeatedly used for validation of atmospheric correction. In [77], for the AERONET OC program, a 
consequent measurement of the sky radiance and water leaving radiance from an oceanographic 
tower in the Adriatic Sea were realized using a modified photometer СE-318, Cimel. Again, in [78] 
synchronous measurements of such parameters were performed during transects. The authors 
indicated the real possibility of obtaining a large number of  spectra and their applicability for 
the validation of MODIS and VIIRS data. Such investigations have a basic goal: the changeover from 
manual long in situ measurements to automatic systems. To automate measurements, LiDAR 
systems are widely used in practical oceanology as express methods for assessing water quality 
[47−51]. They provided a high spatial resolution and a satisfied accuracy (according to some sources, 
like [52,79], the measurement error lies within 5−16%). 

Therefore, our approach for in situ measurement seems justified. Moreover, it can be considered 
as a small, but significant, step towards automated remote sensing of the optical properties of water 
and have particular importance for productive inland water.  

4.2. Chl a Retrieval Models 

To develop empirical models, we considered two band (2B) and three band (3B) NIR-red 
algorithms, as well as models based on NDCI and peak height at 705 nm (PH), which are well suited 
for Chl a evaluation in eutrophic basins [5,17,18,24,25,61−63]. Chl a concentrations varied from 1–100 
mg/m3. 

Relationships between Chl a concentration and 2B and PH indices were close to linear. R2, RMSE, 
Bias, and MAPE were similar for linear, polynomial, and power models (Table 3). On the contrary, 
the exponential model describing the nonlinear concentration growth from the index showed the 
worst result. 2B model for the Azov Sea (Chl a = 0.6–60 mg/m3) and Fremont Lake (Chl a = 2−120 
mg/m3) were also linear in [24,61]. The linear relationship between Chl a concentration and PH was 
also obtained in [21] for the range 7–203 mg/m3, and in [19] for the range 2–120 mg/m3. Additionally, 
the calibration coefficients of the linear PH model (y = 2231x + 12.7; R2  = 0.80) [20] were quite close to 
those received in our research. 

Nevertheless, despite the almost linear relationship between Chl a and 2B and PH, there was a 
weak nonlinearity above 50 mg/m3 in our studies. Thus, the polynomial and power model y = (a × 
Index + b)c were slightly better (Table 3). 

The NDCI model is a nonlinear and is equally well described by both the 2nd order polynomial 
and the power model y = (a × Index + b)c, which corresponds to [25]. Non-linear regression was also 
received for 3B index (Table 3, Figure 7b). These results mismatch [24,55], which showed that the 3B 
model with sufficient accuracy can be described by linear fit, and [18,25] showed that nonlinearity 
appears after 100 mg/m3. 

4.3. TSM Retrieval Models 

Most of TSM algorithms were developed for sediment-rich waters, where water constituents 
significantly differ from those in highly productive waters of the Gorky Reservoir. We found that 
TSM concentration strongly correlates with Chl a concentration (r~0.85) during cyanobacteria bloom. 
Therefore, we investigated various models based on B3 (centered at 560 nm) and B5 (centered at 705 
nm) bands associated with reflectance maxima in eutrophic waters and B6 band (centered at 740 nm), 
which are minimally affected by the absorption of phytoplankton pigments. 

It is known that TSM models in the red and NIR bands become strongly nonlinear at high 
concentrations, but could be linear in SWIR [26,65]. The analysis of regression models between TSM 
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concentration and the simulated  at Sentinel-2/MSI bands [22] also showed that nonlinearity is 
more pronounced at shorter wavelengths. In sediment-rich waters (17–295 mg/L) on B1–B5 bands, 
the TSM concentration increases exponentially, but the dependencies at B6–B8 bands become a less 
steep and is described by power functions with the exponent 1.22–1.38. 

We also found that the regressions become more linear with increasing wavelength (Table 5). 
Thus, the exponential and polynomial B3-based models (R2 = 0.71, RMSE = 0.66 mg/L, MAPE = 6.7%, 
Bias = −0.004 mg/L) are more accurate than the linear B3-based model (R2 = 0.69, RMSE = 0.68 mg/L, 
MAPE = 7.2%, Bias = 0.008 mg/L). For B5 band, the difference between the exponential and linear 
models is not so obvious (Table 5). But the linear B6-based model (R2 = 0.74, RMSE = 0.63 mg/L, MAPE 
= 6.21%, Bias = 0.006 mg/L) has a minor advantage on the exponential one (R2 = 0.70, RMSE = 0.70 
mg/L, MAPE = 6.89%, Bias = 0.016 mg/L). However, for B6 band at concentrations above 9–10 mg/L, 
nonlinearity was also significantly manifested. In this regard, the polynomial B6 model are more 
accurate (Table 5, Figure 9a,b). 

A few words should be said about the models based on B1, B2 and B4 bands, which are not 
shown in Table 5, because they showed the worse results. at B1 band (centered at 440 nm) did not 
correlate with TSM concentration (coefficient of correlation r = 0.17) due to strong absorption of 
CDOM and phytoplankton pigments.  at B2 (centered at 490 nm) and B4 (centered at 665 nm) 
bands showed a moderate correlation (r is equal to 0.7, and 0.66, respectively). At the same time,  
at B2 band had better correlation with TSM and provided more accurate predictions than  at B4 
band. Perhaps, this can be explained by the non-optimal location of B4 band due to it partially 
coinciding with phycocyanin PC fluorescence and the second absorption maximum of phytoplankton 
pigments. We found that relationships between Chl a concentration and  at B4. The regressions 
of Chl a and TSM concentrations for the B4 band were worse than those for the B3 and B5 bands. 
Therefore, the usage of water reflectance in the red B4 band (centered at 665 nm), which is often used 
to determine the TSM concentration in sediment-rich waters, is not suitable for highly productive 
inland waters. Among the single-band algorithms, B6-based models are more reliable, due to the 
absorption by CDOM and phytoplankton pigments at 740–760 nm is negligible and water-leaving 
radiance is mainly determined by the absorption of pure water and scattering on suspended particles.  

Analysis of the MSI/Sentinel-2 bands sensitivity to changes in water constituents allowed to 
determine optimal bands for assessing their concentration, as well as confirmed previous conclusions 
about the large potential of Sentinel-2 data for monitoring highly productive internal waters [5,16–
22]. Empirical models developed on the basis of 4087 in situ measurements reflect the regional 
characteristics of the optical characteristics in the Gorky Reservoir and can further be used for rapid 
estimation of Chl a and TSM concentration by radiometric measurements. 

4.4. Atmospheric Correction 

Considered Sentinel-2 image processing tools were not allowed to retrieve remote sensing 
reflectance with the accuracy required for water applications. Only ACOLITE and Sen2Cor could 
reproduce the spectrum features at B3–B5 bands (R2 = 0.56–0.87), but significantly underestimated 
remote sensing reflectance: average and maximum values are less by 12–23% and 100–125%, 
respectively (Table 6). The performance of blue bands (B1, B2) and the NIR band (B5) was 
considerably worse. It was noted in [68] that high performance of ACOLITE-retrieved reflectances in 
green (B3) and red (B4) channels mainly related to the higher reflectance range than in the blue and 
NIR bands. Large overestimation in NIR bands could be caused by the calibration performance at 
low radiances, adjacency effects, or surface effects. This explains the difference in the accuracy of the 
MSI bands that were also noted in [5,15], but does not explain the large difference from the in situ 
measurements. 

We understand that these differences may be due to both measurement inaccuracies and 
atmospheric correction uncertainties. Therefore, we calculated the ratio  in 671 
match-up points (Table 6) and compared them with an independent study [15]. Since the results of 
this comparison were almost similar, we concluded that differences between satellite-retrieved and 
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in situ measurements are associated with the AC uncertainties. Unfortunately, no other 
measurements have been made in the Gorky Reservoir. The two nearest AERONET stations are 600 
km and 3600 km away, so we cannot use any other data to verify this assumption. In our opinion, 
this difference may also be caused by a discrepancy between the point in situ measurements and 
area-averaged satellite data in the case of high spatial heterogeneity of water optical properties.  

The atmospheric correction for turbid waters is a great challenge. It was shown in [17,19] that 
L1C top-of-atmosphere radiances correlate better with water quality parameters than retrieved 
bottom-of-atmosphere radiances (L2A products). These, and our results of AC accuracy assessment, 
shows that there is a strong need for further improvement of the existing algorithms of Sentinel-2 
image processing for aquatic applications.  

Due to the poor accuracy of the retrieved data, we cannot use them in empirical models. 
However, we used the B4 and B5 bands, which are well correlated with in situ measurements, to 
develop a remote sensing algorithm on the basis of a dataset of 671 matchups. The developed NDCI 
algorithm for retrieval of Chl a concentration (Figure 12) and the 2B algorithm for retrieval of TSM 
concentration (Figure 13) have good accuracy (R2 = 0.86, RMSE = 3.02 mg/m3; MAPE = 13.14%; Bias = 
−0.001 mg/m3; slope = 0.864) and (R2 = 0.78, RMSE = 0.13 mg/L, MAPE = 1.56%, Bias = 0.0003  mg/L, 
slope = 0.785) accordingly. These algorithms can be further used for mapping of Chl a and TSM 
concentration in the Gorky Reservoir and neighboring inland waters. 

4.5. Future Plans 

After completing this study, the following ways to improve measurement accuracy can be taken: 
i) LiDAR calibration by a larger number of water samples [37]; ii) the usage of a spectrometer with a 
collecting lens that provides measurements from a footprint similar to that of the LiDAR; and iii) 
orientation of both devices at the same point of the water surface. At the same time, we realize that 
the usage of three synchronized spectrometers for radiometric measurements [57,58] will provide 
greater accuracy, guarantee clear result comparability, and eliminate the measurements of the sky 
radiance and the radiance of the Lambertian surface between transects. Additionally, future efforts 
should be focused on approaches of validation and analysis of its uncertainties. For this, the 
intercomparison with traditional radiometric protocols will be planned. To assess the propriety of 
aerosol model selection for atmospheric correction, we are going to measure the aerosol optical 
thickness (AOT) using a MICROTOPS portable sun photometer. 

5. Conclusions 

We proposed the approach of remote rapid in situ measurements with the resolution of 8 m 
suitable for inland waters with spatial heterogeneity and temporal variation of its optical properties. 
It is based on the simultaneous measurements of the remote sensing reflectance by the single 
spectrometer Ocean Optics USB 2000 and the concentration of water constituents by the ultraviolet 
fluorescent LiDAR UFL-9, both installed on a high-speed gliding motorboat. This approach was 
tested on the Gorky Reservoir of the Russian Federation under Sentinel-2B acquisition on 21 
September 2018. As a result, the dataset including 4087 values of Chl a, TSM, and   were collected 
from the area of 150 km2 per two hours.  

The regional Chl a and TSM models were developed based on 2B, 3B, NDCI and PH indices. To 
assess their accuracy we investigated linear, polynomial, exponential, and two power functions for 
approximations. All Chl a models, except the exponential one, showed approximately the same 
efficiency. Power models showed slightly better results due to a more accurate description of high 
Chl a concentrations (Chl a>80 mg/m3). According to TSM retrieval, the single-band TSM models were 
more effective than the models using band ratios. The peak height at 705 nm (PH models) was also a 
representative parameter for Chl a and TSM prediction. 

Atmospheric correction of the satellite image was realized using SeaDAS, ACOLITE, C2RCC, 
iCOR, and Sen2Cor processing software. All of them did not allow retrieval of Rrs spectra with 
sufficient accuracy. At the qualitative level ACOLITE and Sen2Cor reproduce the spectrum features 
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at B3-B5 bands (R2 = 0.56–0.87), but significantly underestimate remote sensing reflectance: average 
and maximum values are less by 12–23% and 100–125%, respectively. The retrieved remote sensing 
reflectance at B1, B2, and B6 bands are weakly correlated with measurements (R2 < 0.44). The high 
correlation of remote sensing reflectance at B4 and B5 bands with in situ measurements allowed us 
to develop the algorithms to predict Chl a and TSM concentration using ACOLITE processing 
software and applied them for mapping in the Gorky Reservoir. 

Both empirical models and remote-sensing algorithms can be applied for Chl a and TSM retrieval 
in next ranges: 1 < Chl a < 100 mg/m3 and 5 < TSM < 20 mg/L. These models can be adapted for 
neighboring reservoirs, for example, for the other seven reservoirs on the Volga River. At the same 
time, the proposed approach of in situ measurements can be useful in limnological monitoring of 
highly productive water bodies with sharp spatiotemporal variability of their optical properties. 
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