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Abstract: Whiting events in seas and lakes are a natural phenomenon caused by suspended calcium
carbonate (CaCO3) particles. The Arabian Gulf, which is a semi-enclosed sea, is prone to extensive
whiting that covers tens of thousands of square kilometres. Despite the extent and frequency of whiting
events in the Gulf, studies documenting the whiting phenomenon are lacking. Therefore, the primary
objective of this study was to detect, map and document the spatial and temporal distributions
of whiting events in the Gulf using daily images acquired by the Moderate Resolution Imaging
Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites from 2002 to 2018. A method
integrating a geographic object-based image analysis, the correlation-based feature selection technique
(CFS), the adaptive boosting decision tree (AdaBoost DT) and the rule-based classification were used
in the study to detect, quantify and assess whiting events in the Gulf from the MODIS data. Firstly,
a multiresolution segmentation was optimised using unsupervised quality measures. Secondly, a set
of spectral bands and indices were investigated using the CFS to select the most relevant feature(s).
Thirdly, a generic AdaBoost DT model and a rule-based classification were adopted to classify the
MODIS time series data. Finally, the developed classification model was compared with various
tree-based classifiers such as random forest, a single DT and gradient boosted DT. Results showed
that both the combination of the mean of the green spectral band and the normalised difference index
between the green and blue bands (NDGB), or the combination of the NDGB and the colour index
for estimating the concentrations of calcium carbonates (CI) of the image objects, were the most
significant features for detecting whiting. Moreover, the generic AdaBoost DT classification model
outperformed the other tested tree-based classifiers with an overall accuracy of 97.86% and a kappa
coefficient of 0.97. The whiting events during the study period (2002–2018) occurred exclusively
during the winter season (November to March) and mostly in February. Geographically, the whiting
events covered areas ranging from 12,000 km2 to 60,000 km2 and were mainly located along the
southwest coast of the Gulf. The duration of most whiting events was 2 to 6 days, with some events
extending as long as 8 to 11 days. The study documented the spatiotemporal distribution of whiting
events in the Gulf from 2002 to 2018 and presented an effective tool for detecting and motoring
whiting events.
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1. Introduction

1.1. Background

Whiting is a short-lived phenomenon of milky parcels of water or bright in-water features, which
has been reported globally in lacustrine, marine and freshwater environments and in semi-enclosed
areas [1–7]. The ephemeral patches in whiting are turbid water with high levels of suspended
fine-grained calcium carbonate mineral particles [8–11]. Whiting events last from days to weeks and
can be visualised via satellite images as extended milky-white water varying from a few meters to
square kilometres long [1,12].

Although whiting has been studied for decades to determine valid explanations for its occurrences
and causes, the event remains controversial [10]. Various assumptions have been made to explain the
causes of whiting. These assumptions include (1) the resuspension of fine-grained sediments caused
by fish activities, microturbulent bursts and wind [8,12–15]; (2) bio-induced precipitation from the
removal of CO2 by photosynthesis [11,16–19] and (3) abiotic precipitation initiated by fluctuations in
water temperature and ion activities related to climate change [8,20]. Carbonates, which are produced
by the physical and biological disintegration of animal and algal bioclasts, blooms of microscopic algae
during photosynthesis and abiotic precipitation or calcification of suspended picoplankton and organic
matter, may be the possible sources of suspended carbonate minerals, such as aragonite and high and
low magnesium calcite [8].

The occurrence of whiting has prompted researchers to establish a scientific description of
the phenomena and to determine its association with climate change and oil deposition [21–23].
Whiting events are ephemeral, thus sample collection using traditional field measurements can be
challenging, time consuming and costly. Remote sensing with ocean colour satellite instruments
provides a set of high temporal-resolution data with various scales and records of satellite images and
derivatives. This method enables the spatiotemporal mapping of whiting events; however, limited
studies have adopted remote sensing technology to study these occurrences in marine environments [10].
The majority of the studies used satellite data to map whiting in the Bahama Banks [12,24], in the Ten
Thousand Islands in southwest Florida [10,25], in the Great Lakes in North America [26] and in the
Feldberg Lake District, Klocksin Lake Chain and Rheinsberg Lake regions in Germany [27]. Whiting
events based on general properties are varyingly recognised with remote sensing data from visual
identification and manual delineation [10,24,28–31]. Dierssen et al. [12] studied the spectral behaviour
of whiting to identify the spatial extent of whiting patches in the Bahama Banks. Considering the
shallowness of the southwest Florida coast and the spectral similarity between whiting occurrences
and bright shallow bottom sediments, Long et al. [25] delineated whiting patches manually by relying
on visual inspection and spatial contrast. Recently, Long et al. [10] used contrast enhancement and
floating algae index (FAI) images to differentiate in-water whiting features from clouds to map the
spatiotemporal variability of the southwest Florida whiting events from 2003 to 2015. Other studies
focused on detecting and estimating the concentration of particulate inorganic carbon (PIC), or calcium
carbonate particles, in the surface layer of the water column from the water-leaving radiance and
reflectance differences concept through the computation of chlorophyll-a concentration [32–34].

The whiting phenomenon in the Gulf was initially reported in the 1960s. In 1962, Wells and
Illing [35] observed whiting in numerous places in the Gulf such as in the eastern part of the Qatar
Peninsula towards the coast of Abu Dhabi and off the coast of Saudi Arabia between Ras Tanura and
Ras Safaniya. Although more than 50 years have passed since whiting events were initially reported in
the Gulf, this phenomenon remains unclear [36,37]. To the best of the authors’ knowledge, limited
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effort has been exerted to map whiting in the Gulf using remote sensing techniques. The objectives
of the present study were: (1) to adopt the correlation-based feature selection (CFS) to identify the
most significant features for whiting extraction, (2) to develop a semi-automated framework to detect
the whiting coverage in the Gulf from the Moderate Resolution Imaging Spectroradiometer (MODIS)
images, using adaptive boosting (AdaBoost) and rule-based classification approach, (3) to compare and
assess the performance of various applied tree-based machine learning methods, namely, the single
decision tree (DT), random forest and the gradient boosted decision tree (GBDT)and (4) to document
the frequency, duration, seasonality, spatial coverage and distribution of whiting occurrences in the
Gulf between 2002 and 2018 using satellite observations.

1.2. Study Region

The Arabian Gulf is located in the Middle East and surrounded by the coasts of eight countries,
namely, United Arab Emirates (UAE), Saudi Arabia, Oman, Kuwait, Bahrain, Iraq, Qatar and Iran
(Figure 1). The Gulf is a semi-enclosed marginal sea positioned in a subtropical hyperarid region
(between the latitudes of 24◦ to 30◦N and the latitudes of 48◦ to 57 ◦E), with an average annual rainfall
of less than 5 cm in the coastal areas [33,34]. The Gulf is nearly 990 km long and 56–370 km wide. It has
an average depth of 36 m and a maximum depth of nearly 100 m and occupies a surface area of 239
km2. The deepest region of the Gulf (more than 40 m deep) is near the Iranian coast and continues
into the Strait of Hormuz. Meanwhile, the shallowest regions (less than 20 m deep) are located along
the coasts of the UAE, Qatar, Bahrain and around the head of the Gulf. Owing to its shallowness,
sea surface temperatures fluctuate significantly and the Gulf is considered as the hottest sea in the
world during summer [35,38]. The seawater temperature ranges from less than 20 ◦C in winter to
over 34 ◦C in summer. As a result of high evaporation rates during the hot and long summers in the
region and the lack of precipitation, water in the Gulf is characterised by high salinity greater than 39
psu [33,39,40]. The Gulf is subjected to strong winds and often associated with dust storms, with the
most extreme occurring in summer and late spring and moderate dust storms occurring in winter.
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2. Methodology

2.1. Overview

Daily satellite data from MODIS for the period of 2002 to 2018 were obtained and visually
inspected for whiting. The dates of whiting events were then classified in accordance with the month
of the occurrence and the number of consecutive days during which whiting persisted. The data were
then used to analyse frequency, seasonality and duration of whiting events in the Gulf.

The identification, mapping and classification of whiting in the Gulf required the extensive analysis
of the acquired MODIS data. The analysis framework, which is illustrated in Figure 2, is summarised
as follows: (1) preprocessing of the MODIS satellite data, (2) multiresolution image segmentation and
parameter optimisation, (3) selection of the significant attributes using CFS, (4) classification of the daily
MODIS time series images using AdaBoost DT and rule-based classification and (5) identification of the
whiting spatiotemporal pattern (time series frequency, duration and seasonality, spatial coverage and
distribution) in the Gulf. The aforementioned steps are further discussed in the following subsections.
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2.2. MODIS Datasets for Whiting Exploration

The exploration of whiting events in the Gulf as a short-lived, repetitive phenomenon by
field-based studies is challenging. Therefore, high temporal resolution satellite images offered excellent
sources of data for mapping and monitoring whiting in the Gulf. The daily high temporal-resolution
Terra/Aqua MODIS surface reflectance products (MOD09GA and MYD09GA) with a coarse spatial
resolution of 500 m were used in this study. The products, which covered the entire Gulf in
one scene for the period of 2002–2018, were downloaded from NASA’s Earthdata website (https:
//search.earthdata.nasa.gov/search). These products were atmospherically corrected by the MODIS
Land Science Team for aerosols, thin cirrus clouds and gases.

Figure 3 illustrates the initiation and disappearance of a whiting event from February to March
2003. The consecutive MODIS images show the dramatic changes during the 6 consecutive days of
observation. High-resolution satellite images, such as from the Landsat, with a 30 m spatial resolution
and 16-day temporal resolutions, or from the Sentinel-2, with a 5-day revisit time and 10 m resolution,
may be insufficient to capture such short-term whiting events given their limited temporal resolution.

The MODIS products (MOD09GA and MYD09GA) contained seven spectral bands with a spatial
resolution of 0.5 km. Their reflectance bands were band 1 (red: 0.620–0.670 µm), band 2 (near infrared
(NIR): 0.841–0.876 µm), band 3 (blue: 0.459–0.479 µm), band 4 (green: 0.545–0.565 µm), band 5
(shortwave infrared (SWIR1): 230–1.250 µm), band 6 (shortwave infrared (SWIR2): 1.628–1.652 µm)
and band 7 (shortwave infrared (SWIR3): 2.105–2.155 µm). The data were reprojected from the
sinusoidal coordinate system to the World Geodetic System 1984 and then converted from heirarchical

https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
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data format to georeferenced tagged image file format. The images were then cropped on the basis of
the boundaries of the Gulf.
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Figure 3. Initiation and disappearance of a whiting event in 2003 based on acquired MODIS images.

The whiting events appeared in the MODIS satellite images as turbid and milky features.
The spectral response of various surface water features at different locations in the Gulf appeared in
a sample MOD09GA product during a whiting event and shown in Figure 4a–h. Figure 4f–h show
whiting events with high intensities of bands 3 (blue region of the spectra) and 4 (green region of the
spectra). Figure 4e shows a clear water sample with a low intensities of all bands. Shallow areas at the
northwest section of the gulf show high reflections in bands 1 (red region of the spectra) and 2 (NIR
region of the spectra), as shown in Figure 4a. Overall, the images show variations in terms of relative
intensities of bands 3 and 4 and bands 1 and 2. Meanwhile, the intensities of bands 5, 6 and 7 did not
exhibit significant variations.

2.3. Object-Based Analysis and Image Segmentation Optimisation

A traditional per-pixel classification approach is useful for feature extraction when the targets of
interest are smaller than the spatial resolution of the remotely sensed data [41]. This approach only
considers the spectral properties of each pixel and disregards any spatial or contextual information
related to the classified pixel [42]. Geographic object-based image analysis (GEOBIA) has been
extensively used in classifying very-high spatial resolution data as an alternative to a pixel-based
approach. GEOBIA works by assessing spatially neighbouring groups of pixels rather than individual
pixels [43]. GEOBIA is not only limited to high resolution images because the approach is not
spatial-resolution dependent; therefore, it can be applied to different resolutions if the sizes of the
intended objects are compatible with the spatial resolution of the images [44,45]. Thus, GEOBIA
has been successfully adopted and implemented to classify MODIS time series data in different
applications [44–50].

The generic GEOBIA framework can be divided into (1) image segmentation, which is the
process of generating homogenous and nonoverlapping image objects/segments from image pixels
and (2) image object/segments classification [51]. The multiresolution image segmentation algorithm
(MRS) [52], which is one of the most used algorithms, is applied to the time series MODIS data.
The MRS is a bottom-up region-growing algorithm that commences with pixels as individual segments.
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MRS is goverened by three main parameters, namely, (a) scale, (b) shape/color weight and (c)
compactness/smoothness weight. This algorithm merges neighbouring pixels in each successive step
on the basis of homogeneity (shape and compactness), which describes the similarity of contiguous
objects. The degree of fitting, which is a value determined by the scale parameter defined by an
analyst, is measured in each merging procedure. Moreover, the merge is performed if the degree
of fitting is less than the minimum degree of fitting [53]. The scale parameter is one of the most
critical parameters in the segmentation process. It profoundly influences resultant image objects and
subsequent classification steps because it controls the size of image-generated objects [54,55]. Selecting
high-scale values generate large image objects (undersegmentation), whereas selecting small-scale
values yield small image objects (oversegmentation). Thus, the utilisation of an optimisation technique
to find the optimum scale parameters for delineating whiting is vital to avoid the subjectivity of using
a trial and error visual approach.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 23 
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Several unsupervised segmentation quality measures have been utilised in the literature to
identify the best scale parameters [56–59]. In the current study, the performance of two unsupervised
segmentation quality measures, namely, the objective function (OF) [60] and the F-measure [57] were
compared to find an optimum scale value that accurately delineates whiting. Both measures adopt
oversegmentation and undersegmentation metrics by using the values of weighted variance and spatial
autocorrelations (Moran’s I). They are expressed in Equations (1)–(5).

OF = WVnorm + MInorm , (1)

F−measure = 2 ∗
MInorm ×WVnorm

MInorm + WVnorm
, (2)

WV =

∑n
i=1 ai.vi∑n

i=1 ai
, (3)
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MI =
n
∑n

i=1
∑n

j=1 wi,j(zi − z)(zj − z)

(
∑n

i=1 (zi − z)2) (
∑

i,j
∑

wi, j)
, (4)

where MInorm and WVnorm are the normalised Moran’s I and weighted variance, respectively.
In Equation (3), WV denotes the weighted variance and ai and vi are the area and variance of
image object/segment (generated by MRS) i, respectively. In Equation (4), n symbolises the total
number of objects, zi and zj are the means of the spectral value of image objects i (Oi) and j (Oj),
respectively, z is the mean spectral value of the total objects in a specific band and wi,j is a spatial
proximity measure between image objects i (Oi) and j (Oj) in which nearby image objects are defined as
1 and other objects are considered as 0. The normalised function for WV and MI can be expressed
using the following equation

F(X) =
Xmax· X

Xmax· Xmin
, (5)

where X, Xmax and Xmin are the original, maximum and minimum values of the weighted variance or
Moran’s I for a spectral band, respectively. The highest values of the OF or F-measure indicate high
segmentation quality and the optimum scale is identified as the scale that achieves image objects with
the highest OF or F-measure values. After the selection of an appropriate scale to delineate whiting,
various spectral features and indices were computed and investigated to find the most relevant features
to be used in the classification phase.

2.4. Feature Selection

One of the strongest characteristics of GEOBIA is it enables the generation of hundreds of features
or attributes for analysis (e.g., spectral bands and indices, textural, geometric and contextual attributes).
The extraction and utilisation of a considerable number of features (e.g., variables or attributes) in the
analysis are computationally intensive; hence, they can negatively affect classification accuracy [61].
Therefore, FS, which involves the selection of an essential feature subset from an enormous amount of
generated features, is a decisive step used in image analysis procedures. In addition, FS can achieve an
equivalent or higher classification accuracy than the original feature space and improve the efficiency
of GEOBIA [62–66]. FS methods may be generally grouped into three classes, namely, filter, wrapper
and embedded methods [64,65]. The filter method is considered the simplest and fastest method
among the three classes. It utilises certain statistical measures (e.g., correlation coefficients, variance,
chi-square test measures and ANOVA F-values) to rank and select relevant features without using any
learning algorithms [64,67–69]. By contrast, the wrapper method adopts a classification algorithm as
part of the evaluation process to classify the training data and assess the results. The wrapper method
selects the most significant feature subset that produces the highest classification accuracy [70,71].
Finally, the embedded method exhibits a trade-off between the filter and the wrapper methods.
This method is considered feature ranking because features are selected during the construction of
a classification model without further evaluating the selected feature subset [65]. Comparisons of
various FS techniques are available in the literature [64,72–74].

A wrapper method that combines CFS and the naïve Bayes classifier was used in this study to
find the most relevant features for extracting whiting features. CFS has recently been successfully
applied to FS and has outperformed various FS techniques with GEOBIA [63,75].

2.4.1. CFS

CFS is a popular approach that uses a search algorithm with a heuristic evaluation function to
assess the merit of feature subsets [76,77]. It measures the worth of each feature to predict the class
label along with the intercorrelation level among features [78]. A heuristic evaluation function is
designed on the basis of the hypothesis that superior feature subsets encompass correlated features
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with classes though they remain uncorrelated with one another [76,79]. Merits (heuristics) can be
formalised using the following formula

Merits =
krcf√

k + k(k − 1)rff

, (6)

where k denotes the number of features, f indicates the feature, rcf symbolises the mean feature
correlation with a class and rff is the average intercorrelation among subset features.

2.4.2. Feature Acquisition and Computation

In general, various spectral indices and bands may be used to map water surface features and
water bodies. In this study, numerous attributes, such as mean spectral reflectance, standard deviation
and spectral indices, which have been previously reported in the literature, were computed for the
image objects of several images for FS. Table 1 lists the 32 attributes that were examined using CFS.

Table 1. Description of the examined features derived from MODIS images.

No. Examined Feature Name Abbreviations Description MODIS Bands Ref.

1–7 Mean values of an image object of
MODIS reflectance (ref.) bands Ref. 1–7 Mean of bands 1–7 (Red, NIR, Blue, Green, SWIR1,

SWIR2 and SWIR3) B1–B7 [80]

8–14 Standard deviation of an image
object of ref. bands SD 1–7 Standard deviations of individual bands 1–7 B1–B7 [80]

15 Normalised difference
vegetation index NDVI (Ref.NIR−Ref.Red)

(Ref.NIR+Ref.Red)
B2, B1 [81]

16 Normalised difference
water index NDWI (Ref.Green−Ref.NIR)

(Ref.Green+Ref.NIR)
B4, B2 [82]

17 Modified normalised difference
water index MNDWI (Ref.Green−Ref.SWIR1)

(Ref.Green+Ref.SWIR1)
B4, B7 [83]

18 Floating algae index FAI RefNIR−[Ref .Red+ (Ref.SWIR1−Ref.Red)∗
(859−645)
(1240−645) ] B1, B2, B5 [84]

19 Color index for estimating PIC CI Ref.Green−[Ref .blue+ (Ref.Red−Ref.Blue)∗
(555−443)
(670−443) ] B1, B3, B4 [85]

20 Color index using 547, 667 and
869 nm for estimating PIC CI869 Ref.Red−[Ref .Green+ (Ref.NIR−Ref.Green)∗

(667−547)
(869−547) ] B1, B2, B4 [34]

21 Color index using 547 and 667 nm
for estimating PIC CI2 Ref.Green − Ref.Red B1, B4 [34]

22 Normalised difference algal
bloom index NDBI (Ref.Green−Ref.Red)

(Ref.Green+Ref.Red)
B4, B1 [86]

23 Shortwave infrared water
stress index SIWS (Ref.SWIR2−Ref.NIR)

(Ref.SWIR2+Ref.NIR)
B6, B2 [87]

24 Ratio vegetation index 1 RVI 1 Ref.NIR
Ref.Red

B2, B1 [88]

25 Ratio vegetation index 2 RVI 2 Ref.Red
Ref.NIR

B1, B2 [88]

26 Enhanced vegetation index EVI 2.5 (Ref.NIR−Ref.Red)
1+Ref.NIR+ 6Ref.Red− 7.5Ref.Blue)

B2, B1, B3 [89]

27 Ratio of the reflectance values of
red and green bands Ratio RG (Ref.Red−Ref.Green)

(Ref.Red+Ref.Green)
B1, B4 [90]

28 Blue/red index BRI Ref.Blue
Ref.Red

B3, B1 [91]

29 Blue/green index BGI Ref.Blue
Ref.Green

B3, B4 [91]

30 Normalised difference between
green and red bands NDGR (Ref.Green−Ref.Red)

(Ref.Green+Ref.Red)
B4, B1 -

31 Normalised difference between
green and blue bands NDGB (Ref.Green−Ref.Blue)

(Ref.Green+Ref.Blue)
B4, B3 -

32 Normalised difference between
blue and green bands NDBG (Ref.Blue−Ref.Green)

(Ref.Blue+Ref.Green)
B3, B4 -

The present study used CFS and the naïve Bayes classifier to determine the most relevant feature
subset for extracting whiting events from the multitemporal MODIS data. Then, training and testing
samples were prepared from the image objects of various whiting events. Table 2 shows the dates and
number of samples that were selected for FS. These samples were normalised to a scale from 0 to 1 and
then split 70% for training and 30% for testing.
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Table 2. Dates and number of image object samples selected from various images.

Dates Whiting Samples Clear Water Other Segments

28 February 2003 74 149 74
2 March 2003 100 125 126
3 March 2003 121 36 74

26 February 2004 69 124 66
2 February 2018 36 160 72

Sum 400 594 412

The optimised image objects with the selected significant features via CFS were ultimately used to
classify whiting using various tree-based classification algorithms.

2.5. Boosting Decision Tree Classification

Boosting is an ensemble machine learning algorithm that is used to improve the accuracy of a
classifier by decreasing the classification algorithm’s sensitivity to noise and labelling errors in the
training datasets [92,93]. The performance of numerous classifiers (weak learners) that are learned by
resampled versions of the training samples is combined to improve classification accuracy. Boosting
DTs are ensemble methods that use multiple iterations of DT classifiers. A boosted DT called the
AdaBoost algorithm was adopted in this study.

AdaBoost [92], also known as adaptive boosting, is a generic iterative supervised learning
algorithm that combines multiple classifiers (weak classifiers) to obtain high accuracy. The AdaBoost
algorithm chooses training samples on the basis of adaptive resampling by selecting misclassified
datasets produced by a previous classifier. The erroneously classified samples in a prior iteration are
selected more often than correctly classified samples. Furthermore, new DT models are forced to focus
on the misclassified samples and minimise the errors of the former trees [94,95]. Misclassified training
samples are given increased weights in each iteration; thus, the classifier can improve its performance
in new datasets. Ultimately, all trees (not only a final tree or trees) are incorporated because the additive
model is designed such that combinations of all trees can give the optimum solution [96].

Given surface water features with diverse spectral values, training image objects were selected
to represent five classes with different spectral responses, namely, whiting, low whiting, clear water,
interlayer (a class with subtle differences between low whiting and clear water), apparent sediment
(shallow areas next to the shore) and apparent green (potential true green-coloured algae). The prepared
samples with the most significant features selected by CFS were split 70% for training and 30% for
assessing the performance of the AdaBoost classification model. Using the verified prediction
model developed by the AdaBoost algorithm, the multitemporal image objects were classified into the
aforementioned five classes by rule-based classification. The performance of the AdaBoost classification
technique was compared with that of various tree-based classification algorithms, such as random
forest, the single DT and the gradient boosted decision tree. Classification results were assessed in this
study by computing the overall accuracy (OA), the Kappa coefficient (KC) from the confusion matrix.
While the OA of the classification indicates the percentage of correctly classified image objects, the KC
statistically measures and analyses the degree of agreement between the classified and reference image
objects [97].

3. Results & Discussion

The results of the spatiotemporal mapping of whiting in the Gulf using the MODIS time
series images and a generic ensemble tree-based model are presented in this section. Furthermore,
the frequency, seasonality, duration and geographic distribution and extent of whiting events in the
Gulf are also documented and analysed.
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3.1. Whiting Temporal Pattern in the Gulf

The primary objective of this study was to map the spatial and temporal extents of whiting in the
Gulf for 16 years by using satellite images. Therefore, a total of 5800 image scenes of the Gulf were
inspected prior to the analysis to detect the existence of whiting. Cloud-free image sets obtained for
the period of 2002 to 2018 were used to generate generic statistics on the seasonality, frequency and
duration of whiting events in the Gulf, as shown in Table 3.

Table 3. Statistics of occurrence of whiting in the Gulf for 16 years (July 2002 to July 2018).

Year Month Dates Period (d) Frequency
Event Year Month Dates Period (d) Frequency

Event

2002
February 1–5 5 1 November 10–11 2

2December 23–30 8 1 November 24–25 2

2003
February 28–1 2 - December 1–6 6

2March 1–3 3 1 December 27–30 4
December 9–11 3 1

2012

January 15–16 2
2

2004

January 29–31 3 1 January 21–26 6
February 7–10 4

3
February 3–7 5

2February 16–17 2 February 21–24 4
February 25–27 3 March 4–13 10

2March 21–23 3 1 March 18–19 2
November 24–29 6 1 November 2–3 2

2

2005
February 10–11 2 1 November 12–14 3
November 1–11 11

2

2013

January 11–18 8 1
November 24–31 8 February 4–5 2

2

2006
January 15–20 6 1 February 14–15 2

December 9–10 2
2

March 12–13 2 1
December 25–26 2 December 11–18 8

2

2007

January 1–4 4 1 December 20–27 8
March 4–5 2

2

2014

February 11–13 3
2March 11–13 3 February 19–21 3

April 19–21 3 1 November 7–10 4
2November 25–30 6 1 November 26–30 5

December 11–13 3
2

December 2–7 6
2December 24–25 2 December 25–26 2

2008

February 3–7 5
2 2015

January 19–24 6 1
February 21–27 7 February 27–28 2 1

March 6–7 2 1 November 13–15 3 1
December 17–19 3 1

2016
Jan 4–6 3 1

2009

January 4–7 4
2

Jan–Feb 29–2 4 1
January 14–16 3 February 10–13 4 1

February 3–6 4 1

2017

February 4–8 5 1
November 7–8 2 1 November 10–14 5

2

2010
January 27–28 2 1 November 29–30 2

November 23–28 6 1 December 4–5 2 1
December 16–17 2 1

2018
January 2–5 4 1

2011
January 12–14 3 1 January 29–31 3 1

February 4–5 2 2 February 1–4 4 1

The results showed that whiting events reoccurred in the region exclusively during the winter
season (November to March). Figure 5 enumerates the number of events per month/year and the
number of days per month/year where whiting events occurred during the study period (2002–2018).
The frequency of whiting events during the study period ranged from one to two events per winter
month to two to eight events per year. The highest frequency of whiting events was observed in
February. The total number of whiting days ranged from 2 to 11 days per month to 8 to 34 days per year.
Furthermore, the duration of individual events ranged from 2 to 8 days. The total number whiting
days during the past 16 years was approximately 289 days or approximately 7% of the total number of
days or 16% of the total days (November to March).
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3.2. Results of the Integrated GEOBIA Approach

3.2.1. Results of Image Segmentation

Unsupervised image segmentation quality measures based on the OF and the F-measure were
utilised to find the optimal scale for whiting event delineation by varying the scale parameter.
The mean values of NIR image objects are frequently used in image segmentation assessments to
compute undersegmentation and oversegmentation metrics. However, the NIR reflectance band was
unsuitable for assessing the segmentation of images with whiting occurrences because the whiting
phenomenon does not exist on this band. Therefore, the mean values and standard deviation of the
mean blue spectral image objects were used to compute the OF and the F-score values (Equations
(1)–(5)). Table 4 provides a sample of the OF and the F-measure computations for a single image
acquired on 2 March 2003. The highest OF and F-measure values were on a scale value of 40. Thus,
scale 40 was selected as the optimum scale value. The values of the shape and compactness parameters
were set as 0.5 and 0.1, respectively.
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Table 4. Optimum scale parameter values selected for a single scale using the objective function (OF)
and the F-measure methods (Equations (1)–(2).

SP No. of Objects Weighted
Variance Moran’s I WV Norm MI Norm OF F-Measure

10 32,227 326.8510 0.4118 1 0 1 0
20 12,446 1012.3473 0.2597 0.8883 0.3747 1.2630 0.5271
30 6695 1784.3010 0.2013 0.7625 0.5187 1.2812 0.6174
40 4208 2606.2537 0.1425 0.6285 0.6636 1.2921 0.6456
50 2891 3394.2522 0.1022 0.5001 0.7630 1.2631 0.6042
60 2197 4173.2623 0.0789 0.3732 0.8204 1.1936 0.5130
70 1755 4780.7261 0.0485 0.2742 0.8953 1.1695 0.4198
80 1459 5468.1106 0.0316 0.1621 0.9370 1.0991 0.2764
90 1202 6039.1318 0.0178 0.0691 0.9708 1.0399 0.1290

100 1039 6463.0462 0.0060 0 1 1 0

3.2.2. Results of FS and Analysis

FS reduces the dimensionality of data, diminishes the complexity of classification models,
minimises overfitting and accelerates the process. CFS was selected among various FS methods
because of its successful implementation in several remote sensing applications. As listed in Table 1,
various spectral bands and indices were examined to determine the most significant features for
detecting whiting event occurrences from a large number of MODIS images. Given the considerable
variation between the examined features in terms of range and numerical value, all the data were
normalised to a scale ranging from 0 to 1. The CFS algorithm with the best-first search strategy [98]
was implemented along with the naïve Bayes classifier to evaluate the worth of the selected features.
Accuracy was assessed via tenfold stratified cross-validation on the selected training data. According
to the results, the best-first eight significant features were the green (G), NDGB, FAI, CI, CI2, CI869,
BRI and SD-R. Therefore, combinations of each pair of the best-first selected features were selected
for further examination. Figure 6 shows the possible combinations of the selected features and their
corresponding overall accuracy and kappa coefficient. These tests reveal that the utilisation of the
NDGB and the mean green attribute values or the NDGB and CI of the image objects were similarly
excellent features for accurately mapping whiting using the MODIS data. This finding was typically
consistent with the spectral analysis of various surface features shown in Figure 4. In this study,
the NDGB and the green band were selected for further analysis.

3.2.3. Classification Results

Given the lack of historical records of whiting events in the Gulf, the AdaBoost model was trained
and tested with samples selected on the basis of satellite image inspection and the recommendation of
Wells and Illing (1962). Figure 7 depicts the generated AdaBoost DT model from the most significant
features, namely, the mean green and the NDGB, to extract whiting event features from satellite images
with moderate spatial resolution. Optimised time series image objects were eventually classified into six
classes (namely, clear water, interlayer, low whiting, whiting, apparent green and apparent sediments)
by the developed AdaBoost model and GEOBIA rule-based classification. Whiting water with a high
intensity can be simply identified with the generic developed model by rule-based classification when
the slope (NDGB) is less than 0.1 and the intensity of the green band is greater than 1500 in the MODIS
scene. Whiting with a low intensity can be recognised when the slope (NDGB) is less than 0.1 and the
mean of the green band range is between 750–1500.



Remote Sens. 2019, 11, 1193 13 of 21

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 23 

 

 

Figure 6. Performance of the combinations of multiple selected features. 

3.2.3. Classification Results 

Given the lack of historical records of whiting events in the Gulf, the AdaBoost model was 

trained and tested with samples selected on the basis of satellite image inspection and the 

recommendation of Wells and Illing (1962). Figure 7 depicts the generated AdaBoost DT model from 

the most significant features, namely, the mean green and the NDGB, to extract whiting event 

features from satellite images with moderate spatial resolution. Optimised time series image objects 

were eventually classified into six classes (namely, clear water, interlayer, low whiting, whiting, 

apparent green and apparent sediments) by the developed AdaBoost model and GEOBIA rule-based 

classification. Whiting water with a high intensity can be simply identified with the generic 

developed model by rule-based classification when the slope (NDGB) is less than 0.1 and the intensity 

of the green band is greater than 1500 in the MODIS scene. Whiting with a low intensity can be 

recognised when the slope (NDGB) is less than 0.1 and the mean of the green band range is between 

750–1500. 

Figure 6. Performance of the combinations of multiple selected features.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 23 

 

 

Figure 7. AdaBoost DT-generated model for developing rule sets for rule-based classification. 

Figure 8a–h present four classification results together with the original images acquired on 2 

March 2003, 4 March 2012, 10 February 2016 and 3 October 2018. Figure 8a–d show extensive whiting 

along the coasts of UAE and Qatar, whereas Figure 8e,f show low levels of whiting. As expected from 

the classification model, Figure 8g,h represent clear water without any significant whiting. 

The performance of the developed AdaBoost classification model was compared with that of the 

three tree-based classification algorithms. The AdaBoost classification model gave superior 

classification outcomes compared to the other models, as shown in Table 5. 

Table 5. Accuracy assessment of various tree-based classifiers. 

Classifier OA KC 

AdaBoost DT 97.86% 0.97 

Gradient boosted DT 97.12% 0.96 

Single DT 96.19% 0.95 

Random forest 95.00% 0.93 

Figure 7. AdaBoost DT-generated model for developing rule sets for rule-based classification.

Figure 8a–h present four classification results together with the original images acquired on 2
March 2003, 4 March 2012, 10 February 2016 and 3 October 2018. Figure 8a–d show extensive whiting
along the coasts of UAE and Qatar, whereas Figure 8e,f show low levels of whiting. As expected from
the classification model, Figure 8g,h represent clear water without any significant whiting.
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The performance of the developed AdaBoost classification model was compared with that of
the three tree-based classification algorithms. The AdaBoost classification model gave superior
classification outcomes compared to the other models, as shown in Table 5.

Table 5. Accuracy assessment of various tree-based classifiers.

Classifier OA KC

AdaBoost DT 97.86% 0.97
Gradient boosted DT 97.12% 0.96

Single DT 96.19% 0.95
Random forest 95.00% 0.93

3.3. Spatial Distribution of Whiting in the Gulf

Generalisation of the occurrence pattern of whiting in the Gulf can be challenging because of
the existence of clouds in the MODIS satellite images, especially during winter. Cloud-free images
representing the highest concentration of whiting events from each year were selected to compute the
peak/maximum area covered by whiting and to determine the spatial distribution of whiting in the
region. A total of 17 MODIS images (one image per year) were classified with the developed model.
The extent of the areas covered by whiting were then computed, as shown in Table 6. The maximum
coverage of whiting occurred in March 2012, followed by March 2003, whereas the minimum coverage
of assessed whiting events was recorded in December 2010. The classification results were used to
identify the common areas subjected to whiting. To statistically identify significant hot spots (High
spatial frequency of whiting events overs 17 years), statistical analysis of spatial clustering was carried
out using Optimized Hot Spot Analysis (Getis-Ord Gi*) [99,100]. This tool automatically aggregates
whiting events and identifies statistically significant spatial clusters where the focus is on presence
or absence of each whiting event rather than a measured attribute associated with whiting events.
Figure 9 shows significant whiting spatiotemporal clusters, in the semi-enclosed gulf, with various
levels of confidence, areas that are statistically significant at the 99 percent confidence level showed
that whiting events were the frequent in the southwest sections of the Gulf and along the coasts of
UAE, Qatar, Bahrain and opposite the coast of Al Jubail in Saudi Arabia.

Table 6. Cloud-free MODIS images that show peak whiting patches between 2002 and 2018 and the
computed whiting area coverage.

Year Date Whiting Area (km2) Percentage of Gulf Area

2002 5 February 15,655 6.55
2003 2 March 53,687 22.46
2004 9 February 29,874 12.50
2005 6 April 44,894 18.78
2006 30 January 30,549 12.78
2007 11 December 20,481 8.57
2008 22 February 47,887 20.04
2009 5 February 22,584 9.45
2010 16 December 12,100 5.06
2011 5 December 17,340 7.26
2012 4 March 60,847 25.46
2013 4 February 39,544 16.55
2014 10 November 15,137 6.33
2015 15 November 19,201 8.03
2016 10 February 30,480 12.75
2017 6 January 45,753 19.14
2018 3 February 22,159 9.27
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4. Conclusions

Previous studies mapping whiting events from satellite images, specifically in the Bahama Banks
and in the coast of Southwest Florida, relied on the manual delineation of whiting on the basis of spatial
contrast, spectral behaviour of whiting and derived spectral indices. Considering the limited studies
on whiting event mapping in the Gulf, the present study aimed to document the spatial extent and the
seasonal variability of whiting events in the Gulf between 2002 and 2018 using MODIS data. This study
acquired and analysed extensive daily data for mapping and documenting, documented spatiotemporal
distribution and presented an effective model (integrated CFS, Adaboost and rule-based classification)
for detecting and classifying whiting in the Gulf using the MODIS data. The results of FS showed that
the combination of the mean of the green band and the NDGB or the combination of the NDGB and
CI were the most significant feature for detecting the brightness of in-water features compared with
all the examined features in the classification. This study used various tree-based machine learning
classifiers, namely, rule-based classification based on a single DT, GBDT, RF and AdaBoost, to classify
the optimised multitemporal image objects. The results showed that the rule-based classification based
on AdaBoost DT outperformed the supervised tree-based GEOBIA classifiers. Therefore, this study
adopted the AdaBoost classification model to find a generic model for distinguishing objects of whiting
water directly and classifying time series image objects by rule-based classification.

The adopted model showed an outstanding and expeditious approach to extracting and
characterising whiting events quantitatively from time series images. Whiting events in the Gulf
occurred during the winter season (November to March) and were extensively located in the
southwestern section of the Gulf, mainly along the UAE coast. During the study period (2002–2018),
the whiting events occurred exclusively for 5 to 34 days per year and covered areas ranging from
12,000 km2 to 60,000 km2. These events require further investigations for in-situ measurements and
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laboratory analysis, on the basis of the common spatial distribution of whiting. Therefore, whiting
in the Arabian Gulf merits further attention from the scientific community to examine biophysical,
biogeochemical and environmental factors that may reveal the causes of the whiting occurrences.
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