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Abstract: Semantic labeling for high resolution aerial images is a fundamental and necessary
task in remote sensing image analysis. It is widely used in land-use surveys, change detection,
and environmental protection. Recent researches reveal the superiority of Convolutional Neural
Networks (CNNs) in this task. However, multi-scale object recognition and accurate object localization
are two major problems for semantic labeling methods based on CNNs in high resolution aerial
images. To handle these problems, we design a Context Fuse Module, which is composed of
parallel convolutional layers with kernels of different sizes and a global pooling branch, to aggregate
context information at multiple scales. We propose an Attention Mix Module, which utilizes a
channel-wise attention mechanism to combine multi-level features for higher localization accuracy.
We further employ a Residual Convolutional Module to refine features in all feature levels. Based
on these modules, we construct a new end-to-end network for semantic labeling in aerial images.
We evaluate the proposed network on the ISPRS Vaihingen and Potsdam datasets. Experimental
results demonstrate that our network outperforms other competitors on both datasets with only raw
image data.

Keywords: convolutional neural networks; semantic labeling; context aggregation; channel attention;
residual convolution; aerial images

1. Introduction

For aerial images, semantic labeling means assigning each pixel a category label, which is also
known as semantic segmentation in the computer vision field. In nature, it is a multi-category
classification problem which needs to classify every pixel in the aerial image [1–3]. This characteristic
makes it more sophisticated than binary classification problems, like building extraction and
road extraction. Besides, different from digital photos widely used in the computer vision field,
objects present large scale variations and compose complex scenes in aerial images, especially in urban
areas. They consist of many kinds of objects, like buildings, vegetation, trees, etc. Buildings have
varying sizes, cars are tiny, while trees are interwoven with vegetation. These properties make the
semantic labeling task more difficult. It is a necessary task in aerial image interpretation in spite of its
difficulty and becomes the basis for following applications, including land-use analysis, environmental
protection, urban change detection, urban planning, and so on [4–8].

Regarding this task, researchers have proposed numerous methods to accomplish it, which could
be divided into two types, traditional methods and Convolutional Neural Networks (CNNs) methods.

Traditional methods mainly consist of two independent parts, i.e., feature extraction and
classification algorithms. Certain types of features are extracted from a small patch in the aerial
image, then sent to classifier to determine its category. Features are generally constructed manually,
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including Scale Invariant Feature Transform (SIFT) [9], Histogram of Oriented Gradients (HOG) [10],
and Features from Accelerated Segment Test (FAST) [11]. These hand-crafted features have their
own characteristics in specific conditions while cannot handle general situation well. Researchers
need to choose suitable features for their specific situation carefully, otherwise they have to design a
custom feature. Classifiers used here are mostly regular machine learning algorithms. K-means [12],
Support vector machines [13], and Random forests [14] are widely adopted. However, high resolution
aerial images, especially urban areas, have complex scenes and objects in different categories present
similar appearances. So these traditional methods do not get satisfying results for this task.

In recent years, CNNs have shown dominant performance in the image processing field. It can
construct features automatically from massive image data and implement feature extraction and
classification simultaneously, which is called an end-to-end method. It presents great performance in
the image classification task [15]. Many classic networks for image classification have been proposed,
such as VGG [16], ResNet [17], and DenseNet [18].

Due to the strong recognition ability and feature learning characteristic, CNNs have been
introduced to the semantic labeling field. Many CNNs models based on image patch classification
have been designed for this task [19–23]. The general procedure is cropping a small patch from original
large image by sliding window, then classifying this patch with CNNs. This method gets improved
performance compared with traditional methods owing to superior feature expressive ability, but loses
structural information due to the regular patch partition. Besides, it requires large computational cost
because of the enormous iteration steps needed by sliding window method [24]. As an improvement,
researchers try to use a structural segmentation algorithm, like superpixel segmentation methods,
to generate patches with irregular shapes and retain more structural information [25,26]. Then they
employ CNNs models to extract features and classify patches. However, this method still makes use of
segmentation algorithms that are decoupled from CNN models, thus taking a risk of commitment to
premature decisions.

To overcome the difficulty, Fully Convolutional Networks (FCN) [27] have been proposed.
FCN removes fully connected layers in VGG and outputs the probability map directly. Afterwards,
it upsamples the probability map to the same size with original input image. In some sense,
FCN discards the segmentation part and generates a semantic labeling outcome as a natural result of
pixel-level classification. As a result, FCN can deal with irregular boundaries and get more coherent
results than patch-based classification methods.

Although FCN achieves much better performance than other models [20,21], there still exist
two limitations. Firstly, the feature map size is greatly reduced due to consecutive downsample
operations, so the spatial resolution of the final feature map is largely reduced. This means a great deal
of information is lost, which makes it difficult to recover details from the small and coarse feature map.
Lastly, the semantic labeling result misses plenty of details and seems vague locally. Secondly, it uses
features extracted by the backbone network directly, without exploiting features efficiently. This makes
FCN weak in capturing multi-scale features and recognizing complicated scenes. Hence, for objects
with multiple scales, it cannot recognize them well. This problem is more severe in aerial images due
to the large scale variations, complex scenes, and fine-structured objects.

To remedy the first problem, researchers either generate feature map with higher resolution,
or take advantage of shallow layer features more efficiently. For instance, DeconvNet [28] uses
consecutive unpooling and deconvolution layers to restore feature map resolution step wise. It adopts
encoder–decoder architecture, in fact. SegNet [29] records a pooling index in the encoder part,
then utilizes pooling index information to perform non-linear upsampling in the decoder part and
get more accurate location information. This eliminates the need for upsampling in a learning
way. U-Net [30] proposes a similar encoder–decoder model and introduces low-level features to
improve final result during decoder stage. FRRN [31] designs a two-stream network. One stream
carries information at the full image resolution to keep precise boundaries. The other stream goes
through consecutive pooling operations to get robust features for recognition. RefineNet [32] devises a
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multi-path refinement network. It exploits information along the downsampling process to perform
high resolution predictions with long-range residual connections.

For the other problem, researchers try to exploit features extracted by CNN more extensively.
PSPNet [33] exploits global context information by different-region-based context aggregation through
spatial pyramid pooling. DeepLab [34,35] uses parallel dilated convolutional operations to aggregate
multi-scale features and robustly segment objects at multiple scales. GCN [36] validates the
effectiveness of large convolution kernel and applies global convolution operation to capture context
information. EncNet [37] introduces context encoding module, which captures the semantic context of
scenes and selectively highlights class-dependent feature maps to capture context information.

In this paper, we introduce a novel end-to-end network for semantic labeling in aerial
images, which can handle problems mentioned above efficiently. It is an encoder–decoder-like
architecture, with efficient context information aggregation and attention-based multi-level feature
fusion. Specifically, we design a Context Fuse Module (CFM), which is composed of parallel
convolutional layers with kernels of different sizes and a global pooling branch. The former is used to
aggregate context information with multiple receptive fields. The latter is used to introduce global
information which has been proved efficient in recent works [33,35]. We also propose an Attention Mix
Module (AMM), which utilizes a channel-wise attention mechanism to combine multi-level features
and selectively emphasizes more discriminative features. We further employ a Residual Convolutional
Module (RCM) to refine features in all feature levels. Based on these modules, we construct a new
end-to-end network for semantic labeling in aerial images. We evaluate the proposed network on ISPRS
Vaihingen and Potsdam datasets. Experimental results demonstrate that our network outperforms
other state-of-the-art CNN-based models and top methods on the benchmark with only raw image
data.

In summary, our contributions are:

• We design a Context Fuse Module to exploit context information extensively. It is composed of
parallel convolutional layers with different size kernels to aggregate context information with
multiple receptive fields, and a global pooling branch to introduce global information.

• We propose an Attention Mix Module, which utilizes channel-wise attention mechanism
to combine multi-level features and selectively emphasizes more discriminative features for
recognition. We further employ a Residual Convolutional Module to refine features in all
feature levels.

• Based on these models, we construct a new end-to-end network for semantic labeling in
aerial images. We evaluate the proposed network on ISPRS Vaihingen and Potsdam datasets.
Experimental results demonstrate that our network outperforms other state-of-the-art CNN-based
models and top methods on the benchmark with only raw image data, without using digital
surface model information.

• We make our PyTorch-based implementation of the proposed model publicly available at https:
//github.com/Spritea/Context-Aggregation-Network.

2. Methods

We would detail various parts of the end-to-end network for semantic labeling in this section.
We first illustrate the proposed Context Fuse Module (CFM), Attention Mix Module (AMM),
and Residual Convolutional Module (RCM) in detail. Then we introduce the Context Aggregation
Network (CAN) based on these models for semantic labeling in aerial images. Figure 1 shows the
overall framework of CAN.

2.1. Context Fuse Module

In the task of semantic labeling, context information is critical. Due to large scale variations
and complex scenes in aerial images, context information is essential for accurate semantic labeling.
For example, PSPNet [33] applies spatial pyramid pooling to fuse features in different levels. Ref. [38]
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uses cascaded dilated convolutional layers to enlarge the receptive field without extra parameters.
DeepLabv3 [35] employs parallel dilated convolutional layers with global pooling layers to combine
multi-scale features. However, spatial pyramid pooling [33] is a downsample operation in nature and
would lose some detail information. Dilated convolution [34] would result in gridding effect [39] and
generate feature map with checkerboard pattern. To overcome this, we propose the CFM block to
aggregate features with different receptive fields and global context information efficiently.

Res-1
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Res-4

Res-3

RCM

RCM

RCM

RCM

CFM

RCM

RCM

RCM

RCMAMM

AMM

AMM
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Figure 1. An overview of our proposed Context Aggregation Network. Red lines represent bilinear
upsample operation. CFM: Context Fuse Module, AMM: Attention Mix Module, RCM: Residual
Convolutional Module.

Our CFM block mainly consists of two parts, as shown in Figure 2. Part A is a parallel
convolutional block, containing 4 branches with different convolutional kernel sizes. Part B is a
global pooling branch to introduce gloabl context information.
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Figure 2. Context Fuse Module structure. Part A is a parallel convolutional block. Part B is a global
pooling branch. Red line represents bilinear upsample operation.
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Parallel Convolutional Block. Parallel Convolutional Block is composed of 4 convolutional
branches with different kernel sizes, i.e., {3, 7, 11, 15}. Each branch has two convolutional layers
to extract features generated by backbone network. We also use batch normalization [40] to
reduce internal covariate shift and use ReLU [41] as activation function. Different with ASPP in
DeepLabv3 [35], we use a regular convolutional layer (solid kernel), rather than a dilated convolutional
layer (zero-padding kernel). In this way, we prevent feature maps from having the gridding effect and
get more consistent results. For features extracted by each convolutional branch, we concatenate them
together to fuse features with different receptive fields.

As for convolutioinal kernel sizes, the largest one is a 15 × 15 convolutional kernel. The reason is
the last convolutional layer of ResNet [17] backbone network outputs a 1/32 input image size feature
map. Input image size here is 512 × 512, and the last feature map size is 16 × 16. Then this 15 × 15
convolutional branch becomes the global convolution [36], and shares the same benefit with pure
classification. This increases network’s ability to recognize complex objects. Kernel sizes could be
adjusted according to input image size. Besides, since the last fature map is small, these large kernel
convolutional layers just increase subtle extra computation cost.

Global Pooling Branch. Global pooling has been proved efficient in recent works [33,35,42].
PSPNet [33] utilizes global pooling in pyramid pooling module to introduce global context
information. DeepLabv3 [35] adopts global pooling as a supplement to astrous spatial pyramid pooling.
ParseNet [42] employs extra global context to clarify local confusion and smooth segmentation.

We also adopt global average pooling to introduce global information. In this branch, feature maps
pass through a global average pooling layer to capture global context, then a 1 × 1 convolutional layer
to perform channel reduction. Final feature maps are then upsampled and concatenated with Parallel
Convolutional Block output.

The whole procedure of CFM block could be expressed as:

F = P(x)⊕
∗
∑

i
Ci(x) i = 3, 7, 11, 15 (1)

where P stands for a series of operations in a global pooling branch, and Ci(x) means stacked layers in
one branch of convolutional parallel block whose kernel size is equal to i. ⊕ and ∑∗i denote single and
consecutive concatenation operations.

In this way, Parallel Convolutional Block aggregates multi-scale information via convolutional
layers with different kernel sizes, and Global Pooling Branch captures global context information
through a global pooling layer. As a result, CFM block generates features containing multi-scale
information and global context information. These features are necessary for semantic labeling in
aerial images due to the large scale variations and complex scenes.

2.2. Attention Mix Module

For the semantic labeling backbone network, deep layer features contain high-level semantic
information with low spatial resolution, while shallow layer features embrace low-level structural
information with high spatial resolution. To acquire more accurate location information, many works
combine shallow layer features with deep ones. FCN [27] uses skip connections to add shallow layer
features to deep layer features. U-Net [30] concatenates shallow layer features with deep ones step
by step to perform feature fusion. DeepLabv3+ [43] conducts channel reduction on one shallow layer
feature and concatenates it with one deep.

However, they either add them directly [27] or concatenate them together [30,43],
without considering differences among channels. Inspired by SENet [44], we argue that the
interdependence between channels of convolutional features matters. Therefore, we design the
AMM block to combine low-level features and high-level features, as Figure 3 shows.
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Figure 3. Attention Mix Module structure. Red line represents bilinear upsample operation.

For a trivial semantic labeling network, like FCN [27], the multi-level feature fusion could be
expressed as:

F = Fh + Fl (2)

where Fh denotes high-level features (usually upsampled), and Fl denotes low-level features. They are
added per-element and F is the sum.

For our proposed AMM, the future fusion process could be described with Equations (3) and (4).

Fc = C(Fh ⊕ Fl) (3)

where ⊕means concatenation operation and C includes convolution, batch normalization and ReLU
activation operations. Fc is the corresponding output before global pooling.

F = P(Fc)× Fc + Fl (4)

where P means global pooling operation, and F is the final output of AMM block.
Specifically, low-level features and high-level features are concatenated together, then a 3 × 3

convolutional layer is used to perform channel reduction. After that, the feature map is reduced to 1× 1
size with global average pooling and becomes a vector. The vector is multiplied with itself as a channel
attention weight. In this way, we emphasize more discriminative feature channels and suppress less
discriminative ones. Finally, we add low-level feature to it directly to perform an explicit fusion,
which makes this module a residual-like structure and share similar benefits with residual block [17].
Hence we fuse multi-level features more adaptively and get features with higher recognition ability.

2.3. Residual Convolutional Module

Since the backbone networks are originally used in classification task, researchers add extra
layers to adapt them to semantic labeling task. RefineNet [32] applies residual unit to perform feature
adaptation. GCN [36] utilizes residual unit to refine boundaries and get more accurate contours.
DFN [45] uses residual unit to refine features. Residual unit in these models are essentially variants of
Residual Block in ResNet [17].

According to deep residual learning [17], we explicitly let these layers fit a residual mapping,
instead of making few stacked layers directly fit a desired underlying mapping. This could be
defined as:

M(x) = G(x)− x (5)

where x is the input, G(x) is the desired underlying mapping, andM(x) is the new residual mapping
we let stacked nonlinear layers fit. The original mapping G(x) becomes

G(x) =M(x) + x (6)

As demonstrated in deep residual learning [17], it is easier to optimize the residual mapping
than to optimize the original mapping. So residual unit not only performs feature refinement and
adaptation, but also makes network training easier.
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Therefore, we employ RCM block to implement this function. As presented in Figure 4,
RCM block consists of a 1 × 1 convolutional layer and a residual-like block. The 1 × 1 convolutional
layer unifies channel number in all levels to 512. Residual unit performs feature adaption and
refinement. Furthermore, this residual unit contains several convolutional layers, so adding it makes
the network deeper. Hence, we argue this module also strengthen the network’s ability to capture
sophisticated features.

Figure 4. Residual Convolutional Module structure.

2.4. Context Aggregation Network

Based on proposed modules, we build the CAN model for semantic labeling in aerial images.
As Figure 1 shows, this is an encoder–decoder like architecture [30]. ResNet [17] is adopted as the
backbone network due to its strong feature extraction ability. For outputs of every stage in ResNet,
they go through RCM block for feature adaption and refinement. Then the last layer’s feature map,
which contains rich high-level semantic information, is feed into CFM block to capture and aggregate
multi-scale features. After that, different-level feature maps generated in multi stages of backbone
network are combined through AMM block. These combined features are refined by RCM block and
then the network outputs final semantic labeling result.

For the network output, xj
i denotes the j-th pixel in the i-th image, and h(xj

i) denotes the network

output before softmax at pixel xj
i . The probability of the pixel xj

i belonging to the k-th category
calculated with softmax function could be denoted as:

pk(xj
i) =

exp(hk(xj
i))

∑K
n=1 exp(hn(xj

i))
(7)

where k ∈ {1, 2, ..., K}. K is the number of object classes.
Then we use normalized cross entropy loss as the optimization objective, which is:

Loss(g, h(x), θ) = − 1
MN

M

∑
i=1

N

∑
j=1

K

∑
k=1

I(gj
i = k)logpk(xj

i) (8)

where g is ground truth, θ means CAN model parameters, M is mini-bath size, N is the number of
pixels in one image, K is the number of object classes. I(g = k) is an indicative function which takes 1
when g = k and takes 0 otherwise.

3. Results and Analysis

We evaluate our proposed CAN model on two public datasets: the ISPRS Vaihingen dataset and
ISPRS Potsdam dataset. We first introduce the datasets and preprocess method. Then we present model
training details and metrics used in experiments. Finally, we evaluate our network on the datasets and
compare it with other state-of-the-art deep learning models and leading benchmark methods.
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3.1. Experimental Settings

3.1.1. Dataset Description

ISPRS Vaihingen Dataset. This is a benchmark dataset of ISPRS 2D semantic labeling challenge
in Vaihingen [46]. Vaihingen is a relatively small village with many detached buildings and small
multi story buildings. It contains 3-band IRRG (Infrared, Red, and Green) image data, corresponding
DSM (Digital Surface Model) and NDSM (Normalized Digital Surface Model) data. There are 33
images of about 2500 × 2000 pixels at a GSD (Ground Surface Distance) of about 9 cm. All images
have corresponding ground truth images. There are 5 labeled categories: impervious surface, building,
low vegetation, tree, car. Images in this dataset are acquired using an Intergraph/ZI DMC (Digital
Mapping Camera) by the company RWE Power. The flying height above ground is 900 m. They are
true ortho photos. Note that for proposed model and other deep learning models, only 3-band IRRG
images are used without DSM and NDSM data in this dataset. The reason why DSM and NDSM data
are not used is to explore the CNN-based model ability of semantic labeling in aerial images based
on images purely. It would expand the application scope of our model, especially when DSM data is
unavailable, which is often met in practical situation.

ISPRS Potsdam Dataset. This is another benchmark dataset of ISPRS 2D semantic labeling
challenge in Potsdam [46]. Potsdam shows a typical historic city with large building blocks, narrow
streets, and dense settlement structure. It contains 4-band IRRGB (Infrared, Red, Green, Blue) image
data, corresponding DSM and NDSM data. There are 38 images of 6000× 6000 pixels at a GSD of about
5 cm. All images have corresponding ground truth images. There are 5 labeled categories which are
same with ISPRS Vaihingen dataset. Note that for proposed model and other deep learning models,
only 3-band IRRG images extracted from 4-band IRRGB images are used without DSM and NDSM
data. The reason why we choose Infrared, Red, and Green band data is mainly for consistency with
the ISPRS Vaihingen dataset. Besides, this is also for fair comparison with models that use IRRG data
only, like RIT_2 [47]. Figure 5 shows samples of ISPRS Vaihingen dataset and Potsdam dataset.

(a) Vaihingen image (b) Ground truth (c) Potsdam image (d) Ground truth

Figure 5. Samples of ISPRS Vaihingen dtaset and Potsdam dataset. There are 5 labeled categories and
background (white: impervious surface, blue: building, cyan: low vegetation, green: tree, yellow: car,
red: clutter/background).

3.1.2. Dataset Preprocess

We conduct two kinds of evaluations, local evaluation and benchmark evaluation, of each dataset
for comprehensive comparison, similar with [48]. Local evaluation is comparing proposed model with
other state-of-the-art deep learning models. Online evaluation is comparing proposed model with
leading benchmark models.

For local evaluation in ISPRS Vaihingen dataset, we randomly choose 23 images as the training
set, and the other 10 images as the test set. For corresponding benchmark evaluation, we follow the



Remote Sens. 2019, 11, 1158 9 of 19

data partition way in benchmark, i.e., 16 training images and 17 test images, for comparision with
other benchmark models. For local evaluation in the ISPRS Potsdam dataset, we randomly choose 18
images as the training set due to the much larger image size than the Vaihingen dataset (6000 × 6000
v.s. 2500 × 2000), and the rest as the test set. For corresponding benchmark evaluation, we also follow
the data partition way in benchmark, which selects 24 images as the training set and 14 as the test set.
Note that for local evaluation in both datasets, we use full label images as ground truth images to set a
higher standard and get more accurate results. For benchmark evaluation, we use eroded label images
to be consistent with these benchmark methods.

Due to the GPU memory limit, original large training images are cropped with overlap 100 pixels
to 512 × 512 pixels patches. Test images are cropped to same size patches without overlap. Since
the datasets are small for deep learning methods, we apply horizontal flipping, vertical flipping, and
rotation every 90◦ to augment the training set. We also resize original large images with a factor of
{0.5, 0.75, 1.25, 1.5} and crop them to enlarge the training set.

3.1.3. Training Details

All experiments are conducted with PyTorch framework. We use the ResNet-50 [17] model
weights pretrained on ImageNet [15] dataset. The context aggregation network is trained on two Titan
V GPUs, with 12 GB memory per GPU. The total batch size is set to 12. Stochastic gradient descent
(SGD) with momentum is adopted to train this network. Momentum and weight decay are set as 0.99
and 0.0005 respectively. The initial learning rate is set as 0.001. We apply step learning rate strategy to
adjust learning rate, which reduces the learning rate by a factor of 0.1 every 50 epochs. This could be
formulated as:

learning rate = initial learning rate× 0.1power (9)

where power is defined as:

power =


0 0 ≤ epoch < 50

1 50 ≤ epoch < 100

2 100 ≤ epoch ≤ 150

(10)

For proposed model and comparing deep learning methods, we train them for 150 epochs in our
experiment to make sure these networks converge. Note that only 3-band IRRG images are used in
training process without DSM and NDSM data for both datasets, as explained in Section 3.1.1.

3.1.4. Metrics

To assess model performances comprehensively, we use three metrics: F1 score (F1), overall pixel
accuracy (OA) and intersection over union (IoU). F1 is defined as:

F1 = 2× Precision× Recall
Precision + Recall

, Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(11)

OA is defined as
OA =

TP + TN
TP + FP + TN + FN

(12)

where TP, FP, TN, FN are the number of true positive, false positive, true negative, false negative
separately. IoU is defined as:

IoU(Pm, Pgt) =
N(Pm ∩ Pgt)

N(Pm ∪ Pgt)
(13)

where Pm is the prediction pixels set and Pgt is the ground truth pixels set. ∩ and ∪ mean the
intersection and union set respectively. N denotes the number of pixels in the intersection or union set.

Besides, we use precision-recall (PR) curve to assess the relation between precision and recall
for each category. To be specific, we regard the multi-class classification problem as multiple binary
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classification problems. We adopt different thresholds from 0 to 1 to predicted score map of one
category. Then we get several precision values with corresponding recall values and plot the PR curve
of this category.

3.2. Local Evaluation

To compare proposed model with other deep learning models, we conduct comprehensive local
evaluation. Deep learning models for comparison including FCN-8s [27], GCN [36], FRRN-B [31],
DeepLabv3 [35], and DeepLabv3+ [43]. They are all typical deep learning models for semantic labeling
(a.k.a. semantic segmentation) task.

FCN [27] is the first one dealing with this task with proposed fully convolutional network.
GCN [36] utilizes large convolutional kernel to improve segmentation performance. FRRN [31]
designs two information streams to combine high resolution feature maps with low resolution ones.
DeepLabv3 [35] adopts astrous spatial pyramid pooling module with global pooling operation to
extract high resolution feature maps. DeepLabv3+ [43] introduces low-level features to refine high-level
features. Among them, DeepLabv3+ [43] is the most advanced model and achieves state-of-the-art
performance on public dataset. These models only use IRRG images as input, without DSM or
NDSM data.

3.2.1. Vaihingen Local Evaluation

We first carry out local evaluation on the ISPRS Vaihingen dataset. Figure 6 presents visual results.
Figure 7 exhibits PR curves for each category. Table 1 shows results in detail. The local evaluation result
shows our proposed CAN model outperforms other state-of-the-art deep learning models significantly
on Vaihingen dataset.

(a) Image (b) Label (c) FCN-8s (d) GCN (e) FRRN-B (f) DeepLabv3 (g) DeepLabv3+ (h)Ours

Figure 6. Visual comparisons with deep learning models of local evaluation on ISPRS Vaihingen
dataset (white: impervious surface, blue: building roof, cyan: low vegetation, green: tree, yellow: car,
red: clutter/background).
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Figure 7. Precision-recall (PR) curves of all the comparing deep learning models on Vaihingen local
evaluation. Categories from left to right: impervious surface (imp surf), building, low vegetation
(low veg), tree, car.

Table 1. Local evaluation results on ISPRS Vaihingen dataset. Imp surf: impevious surfaces. Low veg: low
vegetation. MIoU: average of five objects’ IoUs. MF1: acerage of five obejects’ F1 scores. Acc.: overall accuracy.

Model
Imp surf Building Low veg Tree Car Avg.

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1 Acc.

FCN-8s [27] 80.3 89.1 83.0 90.7 67.4 80.6 73.4 84.7 58.3 73.7 72.5 83.7 85.9
GCN [36] 81.6 89.8 86.2 92.6 68.5 81.3 74.2 85.2 61.4 76.1 74.4 85.0 86.9
FRRN-B [31] 81.5 89.8 86.8 92.9 68.5 81.3 73.6 84.8 63.6 77.7 74.8 85.3 86.9
DeepLabv3 [35] 81.8 90.0 87.4 93.3 70.0 82.3 74.5 85.4 61.2 75.9 75.0 85.4 87.4
DeepLabv3+ [43] 81.2 89.6 86.7 92.9 68.6 81.4 74.9 85.6 64.3 78.3 75.1 85.5 87.2

Ours 82.6 90.5 87.2 93.1 70.3 82.5 75.2 85.9 68.7 81.4 76.8 86.7 87.8

3.2.2. Potsdam Local Evaluation

We then conduct local evaluation on ISPRS Potsdam dataset. Figure 8 presents visual comparisons.
Figure 9 exhibits PR curves for each category. Table 2 shows results in detail. The local evaluation
result shows our proposed CAN model also outperforms other state-of-the-art deep learning models
on the Potsdam dataset.

(a) Image (b) Label (c) FCN-8s (d) GCN (e) FRRN-B (f) DeepLabv3 (g) DeepLabv3+ (h) Ours

Figure 8. Visual comparisons with deep learning models of local evaluation on ISPRS Potsdam dataset
(white: impervious surface, blue: building roof, cyan: low vegetation, green: tree, yellow: car, red:
clutter/background).
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Figure 9. Precision-recall (PR) curves of all the comparing deep learning models on Potsdam local
evaluation. Categories from left to right: impervious surface (imp surf), building, low vegetation (low
veg), tree, car.

Table 2. Local evaluation results on ISPRS Potsdam dataset. Imp surf: impevious surfaces. Low veg:
low vegetation. MIoU: average of five objects’ IoUs. MF1: acerage of five obejects’ F1 scores. Acc.:
overall accuracy.

Model Imp surf Building Low veg Tree Car Avg.

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1 Acc.

FRRN-B [31] 78.6 88.0 86.2 92.6 68.9 81.6 70.1 82.4 78.1 87.7 76.4 86.5 85.5
FCN-8s [27] 79.6 88.6 86.0 92.4 70.1 82.4 70.8 82.9 78.3 87.8 77.0 86.8 86.1
GCN [36] 80.1 88.9 87.5 93.3 70.1 82.4 70.7 82.8 78.1 87.7 77.3 87.0 86.4
DeepLabv3 [35] 80.7 89.3 88.5 93.9 69.9 82.3 70.4 82.6 78.7 88.1 77.7 87.2 86.7
DeepLabv3+ [43] 80.6 89.2 88.5 93.9 70.3 82.6 71.2 83.2 80.1 88.9 78.1 87.6 86.5

Ours 80.7 89.3 86.8 92.9 71.0 83.0 72.7 84.2 79.6 88.6 78.2 87.6 86.9

3.3. Benchmark Evaluation

To further prove proposed model’s effectiveness, we compare it with other leading benchmark
models. SVL [49] is a series of baseline methods implemented by the challenge organizer. It utilizes
SVL features [50] and Adaboost-based classifier for this task. SVL_3 does not apply Conditional
Random Field (CRF) to refine segmentation result, while SVL_6 does. UZ_1 [51] is a CNN-based
encoder–decoder-like model with deconvolution layers as decoder. ADL_3 [20] uses features from
CNN and handcraft and random forest as classifier. It also applies CRF as a post-processing method.
DST_2 [52] adopts a hybrid FCN architecture and CRF to deal with this task. DLR_8 [53] combines
FCN [27], SegNet [29], and VGG [16] to tackle this problem. It further uses edge information to
improve result. RIT_2 [47] adopts two SegNet models [29] trained with multimodal data and fuses
them later. KLab_2 [54] employs synthetic multispectral imagery to initialize the CNN model and
gets better result. CASIA [48] uses an encoder–decoder architecture-based CNN model with dilated
convolutions. CASIA [48] has achieved state-of-the-art result among all published publicly methods
on Vaihingen dataset. Note that all methods except KLab_2 [54] and CASIA [48] employ DSM data to
improve their performance.

3.3.1. Vaihingen Benchmark Evaluation

We conduct benchmark evaluation on ISPRS Vaihingen dataset. Figure 10 shows visual results.
Table 3 shows results in detail. The benchmark evaluation result shows our proposed CAN model
outperforms other top methods, including CASIA [48] model, which is the best model publicly
published, on Vaihingen dataset.
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(a) Vaihingen image-1 (b) Ground truth(eroded)-1 (c) Model prediction-1

(d) Vaihingen image-2 (e) Ground truth(eroded)-2 (f) Model prediction-2

Figure 10. Visual results of benchamark evaluation on ISPRS Vaihingen dataset.

Table 3. Benchmark evluation results on the ISPRS Vaihingen dataset (class F1 score and overall
accuracy). Imp surf: impevious surfaces. Low veg: low vegetation.

Methods Imp surf Building Low veg Tree Car Overall Acc.(%)

SVL_6 [49] 86.0 90.2 75.6 82.1 45.4 83.2
UZ_1 [51] 89.2 92.5 81.6 86.9 57.3 87.3
ADL_3 [20] 89.5 93.2 82.3 88.2 63.3 88.0
DST_2 [52] 90.5 93.7 83.4 89.2 72.6 89.1
DLR_8 [53] 90.4 93.6 83.9 89.7 76.9 89.2
CASIA [48] 92.7 95.3 84.3 89.6 80.8 90.6

Ours 93.0 95.8 85.0 90.2 89.7 91.2

3.3.2. Potsdam Benchmark Evaluation

We then do benchmark evaluation on ISPRS Potsdam dataset. Figure 11 shows visual results.
Table 4 shows results in detail. The benchmark evaluation result shows our proposed CAN model
outperforms other top methods on Potsdam dataset.



Remote Sens. 2019, 11, 1158 14 of 19

(a) Potsdam image-1 (b) Ground truth(eroded)-1 (c) Model prediction-1

(d) Potsdam image-2 (e) Ground truth(eroded)-2 (f) Model prediction-2

Figure 11. Visual results of benchamark evaluation on the ISPRS Potsdam dataset.

Table 4. Benchmark evluation results on ISPRS Potsdam dataset (class F1 score and overall accuracy).
Imp surf: impevious surfaces. Low veg: low vegetation.

Methods Imp surf Building Low veg Tree Car Overall Acc.(%)

SVL_3 [49] 84.0 89.8 72.0 59.0 69.8 77.2
UZ_1 [51] 89.3 95.4 81.8 80.5 86.5 85.8
KLab_2 [54] 89.7 92.7 83.7 84.0 92.1 86.7
RIT_2 [47] 92.0 96.3 85.5 86.5 94.5 89.4
DST_2 [52] 91.8 95.9 86.3 87.7 89.2 89.7

Ours 93.1 96.4 87.7 88.8 95.9 90.9

4. Discussion

4.1. Ablation Study

We decompose our network step-wise and validate the effect of each proposed module.
This experiment is conducted on ISPRS Vaihingen local dataset. A ResNet-50 model is used as
the base network, and the last feature map is directly upsampled as output. Firstly we evaluate
the base model performance as Table 5 shows. Then following U-Net [30], we extend it to a similar
encoder–decoder structure with Residual Convolutional Module only. This improves the performance
from 69.3% to 75.9%. We then add proposed Context Fuse Module to exploit multi-scale features
extensively. The performance increases from 75.9% to 76.5%. We further apply Attention Mix Module
to fuse low-level and high-level features more adaptively, which gets another 0.3% improvement.
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Table 5. Detailed performance comparison of network modules (class IoU and mean IoU). RCM:
Residual Convolutional Module. CFM: Context Fuse Module. AMM: Attention Mix Module.

Model Imp surf Building Low veg Tree Car Mean IoU(%)

Res-50 78.2 85.4 66.9 72.8 43.5 69.3
Res-50+RCM 81.9 87.1 69.8 75.2 65.6 75.9
Res-50+RCM+CFM 82.2 87.3 70.1 75.6 67.1 76.5
Res-50+RCM+CFM+AMM 82.6 87.2 70.3 75.2 68.7 76.8

4.2. Model Performance

For local evaluation, other deep learning models cannot distinguish between background and
other objects, including low vegetation, impervious surface, and building, as shown in Figures 6 and
8. They often make mistakes when it comes to objects which are similar with background. Besides,
for buildings with complex appearance, these models tend to classify parts of the building into
wrong objects. For instance, buildings with “holes” and similar appearance to impervious surface
are very likely to be misclassified. On the contrary, our CAN model shows better robustness to them.
It can differentiate background from other objects much better than these deep learning models and
achieve coherent labeling for confusing objects, even buildings with intricate appearance. Moreover,
fine-structured objects can also be labeled with precise localization using our model.

For benchmark evaluation, our model outperforms other benchmark methods, as shown in
Tables 3 and 4. These methods not only utilizes image data, but also DSM/NDSM data, which would
benefit building recognition a lot. Our model only takes use of raw image data without using
DSM/NDSM data. Some methods consist of multi stages which are troublesome compared with our
end-to-end method.

5. Conclusions

In this work, we introduce a novel end-to-end context aggregation network (CAN) for semantic
labeling in aerial images. It has an encoder–decoder like architecture, with efficient context information
aggregation and attention-based multi-level feature fusion. It consists of a Context Fuse Module
(CFM), Attention Mix Module (AMM), and Residual Convolutional Module (RCM). CFM is composed
of parallel convolutional layers with kernels of different sizes and a global pooling branch. Parallel
convolutional layers aggregate context information with multiple receptive fields. The global pooling
branch introduces global context information. AMM utilizes a channel-wise attention mechanism to
combine multi-level features and selectively emphasizes more discriminative features. RCM refines
features in all feature levels. With these modules, our network can combine multi-level features more
efficiently, and exploits features more extensively.

We evaluate the proposed network on ISPRS Vaihingen and Potsdam datasets. Local evaluation
results show our proposed CAN model also outperforms other state-of-the-art deep learning models
on both datasets. Benchmark evaluation results show our proposed CAN model, which uses only raw
image data, outperforms top methods on these datasets. Ablation study demonstrates the effectiveness
of the proposed modules.
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Abbreviations

The following abbreviations are used in this manuscript:

CNNs Convolutional Neural Networks
SIFT Scale Invariant Feature Transform
HOG Histogram of Oriented Gradients
FAST Accelerated Segment Test
FCN Fully Convolutional Networks
CFM Context Fuse Module
AMM Attention Mix Module
RCM Residual Convolutional Module
CAN Context Aggregation Network
IRRG Infrared, Red and Green
DSM Digital Surface Model
NDSM Normalized Digital Surface Model
GSD Ground Surface Distance
IRRGB Infrared, Red, Green, Blue
SGD Stochastic gradient descent
F1 F1 score
OA Overall Accuracy
IoU Intersection over Union
PR Precision-recall
CRF Conditional Random Field
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