
remote sensing

Article

Moving Object Detection and Tracking with
Doppler LiDAR

Yuchi Ma 1, John Anderson 2, Stephen Crouch 3 and Jie Shan 1,*
1 Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA; ma522@purdue.edu
2 Geospatial Research Lab, Corbin Field Station, 15319 Magnetic Lane, Woodford, VA 22580, USA;

John.Anderson@erdc.dren.mil
3 Blackmore Sensors and Analytics, Inc., Bozeman, MT 59718, USA; crouch@blackmoreinc.com
* Correspondence: jshan@purdue.edu

Received: 9 April 2019; Accepted: 10 May 2019; Published: 14 May 2019
����������
�������

Abstract: In this paper, we present a model-free detection-based tracking approach for detecting
and tracking moving objects in street scenes from point clouds obtained via a Doppler LiDAR
that can not only collect spatial information (e.g., point clouds) but also Doppler images by using
Doppler-shifted frequencies. Using our approach, Doppler images are used to detect moving points
and determine the number of moving objects followed by complete segmentations via a region
growing technique. The tracking approach is based on Multiple Hypothesis Tracking (MHT) with
two extensions. One is that a point cloud descriptor, Oriented Ensemble of Shape Function (OESF),
is proposed to evaluate the structure similarity when doing object-to-track association. Another is to
use Doppler images to improve the estimation of dynamic state of moving objects. The quantitative
evaluation of detection and tracking results on different datasets shows the advantages of Doppler
LiDAR and the effectiveness of our approach.

Keywords: laser scanning; Doppler LiDAR; moving object tracking; moving object detection

1. Introduction

Object tracking is defined as the method of following one or more objects over a sequence of
time steps. It is studied extensively due to its broad applications in visual surveillance, sports, traffic
monitoring, robotics, and autonomous driving. It is a challenging topic because the number of objects
in the scene can vary, and their dynamic states may change as they move and interact with the
environment. To track multiple objects, basically there are two challenges: (1) how any number of
objects in a scene is determined and (2) how an identified object is associated in continuous and
discontinuous frames.

Current research on moving object detection and tracking is mainly vision-based (images and/or
videos) [1–6]. Information collected by optical sensors offers substantial and distinct features thus
enabling easy segmentation of objects in crowded scenes. However, with optical sensors alone it
is difficult to derive objects’ precise 3D positions and the results are heavily subject to illumination
conditions. As such, some efforts try to combine 2D/3D laser rangers and cameras by using data
fusion approaches [7]. Such hybrid methods always face the precise calibration problem between the
ranging device and the camera [8]. Other research has been carried out exclusively on ranging/laser
scanner data in the form of 3D point clouds. The advantages of a laser scanner include: its high
accuracy in position measurement (precision level can be 1 cm), direct measurement of 3D position,
penetration of various barriers (e.g., trees, bushes) and an active sensing modality allowing it to work
both during day and night. Due to these features, research on detection and tracking with LiDAR is
gaining increased attention.

Remote Sens. 2019, 11, 1154; doi:10.3390/rs11101154 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-1948-9657
http://dx.doi.org/10.3390/rs11101154
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/10/1154?type=check_update&version=2

Remote Sens. 2019, 11, 1154 2 of 22

To detect an object from point clouds, we can use either model-based approaches or
model-free methods [9]. Model-based approaches detect objects based on prior model information.
Such approaches are preferred when the interest targets are specified and therefore can be modeled in
advance [9–11]. Model-free approaches don’t require prior model information so that objects of arbitrary
shapes and sizes can be detected. For example, [12] project all 3D points onto 2D occupancy grids
parallel to the ground and clusters all connected cells into one large cell; the clustered objects are then
classified as human or non-human by a trained support vector machine. [13] propose a simultaneous
detection and tracking method without specifically detecting the objects in each frame. [14] uses a cluster
detector to detect moving objects in LiDAR scans and tracks them with an unscented Kalman filter and
nearest neighbor data association methods. [15] construct a system using a variant of Random Sample
Consensus (RANSAC) that estimates the vehicle pose and detects moving objects via distinguishing
non-stationary objects from stationary ones by the spatial consistency and differentiating moving
objects from outlying objects by temporal consistency. [16] detect static points by traversing a voxel grid
and finding differences in volumetric occupancy with “point shadows”. In addition, some methods use
point cloud descriptors to assist detection and object-to-track association. In the work of [9], uniformly
sampled key points in consecutive scans are matched by their Signature of Histograms of OrienTations
or SHOT [17]. [18] organize local convexity criterion with the normal vector and flatness value for
each point, which are used to detect moving objects and manage tracks. [19] obtain high-order feature
representations for 3D local patches by deep learning techniques; then automatically detect 3D vehicles
using Deep Boltzmann Machine Hough Forests.

Most of current approaches, model-based or model-free, exclusively concentrate on certain
objects but face limitations when applied on others. For example, methods proposed by [20] only
detect pole-like objects in urban scenes; the motion-based method proposed by [9] can segment and
track vehicles of various types but it does not work well for pedestrians because slowly-moving
pedestrians do not give enough motion cues; [13] focuses on detecting and tracking pedestrians in
LiDAR scans. In practice, however, all types of moving objects can be of interest and present in the
same scene. Moreover, in some specific applications, detecting moving objects and measuring speed by
calculating multiple pulse bounces with commonly used pulsed LiDAR scans is slow and error-prone.
For example, [12] needs to segment and recognize point clouds of pedestrians in multiple Velodyne 64
scans before tracking them; [13] distinguish moving points in HDL-64E Velodyne laser scans with two
methods: one is to assess the number of nearest points within a certain temporal window with the idea
that moving object should have moved out of its original occupied volume; another is to label moving
points after drawing the distance map of the static environment with multiple frames. If obscurants
only allowed some points to be observed in only one frame, those methods would fail to tell whether
those points are moving or not.

Doppler LiDAR (also named Frequency-Modulated Continuous Wave (FMCW) Laser Detection
And Ranging (LADAR)) [21] offers remedies to those limitations. Unlike pulsed LiDAR, Doppler
LiDAR continuously illuminates the target with a continuous wave. The frequency shift between the
reference signal and the reflected signal is used to derive the range. However, when the target is
moving, the range and Doppler effect can both cause frequency shifts, resulting in an ambiguity in
the measurement between range and speed. The ambiguity is solved by the use of sequential chirps
moving in upward and downward directions, where the surface acoustic wave device only compresses
one of them [22,23]. Therefore, Doppler LiDAR can collect precise 3D spatial information and relative
speed between the moving objects and the sensor on the beam direction, from which we can directly
get the motion cue with high precision. Moreover, it is worth noting that Doppler LiDAR allows for
a high precision velocity estimate to be made very quickly compared to RADAR. A processing interval
can be about 1000 times less for a Doppler LiDAR than a FMCW RADAR because LiDAR’s carrier
frequency is 1000 times higher.

In this research, we take advantages of Doppler LiDAR and develop a model-free, detection-based
tracking approach for moving objects. The framework of the proposed approach is shown in Figure 1.

Remote Sens. 2019, 11, 1154 3 of 22

Its first step is to detect moving objects in the scene. Moving points, indicated by Doppler information,
are clustered to determine the number of moving objects and their approximate positions, thus we
can address the first challenge of tracking multiple objects. Then, a region growing technique is
used to completely segment each moving object. Results of detection are input to the tracking
algorithm. In every frame, each detected object has basically three possible affiliations: (1) it belongs
to an existing track, (2) it is the starting of a new track, or (3) it is a false alarm. This leads to the
second challenge of tracking multiple objects mentioned before. To better handle potential wrong
object-to-track associations, false alarm and missing detections, Multiple Hypotheses Tracking (MHT)
was proposed [24]. When receiving a new observation, MHT considers its three possible affiliations by
retaining all potential object-to-track assignments in the form of target trees. With new observations
in each frame, target trees keep spawning and growing as a set of hypotheses is propagated with
the expectation that future measurements will resolve assignment ambiguities [25]. Therefore, MHT
can recover wrong object-to-track assignments and is a principal reason it was selected to manage
tracks in this research. To increase the accuracy and robustness of object-to-track association, Oriented
Ensemble of Shape Functions (OESF), a global Point Cloud Descriptor (PCD), is proposed to measure
the structure similarity between tracked point clouds of objects and new detections. We also integrate
speed information into MHT to improve the statue prediction, thus increasing robustness in tracking.
We have described the proposed model-free detection-based tracking method as “MHT-PCD-Speed”.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 23

information, are clustered to determine the number of moving objects and their approximate
positions, thus we can address the first challenge of tracking multiple objects. Then, a region growing
technique is used to completely segment each moving object. Results of detection are input to the
tracking algorithm. In every frame, each detected object has basically three possible affiliations: (1) it
belongs to an existing track, (2) it is the starting of a new track, or (3) it is a false alarm. This leads to
the second challenge of tracking multiple objects mentioned before. To better handle potential wrong
object-to-track associations, false alarm and missing detections, Multiple Hypotheses Tracking
(MHT) was proposed [24]. When receiving a new observation, MHT considers its three possible
affiliations by retaining all potential object-to-track assignments in the form of target trees. With new
observations in each frame, target trees keep spawning and growing as a set of hypotheses is
propagated with the expectation that future measurements will resolve assignment ambiguities [25].
Therefore, MHT can recover wrong object-to-track assignments and is a principal reason it was
selected to manage tracks in this research. To increase the accuracy and robustness of object-to-track
association, Oriented Ensemble of Shape Functions (OESF), a global Point Cloud Descriptor (PCD),
is proposed to measure the structure similarity between tracked point clouds of objects and new
detections. We also integrate speed information into MHT to improve the statue prediction, thus
increasing robustness in tracking. We have described the proposed model-free detection-based
tracking method as “MHT-PCD-Speed”.

Figure 1. Workflow of the proposed detection-based tracking approach.

This paper is organized as follows. In Section 2, datasets collected via Doppler LiDAR are
introduced. Section 3 and 4 introduce and describe the detection and tracking session. Section 5
presents experiments and analysis. Finally, we offer conclusions of the study in Section 6.

2. Data

This study uses two datasets collected by two types of Doppler LiDAR, a static terrestrial
Doppler LiDAR and a mobile Doppler LiDAR which both provide point by point velocity
measurements. The static terrestrial Doppler LiDAR [21] is designed for fine scanning of certain
region or targets, which is realized by a partially reflective mirror that targets the laser beam at a
certain direction with a scanning angle of 4°. The scanning frequency is 5 Hz. The maximum scanning
range can be over 1 km. We collected data with the static terrestrial Doppler LiDAR in October 2017.
The testing field is located near Blackmore Sensors and Analytics Inc. Bozeman, Montana, USA
(Figure 2a and 2b).

The mobile Doppler LiDAR is designed for autonomous driving or mapping. In the system, four
co-registered Doppler LiDAR scanners are mounted on the top of a vehicle (bottom left of Figure 2).
The horizontal scanning angle range for each scanner is 40°. As the scanning scope of neighboring
scanners yields an overlapping area, the total horizontal scanning angle range for the system is 120°.
The maximum scanning range can be about 400 m. The test on the mobile Doppler LiDAR scans was
conducted in the downtown area of San Francisco, California during September 2018 (Figure 2d and
2e).

Figure 1. Workflow of the proposed detection-based tracking approach.

This paper is organized as follows. In Section 2, datasets collected via Doppler LiDAR are
introduced. Sections 3 and 4 introduce and describe the detection and tracking session. Section 5
presents experiments and analysis. Finally, we offer conclusions of the study in Section 6.

2. Data

This study uses two datasets collected by two types of Doppler LiDAR, a static terrestrial Doppler
LiDAR and a mobile Doppler LiDAR which both provide point by point velocity measurements.
The static terrestrial Doppler LiDAR [21] is designed for fine scanning of certain region or targets,
which is realized by a partially reflective mirror that targets the laser beam at a certain direction with
a scanning angle of 4◦. The scanning frequency is 5 Hz. The maximum scanning range can be over
1 km. We collected data with the static terrestrial Doppler LiDAR in October 2017. The testing field is
located near Blackmore Sensors and Analytics Inc. Bozeman, Montana, USA (Figure 2a,b).

The mobile Doppler LiDAR is designed for autonomous driving or mapping. In the system, four
co-registered Doppler LiDAR scanners are mounted on the top of a vehicle (bottom left of Figure 2).
The horizontal scanning angle range for each scanner is 40◦. As the scanning scope of neighboring
scanners yields an overlapping area, the total horizontal scanning angle range for the system is 120◦.
The maximum scanning range can be about 400 m. The test on the mobile Doppler LiDAR scans was
conducted in the downtown area of San Francisco, California during September 2018 (Figure 2d,e).

Remote Sens. 2019, 11, 1154 4 of 22

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 22

(a) (b) (c)

(d) (e) (f)

Figure 2. The scanners and study areas. The static terrestrial (a) and the mobile (d) Doppler LiDAR 136
systems, the test site (b and e: blue triangle: scanner; red arrow: beam direction), and one frame point 137
cloud color coded by speed (c and f: unit: m/s). 138

Both scanners record Doppler imaging, indicating the relative speed between scanned points 139
and the scanning system (Figure 2c and 2f). Positive speed suggests the target moving towards the 140
sensor along the sensor’s line of sight, while a negative speed means the target is moving away from 141
the sensor. 142

3. Moving Object Detection 143
This section first uses the Doppler image to detect and cluster moving points in the scene to 144

determine the number of moving objects and their approximate positions in the scene. Then, a region 145
growing technique is applied to completely segment moving objects. 146

3.1. Moving Points Detection and Clustering 147
Doppler images can be used to easily differentiate moving objects from the stationary 148

background. However, it is difficult to directly and completely segment moving objects because not 149
all points on the objects have the same motion state. While every part of a rigid body maintains nearly 150
the same motion state, different parts of a non-rigid body can move in various ways (see Figure 3). 151
For example, a pedestrian’s two feet rhythmically interchange their duties by landing and moving. 152
Moreover, due to noise in speed measurement, the measured speed of static background points is 153
not exactly zero but a very small number (e.g., 10ିସ m/s). 154

(a) (b)

Figure 3. Moving objects and their speed histograms. It shows the point cloud of a segmented truck 155
(a) and a segmented pedestrian (b) and the corresponding speed histograms (x-axis: speed at 0.1 m/s 156
bin); y-axis: number of points). In this illustration, moving points are colored in red while static points 157
blue. 158

Figure 2. The scanners and study areas. The static terrestrial (a) and the mobile (d) Doppler LiDAR
systems, the test site ((b,e): blue triangle: scanner; red arrow: beam direction), and one frame point
cloud color coded by speed ((c,f): unit: m/s).

Both scanners record Doppler imaging, indicating the relative speed between scanned points and
the scanning system (Figure 2c,f). Positive speed suggests the target moving towards the sensor along
the sensor’s line of sight, while a negative speed means the target is moving away from the sensor.

3. Moving Object Detection

This section first uses the Doppler image to detect and cluster moving points in the scene to
determine the number of moving objects and their approximate positions in the scene. Then, a region
growing technique is applied to completely segment moving objects.

3.1. Moving Points Detection and Clustering

Doppler images can be used to easily differentiate moving objects from the stationary background.
However, it is difficult to directly and completely segment moving objects because not all points on
the objects have the same motion state. While every part of a rigid body maintains nearly the same
motion state, different parts of a non-rigid body can move in various ways (see Figure 3). For example,
a pedestrian’s two feet rhythmically interchange their duties by landing and moving. Moreover, due to
noise in speed measurement, the measured speed of static background points is not exactly zero but
a very small number (e.g., 10−4 m/s).

To detect the moving part of a moving object, we first use a speed threshold εv to distinguish static
points and moving points. Because the precision of the radial speed measurement is ±0.1 m/s, we set
εv as 0.1, namely, points whose radial speed magnitude larger than 0.1 m/s are detected as moving
points, while the rest points are static.

The second step clusters detected moving points into dynamic clusters. It can be carried out
according to the spatial-temporal similarity of the detected data. To process the Doppler LiDAR scans,
the selected clustering method should: not assume the number of clusters be known as a priori,
be capable of discovering clusters of arbitrary shapes, and have good computational efficiency on
a large dataset.

Remote Sens. 2019, 11, 1154 5 of 22
Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 23

(a) (b)

Figure 3. Moving objects and their speed histograms. It shows the point cloud of a segmented truck
(a) and a segmented pedestrian (b) and the corresponding speed histograms (x-axis: speed at 0.1 m/s
bin); y-axis: number of points). In this illustration, moving points are colored in red while static points
blue.

To detect the moving part of a moving object, we first use a speed threshold 𝜖௩ to distinguish
static points and moving points. Because the precision of the radial speed measurement is ±0.1 m/s,
we set 𝜖௩ as 0.1, namely, points whose radial speed magnitude larger than 0.1 𝑚/𝑠 are detected as
moving points, while the rest points are static.

The second step clusters detected moving points into dynamic clusters. It can be carried out
according to the spatial-temporal similarity of the detected data. To process the Doppler LiDAR
scans, the selected clustering method should: not assume the number of clusters be known as a priori,
be capable of discovering clusters of arbitrary shapes, and have good computational efficiency on a
large dataset.

A bottom-up density-based clustering algorithm, Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [26], satisfies those requirements. It requires two parameters 𝜖௥
and 𝑀𝑖𝑛𝑃𝑡𝑠 , where 𝜖௥ is the spatial distance threshold between density reachable points, and
𝑀𝑖𝑛𝑃𝑡𝑠 is the minimum number of points in the neighborhood. With the idea that data in the same
cluster should be close not only in spatial domain but also in temporal domain, we adopt the Spatial-
Temporal-DBSCAN (ST-DBSCAN) that additionally considers temporal similarity with a temporal
threshold 𝜖் [27]. Moreover, in Doppler LiDAR scans, the point density varies with respect to the
range, i.e., closer objects are more densely scanned than distant ones. To make the spatial metrics
work on clusters in different distances, we make the distance threshold adaptive to range 𝑟 . In
summary, our ST-DBSCAN works in the following steps on a 3D point cloud dataset 𝐷 =

{𝑝ଵ, 𝑝ଶ, … , 𝑝௡} frame by frame:
1) Randomly choose an unvisited point 𝒑𝒊 = (𝒙𝒊, 𝒚𝒊, 𝒛𝒊, 𝒕𝒊, 𝒓𝒊);
2) Calculate the adaptive distance threshold 𝝐(𝒓𝒊) with the range 𝒓𝒊 and the azimuth sampling

resolution 𝒓𝜽;
3) Find all the neighboring points within spatial distance 𝝐(𝒓𝒊)and within temporal distance 𝝐𝑻

to 𝒑𝒊. If the number of neighboring points is larger than 𝑴𝒊𝒏𝑷𝒕𝒔, go to step 4; else, label 𝒑𝒊 as
the visited noisy point and go back to step 1;

4) Cluster all points that are density reachable or density connecting [26] to point 𝒑𝒊 and label
them as visited. Go back to step 2;

5) Terminate the process after all the points are visited. The output is a set of clusters of dynamic
points 𝑪 = {𝒄𝟏, … , 𝒄𝒎}.
𝑀𝑖𝑛𝑃𝑡𝑠 is set to smooth the density estimate, which is empirically set as 40 in this study. 𝜖் is

set as 0.02s. The distance threshold 𝜖(𝑟௜) decides the range of density reachability [26]. The distance
between two neighboring points (point density) is associated with the azimuth sampling resolution
rఏ and the distance from the point to the sensor 𝑟௜ . To distinguish different objects reliably, the
distance between two objects should be at least twice lager than the arc length between neighboring
beams. Considering the potential non-reflection beams, we set a slightly loose threshold 𝜖(𝑟௜) =

3𝑟௜rఏ.

3.2. Clustering Static Points—Completing the Objects

Figure 3. Moving objects and their speed histograms. It shows the point cloud of a segmented truck (a)
and a segmented pedestrian (b) and the corresponding speed histograms (x-axis: speed at 0.1 m/s bin);
y-axis: number of points). In this illustration, moving points are colored in red while static points blue.

A bottom-up density-based clustering algorithm, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [26], satisfies those requirements. It requires two parameters εr and MinPts,
where εr is the spatial distance threshold between density reachable points, and MinPts is the minimum
number of points in the neighborhood. With the idea that data in the same cluster should be close
not only in spatial domain but also in temporal domain, we adopt the Spatial-Temporal-DBSCAN
(ST-DBSCAN) that additionally considers temporal similarity with a temporal threshold εT [27].
Moreover, in Doppler LiDAR scans, the point density varies with respect to the range, i.e., closer objects
are more densely scanned than distant ones. To make the spatial metrics work on clusters in different
distances, we make the distance threshold adaptive to range r. In summary, our ST-DBSCAN works in
the following steps on a 3D point cloud dataset D =

{
p1, p2, . . . , pn

}
frame by frame:

(1) Randomly choose an unvisited point pi = (xi, yi, zi, ti, ri);
(2) Calculate the adaptive distance threshold ε(ri) with the range ri and the azimuth sampling

resolution rθ;
(3) Find all the neighboring points within spatial distance ε(ri) and within temporal distance εT to pi.

If the number of neighboring points is larger than MinPts, go to step 4; else, label pi as the visited
noisy point and go back to step 1;

(4) Cluster all points that are density reachable or density connecting [26] to point pi and label them
as visited. Go back to step 2;

(5) Terminate the process after all the points are visited. The output is a set of clusters of dynamic
points C = {c1, . . . , cm}.

MinPts is set to smooth the density estimate, which is empirically set as 40 in this study. εT is
set as 0.02s. The distance threshold ε(ri) decides the range of density reachability [26]. The distance
between two neighboring points (point density) is associated with the azimuth sampling resolution rθ
and the distance from the point to the sensor ri. To distinguish different objects reliably, the distance
between two objects should be at least twice lager than the arc length between neighboring beams.
Considering the potential non-reflection beams, we set a slightly loose threshold ε(ri) = 3rirθ.

3.2. Clustering Static Points—Completing the Objects

The result of dynamic points clustering is a group of dynamic point clusters C = {c1, . . . , cm}.
Further steps need to be taken to complete the entire moving objects by including static points. The idea
is to use afore detected dynamic clusters C as seeds for region growing. A spatial threshold εDi and
a temporal threshold εT are set as the growing criteria. Considering the point densities on different
objects are varying, εDi is uniquely set as the mean distance within the dynamic cluster ci. The mean
distance within ci is estimated using the mean value of the mean distance of each point to its K-nearest
neighboring points in the cluster. To avoid overgrowing the cluster into ground points, we filter ground
points beforehand using Simple Morphological Filter developed by [28]. In summary, the region
growing algorithm works on every dynamic cluster ci in dynamic clusters C with all other static points
Ps as follows:

Remote Sens. 2019, 11, 1154 6 of 22

(1) Choose an unvisited dynamic cluster ci from C;

(2) For each point pj in ci, calculate the mean distance Dpj
from pj to its K-nearest neighboring points.

The mean distance within cluster ci with M points is calculated as εDi =
1
M

∑M
j=1 Dpj

;

(3) Find all static points P′s in Ps within εDi and εT from at least one point in ci;
(4) If no point is left in P′s, go to step 1; otherwise, merge P′s to cluster ci and go to step 2;
(5) Terminate the region growing process when all members in C are visited.

The value of εT is set the same as in ST-DBSCAN. The value of K is set the same as the value of
MinPts. After several iterations, the entire moving object can be completely segmented (see Figure 4).
The next step is to track trajectories of detected objects between frames.

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 23

The result of dynamic points clustering is a group of dynamic point clusters 𝐶 = {𝑐ଵ, … , 𝑐௠}.
Further steps need to be taken to complete the entire moving objects by including static points. The
idea is to use afore detected dynamic clusters 𝐶 as seeds for region growing. A spatial threshold 𝜖஽೔

and a temporal threshold 𝜖் are set as the growing criteria. Considering the point densities on
different objects are varying, 𝜖஽೔

 is uniquely set as the mean distance within the dynamic cluster 𝑐௜.
The mean distance within 𝑐௜ is estimated using the mean value of the mean distance of each point
to its K-nearest neighboring points in the cluster. To avoid overgrowing the cluster into ground
points, we filter ground points beforehand using Simple Morphological Filter developed by [28]. In
summary, the region growing algorithm works on every dynamic cluster 𝑐௜ in dynamic clusters
𝐶 with all other static points 𝑃௦ as follows:
1) Choose an unvisited dynamic cluster 𝒄𝒊 from 𝑪;
2) For each point 𝒑𝒋 in 𝒄𝒊, calculate the mean distance 𝑫ഥ𝒑𝒋

 from 𝒑𝒋 to its K-nearest neighboring

points. The mean distance within cluster 𝒄𝒊 with M points is calculated as 𝝐𝑫𝒊
=

𝟏

𝑴
∑ 𝑫ഥ 𝒑𝒋

𝑴
𝒋ୀ𝟏 ;

3) Find all static points 𝑷𝒔
ᇱ in 𝑷𝒔 within 𝝐𝑫𝒊

 and 𝝐𝑻 from at least one point in 𝒄𝒊;
4) If no point is left in 𝑷𝒔

ᇱ , go to step 1; otherwise, merge 𝑷𝒔
ᇱ to cluster 𝒄𝒊 and go to step 2;

5) Terminate the region growing process when all members in 𝑪 are visited.
The value of 𝜖் is set the same as in ST-DBSCAN. The value of K is set the same as the value

of 𝑀𝑖𝑛𝑃𝑡𝑠. After several iterations, the entire moving object can be completely segmented (see Figure
4). The next step is to track trajectories of detected objects between frames.

Figure 4. Clustered moving points and the static background in one frame (top). The growing process
over seven iterations (bottom). Points on moving objects are in red while static points are in blue.
Points in green are growing points in each iteration.

4. Moving Object Tracking

As introduced before, we adopt MHT to track moving objects in Doppler LiDAR scans. The
objective of this stage is to establish the relation between objects detected in consecutive frames and
determine their moving trajectories. The process of MHT includes finding candidates for object-to-
track association (Gating), proposing track hypotheses and ranking each hypothesis according to
their likelihood (Scoring), and determining the best set of hypotheses (Global Hypothesis Formation)
[6,25,29,30]. The Kalman filter is used in MHT to estimate the dynamic states of moving objects. In
the following sections, we present the implementation of the Kalman filter with Doppler speed
information and then describe how the tracking algorithm works.

4.1. Kalman Filter with Doppler Images

Figure 4. Clustered moving points and the static background in one frame (top). The growing process
over seven iterations (bottom). Points on moving objects are in red while static points are in blue.
Points in green are growing points in each iteration.

4. Moving Object Tracking

As introduced before, we adopt MHT to track moving objects in Doppler LiDAR scans.
The objective of this stage is to establish the relation between objects detected in consecutive
frames and determine their moving trajectories. The process of MHT includes finding candidates
for object-to-track association (Gating), proposing track hypotheses and ranking each hypothesis
according to their likelihood (Scoring), and determining the best set of hypotheses (Global Hypothesis
Formation) [6,25,29,30]. The Kalman filter is used in MHT to estimate the dynamic states of moving
objects. In the following sections, we present the implementation of the Kalman filter with Doppler
speed information and then describe how the tracking algorithm works.

4.1. Kalman Filter with Doppler Images

Kalman filtering is a process of using a motion model (e.g., physical laws of motion) to estimate
the state of a dynamic system [31]. In the Kalman filter model for a moving object,

S̃k = FSk−1 + Wk (1)

Σ̃
k
SS = FΣk−1

SS FT + Qk (2)

where Sk−1 and Σk−1
SS are the state vector and its covariance at frame k − 1, consisting of position

component Xk−1 and speed components Vk−1; Fk is the transition matrix; Wk and Qk are the white
noise of Gaussian and its covariance at frame k. The predicted state vector and its variance at frame

Remote Sens. 2019, 11, 1154 7 of 22

k are respectively X̃k and Σ̃
k
XX. A measurement matrix H is used to project S̃k from state space

to measurement space and convert Σ̃
k
SS to the system uncertainty Uk with the measurement noise

nk
∼ N(0, Rk):

z̃k = HS̃k + nk (3)

Uk = HΣ̃
k
SSHT + Rk (4)

Then, we can calculate Kalman gain Kk and update the predicted state and its variance:

Kk = Σ̃
k
SSHT(Uk)

−1
(5)

Sk = S̃k + Kk(zk
− z̃k) (6)

Σk
SS = (I −KkH)Σ̃

k
SS (7)

In our study, the position components xk in zk are estimated using the mean position of all points
p j on the detected object. The speed component vk in zk is estimated by the measured radial (in beam
direction) speed |vb|. Given a position observation xk in current frame k together with the position
of the scanner O, we can get the beam vector v0

b . If the moving direction v0 of the object is known,
the moving speed can be estimated by:

vk =
|vb|

v0
b · v

0
v0 (8)

When a track is initialized with the speed state vector as a zero vector, we assume the vector from
Xk−1, the updated position statue of the track in the last frame k− 1, to xk as the moving direction v0.
In following frames, the moving direction is estimated using the updated speed state from Kalman
filter. Afterwards, based on the predicted and updated motion state, track hypotheses are proposed by
performing gating as discussed below.

4.2. Gating and Proposing Track Hypotheses

Gating is the process of finding potential object-to-track associations [6,29]. Intuitively, detections
in consecutive frames that are close to each other are more likely to be the same object. To quantify the
likelihood, a gating area for each track hypothesis is calculated based on the position estimation in the
form of (Mahalanobis) distance, which measures how many standard deviations away the jth new

position observation xk
j is from the mean of the predicted position distribution N(X̃k

li
, Σ̃

k
XX) of track li

in frame k:

d2
m = (X̃k

li
− xk

j)
T
(Σ̃

k
XX)

−1
(X̃k

li
− xk

j) (9)

A gating threshold λdm is set to decide candidates for object-to-track associations. To illustrate
the gating process, we offer an example in Figure 5a, in which observations are given in three
consecutive frames, namely, two observations in frame k − 1 and three observations in frame k and
k + 1. Gating shows that the candidates of zk−1

1 , the first observation in frame k − 1, are zk
1 and zk

3,
while the candidate of zk−1

2 is zk
2. Similar associations are indicated by the arrows from frame k to

k + 1 in Figure 5a. After gating, multiple tracking hypotheses can be proposed in the form of target
trees. Existing target trees are extended by including the candidate observations, with each candidate
observation “spawning” a separate new branch (i.e., branches in the red rectangle in Figure 5b).
Under the assumption that each new observation in any current frame may start a new track, each new
observation is used to start a new track as the root node (i.e., the root node is shown as the green
rectangle in Figure 5b). In addition, each existing tree spawns a new branch with a dummy observation
to account for missing detections [6] (i.e., shown as the branch in the yellow rectangle in Figure 5b).

Remote Sens. 2019, 11, 1154 8 of 22
Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 23

(a) (b)

Figure 5. Gating and association principles. (a) Observations in three consecutive frames. There are
two observations in frame 𝑘 − 1 and three object observations in frame 𝑘 and 𝑘 + 1. The arrows
indicate the potential object-to-track associations. (b) Initialized and updated target trees.

4.3. Scoring

Up to now, a set of track hypotheses are proposed while most of them are incompatible. To
evaluate alternative track hypotheses, we need a probabilistic score function to rank each of them. A
track is composed of a set of observations. The Likelihood Ratio (LR) of a hypothesis 𝐻௜ saying a set
of observations 𝐷 belongs to a track 𝑙 is defined as [29]:

𝐿𝑅௜ =
𝑝(𝐷|𝐻௜)𝑝଴(𝐻௜)

𝑝(𝐷|𝐻଴)𝑝଴(𝐻଴)
= 𝐿଴

𝑝൫𝑧௝
ଵ:௄ห𝐻௜൯

𝑝൫𝑧௝
ଵ:௄ห𝐻଴൯

= 𝐿଴

∏ 𝑝൫𝑧௝
௞ห𝑧௝

ଵ:௞ିଵ, 𝐻௜൯
௄
௞ୀଵ

∏ 𝑝൫𝑧௝
௞ห𝐻଴൯௄

௞ୀଵ

 (10)

where 𝑝଴(𝐻௜) and 𝑝଴(𝐻଴) are the prior probability of hypothesis 𝐻௜ and false alarm hypothesis
𝐻଴, both of which are set as constant thus their ratio is denoted as a constant 𝐿଴. The larger 𝑝(𝐷|𝐻௜)
is and the smaller 𝑝(𝐷|𝐻଴) is, the LR is larger and hypothesis 𝐻௜ is more likely to be true. We
separate the LR into a product of motion (MOT) term and a Point Cloud Descriptor (PCD) term.
Under the assumption that measurement error from frame-to-frame is independent, the LR is
partitioned into:

𝐿𝑅௜ = 𝐿଴ ෑ 𝐿𝑅ெை்೔
(𝑘)𝐿𝑅௉஼஽೔

(𝑘)
௄

௞ୀଵ
 (11)

The MOT term 𝐿𝑅ெை் accounts for the spatial closeness of an object-to-track association. The
likelihood that 𝑧௝

௞ belongs to track 𝑙 given the previous observations 𝑧௝
ଵ:௞ିଵ is assumed to be a

Gaussian distribution. The conditional probability that 𝑧௝
௞ is a false alarm is set as a constant 𝑉଴

ିଵ.
Using 𝑑୫

ଶ from formula (9) and denoting M as the data dimension, 𝐿𝑅ெை் for track 𝑙 in the 𝑘𝑡ℎ
frame:

𝐿𝑅ெை்೔
(𝑘) =

𝑝൫𝑧௝
௞ห𝑧௝

ଵ:௞ିଵ, 𝐻௜൯

𝑝൫𝑧௝
௞ห𝐻଴൯

= exp ቆ−
𝑑௠

ଶ

2
ቇ 𝑉଴ ൬(2𝜋)

ெ
ଶ ට|Σ෨௝

௞|൰
ିଵ

 (12)

The PCD term 𝐿𝑅௉஼஽ evaluates the structural similarity of an object-to-track association. We
propose a global point cloud descriptor, Oriented Ensemble of Shape Function (OESF), to derive the
feature vector of each observation. Details about OESF is given in the next section. The OESF feature
vector of the 𝑗 − 𝑡ℎ observation in frame 𝑘 is notated as 𝛽௝

௞ . Assuming that associating
observations based on PCD is a first-order Markov process, the PCD term is:

𝐿𝑅௉஼஽೔
(𝑘) =

𝑝൫𝛽௝
௞ห𝛽௝

ଵ:௞ିଵ, 𝐻௜൯

𝑝൫𝛽௝
௞ห𝐻଴൯

=
𝑝൫𝛽௝

௞ห𝛽௝
௞ିଵ, 𝐻௜൯

𝑝൫𝛽௝
௞ห𝐻଴൯

=
𝑟൫𝛽௝

௞ , 𝛽௝
௞ିଵ൯

𝛾଴

 (13)

The likelihood of 𝛽௝
௞ belonging to track 𝑙 given the previous PCD feature vector 𝛽௝

௞ିଵ is
defined as 𝑟(𝛽௝

௞ , 𝛽௝
௞ିଵ), the correlation coefficient between two OESF feature vectors 𝛽௝

௞ିଵ and 𝛽௝
௞.

𝑝(𝛽௝
௞|𝐻଴) is set as a constant γ଴. We apply log on the LR to get the Log Likelihood Ratio (LLR) as the

score function:

𝑆௜(𝐾) = 𝐿𝐿𝑅௜ = ln(𝐿𝑅௜) = ෍ ቀ𝐿𝐿𝑅ெை்೔
(𝑘) + 𝐿𝐿𝑅௉஼஽೔

(𝑘)ቁ
௄

௞ୀଵ
+ ln (𝐿଴) (14)

Then, we can update the track score recursively with different weights 𝑤ெை் and 𝑤௉஼஽ on the
motion term and PCD term correspondingly [6,29]:

𝑆௜(𝑘) = 𝑆௜(𝑘 − 1) + Δ𝑆௜(𝑘) (15)

Δ𝑆௜(𝑘) = ൜
0 𝑘 = 0

𝑤ெை்𝐿𝐿𝑅ெை்೔
(𝑘) + 𝑤௉஼஽𝐿𝐿𝑅௉஼஽೔

(𝑘) 𝑘 ≠ 0 (16)

Figure 5. Gating and association principles. (a) Observations in three consecutive frames. There are
two observations in frame k− 1 and three object observations in frame k and k + 1. The arrows indicate
the potential object-to-track associations. (b) Initialized and updated target trees.

4.3. Scoring

Up to now, a set of track hypotheses are proposed while most of them are incompatible. To evaluate
alternative track hypotheses, we need a probabilistic score function to rank each of them. A track
is composed of a set of observations. The Likelihood Ratio (LR) of a hypothesis Hi saying a set of
observations D belongs to a track l is defined as [29]:

LRi =
p(D|Hi)p0(Hi)

p(D|H0)p0(H0)
= L0

p(z1:K
j

∣∣∣∣Hi)

p(z1:K
j

∣∣∣∣H0)
= L0

∏K
k=1 p(zk

j

∣∣∣∣z1:k−1
j , Hi)∏K

k=1 p(zk
j

∣∣∣∣H0)
(10)

where p0(Hi) and p0(H0) are the prior probability of hypothesis Hi and false alarm hypothesis H0,
both of which are set as constant thus their ratio is denoted as a constant L0. The larger p(D|Hi) is and
the smaller p(D|H0) is, the LR is larger and hypothesis Hi is more likely to be true. We separate the LR
into a product of motion (MOT) term and a Point Cloud Descriptor (PCD) term. Under the assumption
that measurement error from frame-to-frame is independent, the LR is partitioned into:

LRi = L0

K∏
k=1

LRMOTi(k)LRPCDi(k) (11)

The MOT term LRMOT accounts for the spatial closeness of an object-to-track association.
The likelihood that zk

j belongs to track l given the previous observations z1:k−1
j is assumed to be

a Gaussian distribution. The conditional probability that zk
j is a false alarm is set as a constant V−1

0 .

Using d2
m from Formula (9) and denoting M as the data dimension, LRMOT for track l in the kth frame:

LRMOTi(k) =
p(zk

j

∣∣∣∣z1:k−1
j , Hi)

p(zk
j

∣∣∣∣H0)
= exp

(
−

d2
m
2

)
V0

(2π)M
2

√∣∣∣∣∣Σ̃k
j

∣∣∣∣∣
−1

(12)

The PCD term LRPCD evaluates the structural similarity of an object-to-track association.
We propose a global point cloud descriptor, Oriented Ensemble of Shape Function (OESF), to derive the
feature vector of each observation. Details about OESF is given in the next section. The OESF feature
vector of the j − th observation in frame k is notated as βk

j . Assuming that associating observations
based on PCD is a first-order Markov process, the PCD term is:

LRPCDi(k) =
p(βk

j

∣∣∣∣β1:k−1
j , Hi)

p(βk
j

∣∣∣∣H0)
=

p(βk
j

∣∣∣∣βk−1
j , Hi)

p(βk
j

∣∣∣∣H0)
=

r(βk
j , β

k−1
j)

γ0
(13)

Remote Sens. 2019, 11, 1154 9 of 22

The likelihood of βk
j belonging to track l given the previous PCD feature vector βk−1

j is defined as

r(βk
j , β

k−1
j), the correlation coefficient between two OESF feature vectors βk−1

j and βk
j . p(βk

j

∣∣∣∣H0) is set
as a constant γ0. We apply log on the LR to get the Log Likelihood Ratio (LLR) as the score function:

Si(K) = LLRi = ln (LRi) =
∑K

k=1
(LLRMOTi(k) + LLRPCDi(k)) + ln (L0) (14)

Then, we can update the track score recursively with different weights wMOT and wPCD on the motion
term and PCD term correspondingly [6,29]:

Si(k) = Si(k− 1) + ∆Si(k) (15)

∆Si(k) =
{

0 k = 0
wMOTLLRMOTi(k) + wPCDLLRPCDi(k) k , 0

(16)

where wMOT is set as 1. As we need to rely more on the PCD term if we have more candidates in the
gating area, wPCD is set as µn, in which n is the number of candidates and µ is the PCD weight ratio.
Then the weights for the PCD term and the MOT term are normalized:

w j =
w j

wMOT + wPCD
, j = MOT or PCD (17)

According to scores of each track hypothesis, we can find a set of tracks with the highest overall
score. Before that, we introduce the proposed OESF in the next section.

4.4. Feature Description of Point Clouds of Objects

The proposed OESF is inspired by Ensemble of Shape Function (ESF) introduced by [32].
ESF describes 3D shapes with multiple shape functions, including the distances between point pairs
(D2), the square root of the area of a triangle formed by three randomly chosen points (D3), and the
angle formed by three randomly chosen points (A3) [33]. ESF uses voxel grids as an approximation of
the surface of the point cloud, based on which D2, D3, and A3 are extended to be either inside the
surface, outside the surface, or a mixture of both. The D2 ratio is also used, which is the ratio between
parts of the D2 inside and outside the surface. Values of the ten shape functions are normalized
separately into a 64-bin histogram and concatenated to form the feature vector with a length of 640.

ESF gives a significant boost in classifying objects scanned by near-range depth sensors. However,
it is not quite applicable to objects in our point clouds. One reason is that the dimensionality of the
ESF feature vector is large. As such, it tends to overfit sparsely-scanned objects and amplify the effect
of minor structural differences between objects of the same category. Also, ESF distinguishes shape
functions as inside, outside, or a mixture of both, which is not applicable to comparatively sparse
points on objects segmented in LiDAR point clouds. Moreover, ESF is scale-invariant but the dimension
information is very important for distinguishing different moving objects in street scene (e.g., vehicles
in different sizes, pedestrians of different heights etc.).

Since shape and orientation of the same moving object, either rigid or non-rigid, in neighboring
frames is unlikely to change dramatically, we propose a novel point cloud descriptor to reflect the
similarity between objects in neighboring frames, named Oriented Ensemble Shape Functions (OESF).
To derive OESF feature vector, the oriented bounding box with center B(xB, yB, zB) and orientation
E(
⇀
e x,

⇀
e y,

⇀
e z) is estimated based on the convex hull of the point cloud of the object. Five shape

functions D2, D3, Ax, Ay, and Az are adopted (see Figure 6). D2 and D3 are the same as the original

ESF. For each point pa on the object, we have a center vector
→

Bpa. The angles between
→

Bpa and
⇀
e x,

⇀
e y,

⇀
e z are respectively Ax, Ay, and Az. Results of each shape function are summarized separately into a
32-bin histogram and each histogram is normalized to be summed up as 100. Furthermore, to make
OESF scale-variant, we restrict the range of the D2 histogram as 0–5 m. In addition, we introduce

Remote Sens. 2019, 11, 1154 10 of 22

a layer distribution function. After rotating the points of the object to make its bounding box along
with axes, the layer distribution function divides the observation point cloud into 32 uniform layers
and counts the percentage of points in each layer to derive a 32-bin histogram. Finally, the six 32-bin
histograms are concatenated to derive the OESF feature vector with the length of 192.
Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 23

Figure 6. Oriented Ensemble of Shape Functions (OESF): (a) D2; (b) D3; (c)Ax, Ay, and Az; (d) layer
distribution function.

To test its effectiveness in measuring similarity between objects in LiDAR point clouds, we
calculate OESF feature vectors of segmented moving objects from both KITTI Vision Benchmark (a
project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago) [34] and
our Doppler LiDAR scans (see Table 1 and Figure 7). We use the correlation coefficient to represent
the similarity between OESF feature vectors of two objects. The corresponding results based on ESF
feature vectors are also given for comparison.

Our test proves the OESF feature vector can clearly show the level of similarity between objects.
For the same pedestrian or vehicle in neighboring frames, the correlation coefficients are likely to be
more than 0.80. We manually segment objects in KITTI datasets while the objects in Doppler LiDAR
are our detection results, therefore the correlation coefficients between the same objects in KITTI
datasets are comparatively lager than those in Doppler LiDAR datasets. In Doppler LiDAR, for
different objects in the same categories, their correlation coefficients decrease to below 0.70, which
can decrease the risk of identity switch. Moreover, the correlation coefficients between objects in
different categories (e.g., pedestrian and car) are as low as about 0.20. Therefore, with the point cloud
descriptor term in scoring function, false alarm detections can hardly influence the tracking results.

On the other hand, due to overfitting sparsely-scanned objects, the correlation coefficients of ESF
feature vectors of two objects become higher. It can hardly differentiate different pedestrians since
the correlation coefficients, either between the same or different pedestrians, are very high (larger
than 0.90). In fact, the correlation coefficients of ESF feature vectors of the same pedestrian in
neighboring frames can be as high as its counterpart of ESF feature vectors of two different
pedestrians. Also, if different pedestrians of different heights keep a similar posture, the correlation
coefficients of their ESF feature vectors would also be very high for the reason that ESF is scale-
invariant. For the same reason, ESF’s ability to differentiate different cars is not as good as OESF’s.
Moreover, ESF tends to result in much higher correlation coefficients between objects in different
categories, which increases the vulnerability to false alarm detections.

Table 1. Test OESF by calculating correlation coefficients 𝑟 between objects in point clouds.

Figure 6. Oriented Ensemble of Shape Functions (OESF): (a) D2; (b) D3; (c) Ax, Ay, and Az; (d) layer
distribution function.

To test its effectiveness in measuring similarity between objects in LiDAR point clouds, we calculate
OESF feature vectors of segmented moving objects from both KITTI Vision Benchmark (a project of
Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago) [34] and our Doppler
LiDAR scans (see Table 1 and Figure 7). We use the correlation coefficient to represent the similarity
between OESF feature vectors of two objects. The corresponding results based on ESF feature vectors
are also given for comparison.

Our test proves the OESF feature vector can clearly show the level of similarity between objects.
For the same pedestrian or vehicle in neighboring frames, the correlation coefficients are likely to be
more than 0.80. We manually segment objects in KITTI datasets while the objects in Doppler LiDAR are
our detection results, therefore the correlation coefficients between the same objects in KITTI datasets
are comparatively lager than those in Doppler LiDAR datasets. In Doppler LiDAR, for different objects
in the same categories, their correlation coefficients decrease to below 0.70, which can decrease the
risk of identity switch. Moreover, the correlation coefficients between objects in different categories
(e.g., pedestrian and car) are as low as about 0.20. Therefore, with the point cloud descriptor term in
scoring function, false alarm detections can hardly influence the tracking results.

On the other hand, due to overfitting sparsely-scanned objects, the correlation coefficients of ESF
feature vectors of two objects become higher. It can hardly differentiate different pedestrians since the
correlation coefficients, either between the same or different pedestrians, are very high (larger than
0.90). In fact, the correlation coefficients of ESF feature vectors of the same pedestrian in neighboring
frames can be as high as its counterpart of ESF feature vectors of two different pedestrians. Also,
if different pedestrians of different heights keep a similar posture, the correlation coefficients of their
ESF feature vectors would also be very high for the reason that ESF is scale-invariant. For the same
reason, ESF’s ability to differentiate different cars is not as good as OESF’s. Moreover, ESF tends to
result in much higher correlation coefficients between objects in different categories, which increases
the vulnerability to false alarm detections.

Remote Sens. 2019, 11, 1154 11 of 22

Table 1. Test OESF by calculating correlation coefficients r between objects in point clouds.

Dataset Objects #Pair of Samples Mean of rOESF/rESF
Std. Dev. of
rOESF/rESF

KITTI

The Same pedestrian in
neighboring frames 100 0.8848/0.9168 0.0700/0.0550

Different pedestrians 100 0.8248/0.9543 0.1097/0.0262

The same car in
neighboring frames 50 0.9081/0.9241 0.0649/0.0741

Different cars 150 0.7051/0.8412 0.1252/0.0772

Objects in different categories 200 0.1348/0.5219 0.0871/0.1706

Doppler LiDAR

The Same pedestrian in
neighboring frames 100 0.8248/0.9543 0.1097/0.0262

Different pedestrians 100 0.6466/0.9534 0.1442/0.0207

The same car in
neighboring frames 50 0.8016/0.8797 0.1297/0.1045

Different cars 150 0.5617/0.7349 0.0967/0.1514

Objects in different categories 200 0.2191/0.5323 0.0593/0.1568

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 23

Dataset Objects
#Pair of
Samples

Mean of
𝐫𝐎𝐄𝐒𝐅/𝒓𝑬𝑺𝑭

Std. Dev. of
𝐫𝐎𝐄𝐒𝐅/𝒓𝑬𝑺𝑭

KITTI

The Same pedestrian in
neighboring frames

100 0.8848/0.9168 0.0700/0.0550

Different pedestrians 100 0.8248/0.9543 0.1097/0.0262

The same car in
neighboring frames

50 0.9081/0.9241 0.0649/0.0741

Different cars 150 0.7051/0.8412 0.1252/0.0772

Objects in different
categories

200 0.1348/0.5219 0.0871/0.1706

Doppler
LiDAR

The Same pedestrian in
neighboring frames

100 0.8248/0.9543 0.1097/0.0262

Different pedestrians 100 0.6466/0.9534 0.1442/0.0207

The same car in
neighboring frames

50 0.8016/0.8797 0.1297/0.1045

Different cars 150 0.5617/0.7349 0.0967/0.1514

Objects in different
categories 200 0.2191/0.5323 0.0593/0.1568

(a) (b)

(c) (d)

Figure 7. Calculated correlation coefficients (𝑟) between OESF feature vectors of objects in the KITTI
dataset (left) and Doppler LiDAR dataset (right): (a) the same pedestrian in neighboring frames; (b)
the same vehicle in neighboring frames; (c) different pedestrians; (d) a pedestrian and a vehicle.

4.5. Managing and Confirming Track Hypotheses

Before confirming any track hypothesis, to manage tracks efficiently, track hypotheses are
organized in several forms of data structure. Different tracks originating from the same root
observation form a target tree, also called a family [6,29]. Tracks from the same family are

Figure 7. Calculated correlation coefficients (r) between OESF feature vectors of objects in the KITTI
dataset (left) and Doppler LiDAR dataset (right): (a) the same pedestrian in neighboring frames;
(b) the same vehicle in neighboring frames; (c) different pedestrians; (d) a pedestrian and a vehicle.

4.5. Managing and Confirming Track Hypotheses

Before confirming any track hypothesis, to manage tracks efficiently, track hypotheses are organized
in several forms of data structure. Different tracks originating from the same root observation form
a target tree, also called a family [6,29]. Tracks from the same family are incompatible. If incompatible
tracks are grouped into the same cluster, we can improve computational efficiency by processing
each cluster independently. For that reason, clustering is adopted to decompose all families into
smaller disjoint clusters. Clustering essentially divides a large tracking problem into several smaller
sub-problems [25].

After clustering, we need to format a global (joint) hypothesis, which is defined as a group of
tracks that are compatible with each other [6]. The final confirmed tracks compose the most likely

Remote Sens. 2019, 11, 1154 12 of 22

global hypothesis, which is the combination of all compatible tracks that gives the highest overall score.
The objective function of finding the most likely global hypothesis is [6,29]:

max
∑nt1

l=1 st1
l kl . . .

∑nti
l=1 sti

l kl . . .
∑ntT

l=1 stT
l kl∑nti

l=1 kl = 1, kl = 0 or 1 (constraint)
(18)

in which T is the number of trees; nti is the number of tracks in tree ti; sti
l is the score of track l in tree ti;

κl is the binary constraint deciding whether track l should be included in the global hypothesis or not.
κl ensures one observation at most appear in one track thus that all tracks in the global hypothesis
are compatible with each other. The multidimensional track assignment problem can be solved as
a Maximum Weight Independent Set Problem (MWISP) [35]. Following [6], we use the algorithm
proposed by [36] to solve the MWISP and find the most likely global hypothesis. As a result, a set of
tracks giving the highest score is confirmed.

Notably, with new observations in each frame, branches of target trees are growing exponentially.
Besides clustering, N-Scan Pruning is another way to keep MHT efficient, which prunes branches of
target trees regularly to ease the computational burden [6,29,35]. The value of N determines how many
frames a hypothesis be kept before it is confirmed or discarded (pruned). For a confirmed branch l in
tree ti at current frame k, any other subtrees in ti which do not spawn from the same node N frames ago
as l are pruned. Branches in other target trees within the same cluster as l are pruned as well. The node
l spawned from N frames ago is set as the new root node for tree ti. For those target trees initialized
less than N frames ago, no prune needs to be done (see Figure 8).

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 23

incompatible. If incompatible tracks are grouped into the same cluster, we can improve
computational efficiency by processing each cluster independently. For that reason, clustering is
adopted to decompose all families into smaller disjoint clusters. Clustering essentially divides a large
tracking problem into several smaller sub-problems [25].

After clustering, we need to format a global (joint) hypothesis, which is defined as a group of
tracks that are compatible with each other [6]. The final confirmed tracks compose the most likely
global hypothesis, which is the combination of all compatible tracks that gives the highest overall
score. The objective function of finding the most likely global hypothesis is [6,29]:

𝑚𝑎𝑥 ෍ 𝑠௟
௧భ𝑘௟

௡೟భ

௟ୀଵ
… ෍ 𝑠௟

௧೔𝑘௟

௡೟೔

௟ୀଵ
… ෍ 𝑠௟

௧೅𝑘௟

௡೟೅

௟ୀଵ

∑ 𝑘௟ = 1
௡೟೔
௟ୀଵ

, 𝑘௟ = 0 𝑜𝑟 1 (constraint)
(18)

in which 𝑇 is the number of trees; 𝑛௧೔
 is the number of tracks in tree 𝑡௜; 𝑠௟

௧೔ is the score of track l in
tree 𝑡௜ ; 𝜅௟ is the binary constraint deciding whether track 𝑙 should be included in the global
hypothesis or not. 𝜅௟ ensures one observation at most appear in one track thus that all tracks in the
global hypothesis are compatible with each other. The multidimensional track assignment problem
can be solved as a Maximum Weight Independent Set Problem (MWISP) [35]. Following [6], we use
the algorithm proposed by [36] to solve the MWISP and find the most likely global hypothesis. As a
result, a set of tracks giving the highest score is confirmed.

Notably, with new observations in each frame, branches of target trees are growing
exponentially. Besides clustering, N-Scan Pruning is another way to keep MHT efficient, which
prunes branches of target trees regularly to ease the computational burden [6,29,35]. The value of N
determines how many frames a hypothesis be kept before it is confirmed or discarded (pruned). For
a confirmed branch 𝑙 in tree 𝑡௜ at current frame 𝑘, any other subtrees in 𝑡௜ which do not spawn
from the same node N frames ago as 𝑙 are pruned. Branches in other target trees within the same
cluster as 𝑙 are pruned as well. The node 𝑙 spawned from N frames ago is set as the new root node
for tree 𝑡௜. For those target trees initialized less than N frames ago, no prune needs to be done (see
Figure 8.).

Figure 8. Pruning trees given N is equal to 2. The red nodes are the new nodes after pruning.

5. Experiments and Evaluations

Experiments have been conducted on the two datasets collected respectively by the static
terrestrial Doppler LiDAR and mobile Doppler LiDAR. Both systems scan surroundings repetitively
at a high frequency. We evaluate the performance of detection and tracking algorithms separately.
Values for parameters used in the proposed method are summarized in Table 2. The Mahalanobis
distance threshold 𝜆ௗ೘

 is set as 3, according to the 3σ rule. 𝐿଴, the ratio of the prior probability of
a hypothesis 𝐻௜ and false alarm hypothesis 𝐻଴, is set as 10 because detected moving objects are less
likely to be false alarm in Doppler LiDAR scans. 𝑉଴

ିଵ is set to determine the conditional probability
of null hypothesis, which should be a low value and set as 0.01. The PCD weight ratio 𝜇 is
empirically set as 0.3. N for N-Scan pruning is set to determine how many frames a hypothesis should
be kept if there are no consecutive new observations to update the track. A large N would increase
the computational burden as much more hypotheses are kept, and identity switch errors are more
likely to happen. If N is set too small, MHT would not be able to resolve assignment ambiguities with
future measurements. As a trade-off, N is set as 5 with the idea that any moving objects should not
be missed more than one second.

Figure 8. Pruning trees given N is equal to 2. The red nodes are the new nodes after pruning.

5. Experiments and Evaluations

Experiments have been conducted on the two datasets collected respectively by the static terrestrial
Doppler LiDAR and mobile Doppler LiDAR. Both systems scan surroundings repetitively at a high
frequency. We evaluate the performance of detection and tracking algorithms separately. Values for
parameters used in the proposed method are summarized in Table 2. The Mahalanobis distance
threshold λdm is set as 3, according to the 3σ rule. L0, the ratio of the prior probability of a hypothesis
Hi and false alarm hypothesis H0, is set as 10 because detected moving objects are less likely to be false
alarm in Doppler LiDAR scans. V−1

0 is set to determine the conditional probability of null hypothesis,
which should be a low value and set as 0.01. The PCD weight ratio µ is empirically set as 0.3. N for
N-Scan pruning is set to determine how many frames a hypothesis should be kept if there are no
consecutive new observations to update the track. A large N would increase the computational burden
as much more hypotheses are kept, and identity switch errors are more likely to happen. If N is
set too small, MHT would not be able to resolve assignment ambiguities with future measurements.
As a trade-off, N is set as 5 with the idea that any moving objects should not be missed more than
one second.

Remote Sens. 2019, 11, 1154 13 of 22

Table 2. Parameter values in the experiments.

Detection Tracking

Parameter εv MinPts εT λdm L0 V−1
0 µ N

Value 0.1 40 0.02s 3 10 0.01 0.3 5

5.1. Moving Object Detection

Due to the limited horizontal scanning angle, there are only a few moving objects in each
frame (about one moving object per frame on average) in the static terrestrial Doppler LiDAR scans.
Pedestrians are the main moving objects while at the far end vehicles pass through the scanning region
now and then. Two sequences of data (sequences A and B) are tested. The length of sequence A and B
are 72 frames and 81 frames respectively. The street scenarios scanned by the mobile Doppler LiDAR
system are far more crowded with pedestrians, bicyclists, and vehicles (about 19 moving objects per
frame on average). Two sequences of data (sequences C and D) are used for testing. In sequence C
there is a total of 90 frames. The mobile system moves fast (>6 m/s) at first and then slows down and
stops at a road cross waiting for people walking across the street. Sequence D has a total of 107 frames,
while the mobile system moves on a busy street at 8 m/s.

For quantitative evaluation, we compare the detection results with manually labeled ground
truth of the moving objects. Precision (P), the ratio between the number of correct detections and all
detections, and Recall (R), the ratio between the number of correct detections and ground truth, are
calculated over all frames. The F1 score (2R× P/(R + P)) is calculated with the average precision and
recall of all frames. In addition, Object Recall (ObjRcl), the ratio between the number of frames in which
a certain object is detected and frames in which the object is actually there, is also used [9]. Results are
shown in Table 3, where the computation time is based on Matlab (developed by The MathWorks, Inc).
The computation time of detection is related to the number of points and number of moving objects in
each frame. There are respectively about 80,000 and 16,000 points in each frame of sequence A and B
while there are more moving objects in sequence A, thus it takes about two times longer to process
sequence A than to process sequence B. Sequences C and D both have about 160,000 points in each
frame. However, there are fewer moving points but more static points in each frame of sequence D.
Therefore, region growing on sequence D requires more computation time, resulting in longer overall
processing time.

Table 3. Precision, Recall, F1 Score, and Object Recall.

Seq. ID #Grd
TruthObj

#Correct
Obj

#Wrong
Obj Precision Recall F1

Score ObjRcl Sec./Frame

Terrestrial
A 107 102 9 0.9189 0.9533 0.9358 0.9667 0.65

B 52 48 0 1 0.9231 0.9600 0.9757 0.26

Mobile
C 1683 1366 264 0.8380 0.8116 0.8246 0.8089 9.39

D 1230 893 210 0.8096 0.7260 0.7655 0.7347 12.97

As sequences A and B are collected in non-crowded area with few moving objects per frame,
the proposed detection algorithm performs well. In sequence C and D, the environment is more
complex with ten times more objects appearing, resulting in more missing detection (false negative) and
false alarm (false positive), thus the precision decreases to about 80%. Fast-moving objects (truck: site
A in Figure 9b,d); sedan: site B in Figure 9b,c) and comparatively slow-moving objects (pedestrian:
site C in Figure 9b,d) in different sizes and various categories have been successfully detected and
segmented. With the usage of adaptive distance threshold ε(ri) in clustering, objects close to each other
(less than 0.2 m) can be successfully segmented in most cases (For example, four close pedestrians at
site C in Figure 9d have been well segmented).

Remote Sens. 2019, 11, 1154 14 of 22

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 23

Table 2. Parameter values in the experiments.

 Detection Tracking
Parameter 𝜖௩ 𝑀𝑖𝑛𝑃𝑡𝑠 𝜖் 𝜆ௗ೘

 𝐿଴ 𝑉଴
ିଵ μ N

Value 0.1 40 0.02s 3 10 0.01 0.3 5

5.1. Moving Object Detection

Due to the limited horizontal scanning angle, there are only a few moving objects in each frame
(about one moving object per frame on average) in the static terrestrial Doppler LiDAR scans.
Pedestrians are the main moving objects while at the far end vehicles pass through the scanning
region now and then. Two sequences of data (sequences A and B) are tested. The length of sequence
A and B are 72 frames and 81 frames respectively. The street scenarios scanned by the mobile Doppler
LiDAR system are far more crowded with pedestrians, bicyclists, and vehicles (about 19 moving
objects per frame on average). Two sequences of data (sequences C and D) are used for testing. In
sequence C there is a total of 90 frames. The mobile system moves fast (>6 m/s) at first and then slows
down and stops at a road cross waiting for people walking across the street. Sequence D has a total
of 107 frames, while the mobile system moves on a busy street at 8 m/s.

For quantitative evaluation, we compare the detection results with manually labeled ground
truth of the moving objects. Precision (𝑃), the ratio between the number of correct detections and all
detections, and Recall (𝑅), the ratio between the number of correct detections and ground truth, are
calculated over all frames. The F1 score (2𝑅 × 𝑃/(𝑅 + 𝑃)) is calculated with the average precision and
recall of all frames. In addition, Object Recall (ObjRcl), the ratio between the number of frames in
which a certain object is detected and frames in which the object is actually there, is also used [9].
Results are shown in Table 3, where the computation time is based on Matlab (developed by The
MathWorks, Inc). The computation time of detection is related to the number of points and number
of moving objects in each frame. There are respectively about 80,000 and 16,000 points in each frame
of sequence A and B while there are more moving objects in sequence A, thus it takes about two times
longer to process sequence A than to process sequence B. Sequences C and D both have about 160,000
points in each frame. However, there are fewer moving points but more static points in each frame
of sequence D. Therefore, region growing on sequence D requires more computation time, resulting
in longer overall processing time.

(a) (b)

(c) (d)

Figure 9. Detection results on static (sequences (a,b)) and mobile datasets (sequences (c,d)).

When comes to errors, in sequence A and B, missing detection rarely happens but false alarms are
found in several frames, whereas both missing detection and false alarms happen more frequently in
sequences C and D. There are mainly two causes to false alarms. One cause is that part of a stationary
object is moving due to external force. For example, the object at site A in Figure 9a is a stationary
tree but it is detected as a moving object. That is because part of its branches is detected as moving.
After growing, the entire tree is segmented as a moving object. Strictly speaking, it is not a false
alarm because its branches are actually moving forced by the wind. However, in the evaluation we
still regard such detections as wrong detections. Another cause of false alarm is that one object is
segmented as two or more objects. It happens when parts of the object have no reflected points thus
dividing the object to several isolated parts. For example, the car at site B in Figure 9c is segmented
into two objects in red and purple respectively. The purple part is the roof rack on the top of the car.
The connection part between the car and the roof rack is not fully scanned. As the car is very close to
the scanner, a small distance threshold ε(ri) (less than 5 cm) is used in clustering. Therefore, the car
has been segmented into two objects.

In some cases, missing detection happens when multiple objects close to each other are grouped
as one object. For example, in Figure 10a, there are two people moving side by side on the left side of
the street (see red rectangle). These two people appear in the scene from frames three to 81 and has
been constantly segmented from frames seven to 79. After frame 79, there are very few points reflected
from these two people as they are moving out of the field of view.

Missing detection also happens if the object is right in front of the scanner and moving perpendicular
to the beam. In this situation, the radial speed of points on that object is almost zero. For example,
there are three pedestrians at site A in Figure 9c. The pedestrians in sky blue and green are successfully
detected and segmented while the one between them are missed due to the same reason we addressed
above. Moreover, when severe occlusion happen, objects would be partially scanned or totally missed.
For instance, at site B in Figure 9d, the segmented object in yellow is a pedestrian while only the upper
part of its body has been scanned.

In summary, for moving object detection, our method can detect an arbitrary number of objects with
high precision. Instead of deriving motion cues by processing a sequence of point clouds, moving objects

Remote Sens. 2019, 11, 1154 15 of 22

can be efficiently detected and segmented frame by frame. False alarms can be effectively avoided
except in the condition that a large object is very close to the scanner. Missing detection would happen
when multiple close-by objects are detected as one object or objects moving perpendicular to the beam
have very few moving points reflected.

5.2. Moving Object Tracking

Due to the narrow horizontal scanning angle of static terrestrial Doppler LiDAR, most of the
fast-moving objects only appear once over all frames in sequences A and B. We need to observe the
same object in at least two frames to track it. Therefore, we do not evaluate the tracking algorithm on
sequences A and B. Some tracking results on sequences C and D are shown in Figures 10–12, in which
the red arrow indicates the position and direction of the mobile platform; the dark blue points indicate
static points; clustered point clouds in different colors represent individual detected moving objects;
blue cubes with unique track ID are the tracking results.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 23

detection would happen when multiple close-by objects are detected as one object or objects moving
perpendicular to the beam have very few moving points reflected.

5.2. Moving Object Tracking

Due to the narrow horizontal scanning angle of static terrestrial Doppler LiDAR, most of the
fast-moving objects only appear once over all frames in sequences A and B. We need to observe the
same object in at least two frames to track it. Therefore, we do not evaluate the tracking algorithm on
sequences A and B. Some tracking results on sequences C and D are shown in Figures 10–12, in which
the red arrow indicates the position and direction of the mobile platform; the dark blue points
indicate static points; clustered point clouds in different colors represent individual detected moving
objects; blue cubes with unique track ID are the tracking results.

(a)

(b)

(c)

Figure 10. (a) Tracking results of frame seven in sequence C; (b) Tracks #101, #105, #107 in frames two,
10, 11 and 14 (Track #107 leaves the scene, so do Track #101 and Track #105 in frame 14); (c) Track #17
in frames 7, 49, 67 and 79.

Figure 10. (a) Tracking results of frame seven in sequence C; (b) Tracks #101, #105, #107 in frames two,
10, 11 and 14 (Track #107 leaves the scene, so do Track #101 and Track #105 in frame 14); (c) Track #17 in
frames 7, 49, 67 and 79.

Remote Sens. 2019, 11, 1154 16 of 22

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 23

(a)

(b)

(c)

Figure 11. (a) Tracking results of frame 45 in sequence C; (b) Tracks #3 and #20 of pedestrians in
frames 45 to 49 (Due to occlusion, the pedestrian in Track #3 isn’t scanned in frame 47 and 48, and the
pedestrian in Track #3 isn’t scanned in frames 46 and 47. However, both tracks are kept and recovered
when missing objects appear again); (c) Track #31 of a car in frames 41, 45, 49, 56, 57. Half of the car
has left the scene in frame 57.

To evaluate the tracking results, we use metrics proposed by MOT16, a benchmark for Multi-
Object Tracking in videos [37]. We count the number of True Positive (TP) and False Alarm (or False
Positive, FP). A moving object that missed being tracked is a False Negative (FN). The mismatch
error, IDentity SWitch (IDSW) is counted if a target has been labeled with different track numbers.
To combine multiple sources of errors and evaluate multiple object tracking accuracy, Multiple Object
Tracking Accuracy (MOTA) [37,38] is widely used to evaluate a tracker’s performance:

𝑀𝑂𝑇𝐴 = 1 −

∑ (𝐹𝑁௞ + 𝐹𝑃௞ + 𝐼𝐷𝑆𝑊௞)௞

∑ 𝐺𝑇௞௞

 (19)

Furthermore, to measure the track quality, we classify each ground truth trajectory as Mostly
Tracked (MT, with at least 80% tracked), Mostly Lost (ML, with at most 20% tracked), and Partially
Tracked (PT) [37]. Notably, a tracked moving object can be wrongly labeled with a different track ID
in three scenarios. One scenario is that it leaves the field-of-view for several frames (within N frames)
and then reappears; another is that the structure of the moving point cloud object changes a lot due
to its deformation or its relative position to the scanner; the third scenario is that its label exchanges
with the label of other track. All are counted as IDSW.

Figure 11. (a) Tracking results of frame 45 in sequence C; (b) Tracks #3 and #20 of pedestrians in
frames 45 to 49 (Due to occlusion, the pedestrian in Track #3 isn’t scanned in frame 47 and 48, and the
pedestrian in Track #3 isn’t scanned in frames 46 and 47. However, both tracks are kept and recovered
when missing objects appear again); (c) Track #31 of a car in frames 41, 45, 49, 56, 57. Half of the car has
left the scene in frame 57.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 23

(a) (b)

Figure 12. (a) One Identity SWitch (IDSW) example in frames seven and eight of sequence C using
the original Multiple Hypothesis Tracking (MHT); (b) One IDSW example in frames 20 and 21 of
sequence C using the original MHT and MHT-Point Cloud Descriptor (PCD).

Table 4. Track Quality Evaluation on Sequences C and D.

Method Seq. Avg FN Avg FP IDSW MOTA (%) MT (%) ML (%) Sec./Frame

MHT-PCD-Speed
C 3.66 0.40 31 76.45 66.13 9.68 1.53
D 2.25 0.75 19 72.42 51.65 27.47 0.68

MHT-PCD
C 3.89 0.59 35 73.96 56.45 12.90 1.59
D 2.67 0.85 27 67.26 43.96 28.57 0.68

MHT
C 4.83 0.64 37 68.55 53.23 16.13 1.54
D 3.56 0.98 41 57.28 41.76 32.97 0.67

It shows that the proposed tracking method can track objects of various sizes in highly crowded
streets. For example, as shown in Figure 10b, three pedestrians have been tracked over 14 frames
until they leave the field of view. In most cases, false alarms in detection would not influence tracking
because they don’t appear constantly in the scene and their structures are very different from the real
moving objects. For example, the roof rack on top of the car shown in Figure 9c is a false alarm
detection but it is not tracked at all (see Figure 11c).

MHT keeps multiple possible tracks over 𝑁 frames with the expectation that future inputs can
resolve assignment ambiguities [25]. Therefore, multiple tracks can be maintained even when missing
detection happens. For example, as shown in Figure 11b, two pedestrians walking in opposite
directions are tracked as Track #3 and #20 respectively. Occluded by a moving vehicle (Track #31),
the pedestrian in Track #3 is missed in frames 47 and 48. Similarly, the pedestrian in Track #20 is
missed in frames 46 and 47. Both tracks retain and successfully retrack corresponding pedestrians
when they appear again in later frames.

To evaluate the effects of including the point cloud descriptor term and speed measurement in
our MHT-PCD-Speed, we compare its results with the ones of the original MHT, and the ones of
MHT with PCD term (named MHT-PCD) (See Table 4). Adding PCD and speed to MHT does not
have any practically meaningful influence on the computational efficiency. However, it is highly
dependent on the number of moving objects detected. With more observations, MHT needs to keep
more hypotheses. There are more moving objects in sequence C and most of them stay in the field of
view for more than 30 frames because the scanning platform stops at an intersection in most of the
frames. Therefore, when working on sequence C, the MHT needs to initialize more track trees and
keep growing them for those moving objects that stay in the field of view for many frames. That is
why it takes twice as much time to process sequence C than to process sequence D.

Compared to MHT-PCD-Speed, the original MHT is more likely to make IDSW error in a
crowded scene. For example, Figure 12a shows the same three people as shown in Figure 10b. While
well tracked with MHT-PCD-Speed method, in the tracking result by the original MHT Track #101
and #102 switch track IDs with each other. That is because the original MHT forms tracks only based
on spatial relation between track’s predicted positions and detected objects’ positions. MHT-PCD can
kind of solve such problem as the structure of the point cloud is considered, but both the original
MHT and MHT-PCD are subject to IDSW errors when objects rapidly change their dynamic states.
For example, as shown in Figure 12b, there is a car coming to stop at the crossroad. It is originally
tracked as #90 but switched to #55 in the next frame by both MHT and MHT-PCD. The Kalman filter

Figure 12. (a) One Identity SWitch (IDSW) example in frames seven and eight of sequence C using the
original Multiple Hypothesis Tracking (MHT); (b) One IDSW example in frames 20 and 21 of sequence
C using the original MHT and MHT-Point Cloud Descriptor (PCD).

To evaluate the tracking results, we use metrics proposed by MOT16, a benchmark for Multi-Object
Tracking in videos [37]. We count the number of True Positive (TP) and False Alarm (or False Positive,
FP). A moving object that missed being tracked is a False Negative (FN). The mismatch error, IDentity
SWitch (IDSW) is counted if a target has been labeled with different track numbers. To combine multiple
sources of errors and evaluate multiple object tracking accuracy, Multiple Object Tracking Accuracy
(MOTA) [37,38] is widely used to evaluate a tracker’s performance:

Remote Sens. 2019, 11, 1154 17 of 22

MOTA = 1−
∑

k (FNk + FPk + IDSWk)∑
k GTk

(19)

Furthermore, to measure the track quality, we classify each ground truth trajectory as Mostly
Tracked (MT, with at least 80% tracked), Mostly Lost (ML, with at most 20% tracked), and Partially
Tracked (PT) [37]. Notably, a tracked moving object can be wrongly labeled with a different track ID in
three scenarios. One scenario is that it leaves the field-of-view for several frames (within N frames)
and then reappears; another is that the structure of the moving point cloud object changes a lot due to
its deformation or its relative position to the scanner; the third scenario is that its label exchanges with
the label of other track. All are counted as IDSW.

It shows that the proposed tracking method can track objects of various sizes in highly crowded
streets. For example, as shown in Figure 10b, three pedestrians have been tracked over 14 frames
until they leave the field of view. In most cases, false alarms in detection would not influence tracking
because they don’t appear constantly in the scene and their structures are very different from the
real moving objects. For example, the roof rack on top of the car shown in Figure 9c is a false alarm
detection but it is not tracked at all (see Figure 11c).

MHT keeps multiple possible tracks over N frames with the expectation that future inputs can
resolve assignment ambiguities [25]. Therefore, multiple tracks can be maintained even when missing
detection happens. For example, as shown in Figure 11b, two pedestrians walking in opposite directions
are tracked as Track #3 and #20 respectively. Occluded by a moving vehicle (Track #31), the pedestrian
in Track #3 is missed in frames 47 and 48. Similarly, the pedestrian in Track #20 is missed in frames
46 and 47. Both tracks retain and successfully retrack corresponding pedestrians when they appear
again in later frames.

To evaluate the effects of including the point cloud descriptor term and speed measurement in
our MHT-PCD-Speed, we compare its results with the ones of the original MHT, and the ones of MHT
with PCD term (named MHT-PCD) (See Table 4). Adding PCD and speed to MHT does not have any
practically meaningful influence on the computational efficiency. However, it is highly dependent on
the number of moving objects detected. With more observations, MHT needs to keep more hypotheses.
There are more moving objects in sequence C and most of them stay in the field of view for more than
30 frames because the scanning platform stops at an intersection in most of the frames. Therefore,
when working on sequence C, the MHT needs to initialize more track trees and keep growing them for
those moving objects that stay in the field of view for many frames. That is why it takes twice as much
time to process sequence C than to process sequence D.

Table 4. Track Quality Evaluation on Sequences C and D.

Method Seq. Avg FN Avg FP IDSW MOTA (%) MT (%) ML (%) Sec./Frame

MHT-PCD-Speed C 3.66 0.40 31 76.45 66.13 9.68 1.53
D 2.25 0.75 19 72.42 51.65 27.47 0.68

MHT-PCD
C 3.89 0.59 35 73.96 56.45 12.90 1.59
D 2.67 0.85 27 67.26 43.96 28.57 0.68

MHT
C 4.83 0.64 37 68.55 53.23 16.13 1.54
D 3.56 0.98 41 57.28 41.76 32.97 0.67

Compared to MHT-PCD-Speed, the original MHT is more likely to make IDSW error in a crowded
scene. For example, Figure 12a shows the same three people as shown in Figure 10b. While well
tracked with MHT-PCD-Speed method, in the tracking result by the original MHT Track #101 and #102
switch track IDs with each other. That is because the original MHT forms tracks only based on spatial
relation between track’s predicted positions and detected objects’ positions. MHT-PCD can kind of
solve such problem as the structure of the point cloud is considered, but both the original MHT and
MHT-PCD are subject to IDSW errors when objects rapidly change their dynamic states. For example,
as shown in Figure 12b, there is a car coming to stop at the crossroad. It is originally tracked as #90

Remote Sens. 2019, 11, 1154 18 of 22

but switched to #55 in the next frame by both MHT and MHT-PCD. The Kalman filter predicts the
position based on previous position and moving speed. Without speed measurement, the Kalman
filter doesn’t know the car is slowing down and predicts the position of the car using a previously
estimated speed, thus the predicted position is far away from the measurement position, out of the
gating area. Therefore, both the original MHT and MHT-PCD start a new Track #55. This error can
be avoided by setting a larger gating threshold λdm or increasing the scanning frequency. However,
both solutions are not optimal as IDSW are more likely to happen with larger λdm , and increasing
scanning frequency will definitely impose computational burdens. Moreover, if the object moves fast
(e.g., the car shown in Figure 11c), the original MHT and MHT-PCD may totally lose its track because
under poor speed estimation the right candidate may not always be in the gating area. With the speed
measurement estimated from Doppler images, those errors can be mostly avoided, resulting in less
IDSW and more MT. As shown in Table 3, our extension to MHT by including the PCD term and
Doppler speed measurement is proven to be effective as MOTA of MHT-PCD-Speed is the highest in
both tests. For the overall performance in terms of MOTA the proposed MHT-PCD-Speed outperforms
the original MHT by about 8% and 15% on sequence C and sequence D, respectively.

We also compare the speed estimation to the ground truth data. Because the speed state is
initialized as 0 in Kalman filter, there are big jumps on speed estimations during the first few frames.
Figure 13a shows the speed of a walking person appearing in the scene for 73 frames with a speed of
about 1.3 m/s. The MHT-PCD-Speed not only completely tracks the person but also keeps a low RMSE
(Root Means Square Error), which is 0.12 m/s. In contrary, the original MHT only tracks the person for
22 frames and then loses it. The MHT-PCD can completely track the person but with much worse speed
estimation, whose RMSE is 0.81 m/s. Similarly, Figure 13b shows the speed of a slow-down vehicle
appearing in the scene for 26 frames. The MHT-PCD-Speed can well estimate the speed of the moving
objects while the original MHT and MHT-PCD give bad estimation. Figure 13c shows the speed of
the passing vehicle in Track #31 given in Figure 11c. As explained before, the original MHT and the
MHT-PCD totally lost that fast passing vehicle. The MHT-PCD-Speed well estimates its speed except
in frames seven and eight, where the vehicle is right in front the scanner and moving perpendicular to
the beam. At that moment, the front part of the vehicle is moving away (reflected points with negative
radial speed) while the rear part is moving close to the scanner (reflected points with positive radial
speed), resulting a poor overall speed estimation, but such poor estimation can be recovered very
soon. As a summary, the original MHT and MHT-PCD requires a large amount of consecutive position
observations to get a precise and accurate speed estimation, which is difficult to realize in complex
street scenes, while our MHT-PCD-Speed can derive a precise speed estimation within three to five
frames. It is also more robust to observation errors and can recover the state estimation very soon.

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 23

predicts the position based on previous position and moving speed. Without speed measurement,
the Kalman filter doesn’t know the car is slowing down and predicts the position of the car using a
previously estimated speed, thus the predicted position is far away from the measurement position,
out of the gating area. Therefore, both the original MHT and MHT-PCD start a new Track #55. This
error can be avoided by setting a larger gating threshold λୢౣ

 or increasing the scanning frequency.
However, both solutions are not optimal as IDSW are more likely to happen with larger λୢౣ

, and
increasing scanning frequency will definitely impose computational burdens. Moreover, if the object
moves fast (e.g., the car shown in Figure 11c), the original MHT and MHT-PCD may totally lose its
track because under poor speed estimation the right candidate may not always be in the gating area.
With the speed measurement estimated from Doppler images, those errors can be mostly avoided,
resulting in less IDSW and more MT. As shown in Table 3, our extension to MHT by including the
PCD term and Doppler speed measurement is proven to be effective as MOTA of MHT-PCD-Speed
is the highest in both tests. For the overall performance in terms of MOTA the proposed MHT-PCD-
Speed outperforms the original MHT by about 8% and 15% on sequence C and sequence D,
respectively.

(a) (b) (c)

Figure 13. (a) Speed comparison of a pedestrian; (b) speed comparison of a slow-down vehicle; (c)
speed comparison of the passing vehicle in Track #31.

We also compare the speed estimation to the ground truth data. Because the speed state is
initialized as 0 in Kalman filter, there are big jumps on speed estimations during the first few frames.
Figure 13a shows the speed of a walking person appearing in the scene for 73 frames with a speed of
about 1.3 m/s. The MHT-PCD-Speed not only completely tracks the person but also keeps a low
RMSE (Root Means Square Error), which is 0.12 m/s. In contrary, the original MHT only tracks the
person for 22 frames and then loses it. The MHT-PCD can completely track the person but with much
worse speed estimation, whose RMSE is 0.81 m/s. Similarly, Figure 13b shows the speed of a slow-
down vehicle appearing in the scene for 26 frames. The MHT-PCD-Speed can well estimate the speed
of the moving objects while the original MHT and MHT-PCD give bad estimation. Figure 13c shows
the speed of the passing vehicle in Track #31 given in Figure 11c. As explained before, the original
MHT and the MHT-PCD totally lost that fast passing vehicle. The MHT-PCD-Speed well estimates
its speed except in frames seven and eight, where the vehicle is right in front the scanner and moving
perpendicular to the beam. At that moment, the front part of the vehicle is moving away (reflected
points with negative radial speed) while the rear part is moving close to the scanner (reflected points
with positive radial speed), resulting a poor overall speed estimation, but such poor estimation can
be recovered very soon. As a summary, the original MHT and MHT-PCD requires a large amount of
consecutive position observations to get a precise and accurate speed estimation, which is difficult to
realize in complex street scenes, while our MHT-PCD-Speed can derive a precise speed estimation
within three to five frames. It is also more robust to observation errors and can recover the state
estimation very soon.

Table 5. Track Quality Evaluation on Objects of Different Types.

Type Classification #Obj MT (%) ML (%)

Category

Pedestrian 142 56.34 20.42
Vehicle 10 51.65 20.00

Bicyclist 1 1 0

Figure 13. (a) Speed comparison of a pedestrian; (b) speed comparison of a slow-down vehicle;
(c) speed comparison of the passing vehicle in Track #31.

We additionally attempt to reveal the applicability of MHT-PCD-Speed by summarizing the
tracking results according to the category, dimension, and speed of moving objects. In terms of
dimension, the object is regarded as of small size if both the ranges of x and y of its point clouds
(dx and dy) are less than 0.5 m; otherwise, it is regarded as of large size. In terms of speed, we set
two thresholds (0.5 m/s and 1.0 m/s) to determine whether the object is moving slow, middle, or fast.

Remote Sens. 2019, 11, 1154 19 of 22

Considering some objects are rapidly changing their motion state, we label those objects who rapidly
change their speed from slow to fast or from fast to slow within one second as “change speed rapidly”
(see Table 5). There is no obvious difference on its performances on objects in different categories and
dimensions. Objects moving slow (less than 0.5 m/s) are more likely to be mostly tracked.

Table 5. Track Quality Evaluation on Objects of Different Types.

Type Classification #Obj MT (%) ML (%)

Category
Pedestrian 142 56.34 20.42

Vehicle 10 51.65 20.00
Bicyclist 1 1 0

Dimension
Small (dx < 0.5 and dy < 0.5) 140 56.42 20.00

Large (dx > 0.5 || dy > 0.5) 13 61.54 23.08

Speed

Slow (v < 0.5 m/s) 60 53.23 16.13
Middle (0.5 < v < 1 m/s) 70 41.76 32.97

Fast (v > 1 m/s) 18 33.33 5.56
Changing rapidly 5 40.00 20.00

In summary, in the proposed MHT-PCD-Speed, the use of MHT makes the method robust
to missing detection. It also makes it possible to fix wrong tracking with both previous and later
observations. By introducing PCD term in scoring and considering structural similarity with OESF,
the tracking method can process highly crowded scenes with few IDSW mistakes, and false alarm
detections are unlikely to influence tracking results. Moreover, it has been demonstrated that the use of
speed based on Doppler images enhance the tracking reliability and increase the precision of dynamic
state estimation on moving objects, especially those whose speed is changing fast.

6. Conclusions

In this study, we propose a novel model-free detection-based tracking approach, MHT-PCD-Speed,
to detect and track moving objects in Doppler LiDAR scans. Our tests reveal the unique advantages
of Doppler LiDAR and demonstrate the effectiveness and robustness of the proposed detection and
tracking approach. Our basic contributions include:

• The study reveals that the use of Doppler images can enhance the tracking reliability and increase
the precision of dynamic state estimation;

• In detection, moving objects are clustered and segmented based on speed information with
an adaptive ST-DBSCAN and a region growing technique. The detection method doesn’t require
multiple sequential frames of point clouds as input;

• In tracking, the dynamic state of moving objects is estimated with position observation and speed
observation, increasing the precision of dynamic state estimation on moving objects, especially
those whose speed is changing fast;

• A point cloud descriptor, OESF, is proposed and added in the scoring process of MHT, which allows
managing tracks not only according to spatial closeness but also similarity in structure of detections
in neighboring frames.

The performance of the detection approach and tracking approach has been discussed in detail.
False positives occur when objects are moving perpendicular to the beam direction. Also, if the moving
object possesses a large dimension, parts of its body may move close to the scanner while the other
parts move away, resulting a wrong speed estimation. One solution to these two limitations is to mount
several scanners and detect moving objects in point clouds collected by each scanner independently
before projecting those point clouds to the same coordinate system. With several scanners, it can be
guaranteed an object doesn’t move perpendicular to all beams simultaneously. This solution requires
the information of precise position and pose of each scanner, which is stored in the scanning system

Remote Sens. 2019, 11, 1154 20 of 22

but not included in the output files. After we get access to that necessary information, we will further
process point clouds from each scanner independently to improve the results.

Also, a more representative and robust point cloud descriptor is needed. Current OESF relies
heavily on the point distribution of the objects, which is subject to objects’ gestures as well as the
scanning angle. One solution is to introduce vision-based sensors so that the current point cloud
descriptor can be extended by including RGB features. With that additional information, close objects
(such as the multiple hand-in-hand people whom we track as one object) can be separated, making the
framework more resistant to IDSW errors. Another solution is to mine highly arbitrary features with
deep learning methods, which requires massive data and computational power.

In terms of computational efficiency, out method clearly cannot meet the requirement for real-time
application at this time. The processing time is related to the number of moving objects and the number
of tracks in the scene. In detection, the most time-consuming part is the region growing which requires
searching nearest neighbors and computing distance between points in dynamic clusters to all nearby
static points. In tracking, adding PCD and speed to MHT does not have significant influence on the
computation time. We need a more efficient way to manage multiple hypotheses besides clustering
and N-Scan pruning. Moreover, another way to improve the efficiency is to realize the method with
some more basic programming language (e.g., C/C++) instead of Matlab or have it accelerated under
a Graphics Processing Unit (GPU) environment.

Our method is not directly applicable to point clouds collected by commonly-used pulsed LiDAR
sensors (e.g., Velodyne HDL-64E) because speed information is required in every single frame. When it
comes to the applicability of MHT-PCD-Speed, Table 5 shows it works indifferently on objects in
different categories and dimensions while better on tracking slow-moving (less than 0.5 m/s) objects.
However, we do not have a conclusion about the applicability of our detection-based tracking method
on Doppler LiDAR for several reasons. One reason is that we don’t have a balanced dataset. Although
in total we have about 3000 objects appearing over all frames, the number of unique objects is 153,
with less than 10% of them being vehicles and only one bicyclist. Therefore, we cannot conclude
whether our method works better on tracking pedestrians or vehicles. Another reason is that the
way to decide the size of objects is not very reliable as the size of point clouds of objects would
change due to the movement of non-rigid body objects and the variation of scanning angle. Namely,
a pedestrian who has a large stride may be labelled as a small object and large object alternately.
Moreover, moving objects constantly interact with the environment, which can affect the tracking
results. For example, the tracking results on the same pedestrian would be totally different if he or she
is moving alone in an open field, moving together with a crowd of people, or moving close to static
objects (e.g., walls). This study does reveal the advantages of the state-of-the-art Doppler LiDAR and
proves the effectiveness of our detection-based tracking approach. However, a benchmark Doppler
LiDAR dataset which considers and controls the environmental variables will need to be acquired
before we can conclude the applicability of the proposed method and compare our method with other
tracking methods.

Author Contributions: Y.M. and J.S. designed the conceptualization and methodology of the paper. Y.M. carried
out the tests and evaluation under the advisory of J.S. J.A. and S.C. involved in data collection. All authors
contributed to result interpretation and the writing.

Funding: The work was supported in part by the Army Research Office.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pourezzat, A.A.; Sadabadi, A.A.; Khalouei, A.; Attar, G.T.; Kalhorian, R. Object Tracking: A Survey.
Adv. Environ. Biol. 2013, 7, 253–259.

2. Prajapati, D.; Galiyawala, H.J. A Review on Moving Object Detection and Tracking. Int. J. Comput. Appl.
2015, 5, 168–175.

Remote Sens. 2019, 11, 1154 21 of 22

3. Schindler, K.; Ess, A.; Leibe, B.; Van Gool, L. Automatic detection and tracking of pedestrians from a moving
stereo rig. ISPRS J. Photogramm. Remote Sens. 2010, 65, 523–537. [CrossRef]

4. Cao, Y.; Guan, D.; Wu, Y.; Yang, J.; Cao, Y.; Yang, M.Y. Box-level segmentation supervised deep neural
networks for accurate and real-time multispectral pedestrian detection. ISPRS J. Photogramm. Remote Sens.
2019, 150, 70–79. [CrossRef]

5. Luo, H.; Li, J.; Chen, Z.; Wang, C.; Chen, Y.; Cao, L.; Teng, X.; Guan, H.; Wen, C. Vehicle Detection in
High-Resolution Aerial Images via Sparse Representation and Superpixels. IEEE Trans. Geosci. Remote Sens.
2015, 54, 103–116.

6. Kim, C.; Li, F.; Ciptadi, A.; Rehg, J.M. Multiple Hypothesis Tracking Revisisted. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

7. Spinello, L.; Triebel, R.; Siegwart, R. Multimodal People Detection and Tracking in Crowded Scenes.
In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, IL, USA,
13–17 July 2008; pp. 1409–1414.

8. Kaestner, R.; Maye, J.; Pilat, Y.; Siegwart, R. Generative object detection and tracking in 3d range data.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA,
14–18 May 2012; IEEE: Piscataway, NJ, USA; pp. 3075–3081.

9. Dewan, A.; Caselitz, T.; Tipaldi, G.D.; Burgard, W. Motion-based detection and tracking in 3D LiDAR scans.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 4508–4513.

10. Cui, J.; Zha, H.; Zhao, H.; Shibasaki, R. Laser-based detection and tracking of multiple people in crowds.
Comput. Vis. Image Underst. 2007, 106, 300–312. [CrossRef]

11. Brock, O.; Trinkle, J.; Ramos, F. Model Based Vehicle Tracking for Autonomous Driving in Urban Environments.
MIT Press 2009, 1, 175–182.

12. Wang, H.; Wang, B.; Liu, B.; Meng, X.; Yang, G. Pedestrian recognition and tracking using 3D LiDAR for
autonomous vehicle. Rob. Auton. Syst. 2017, 88, 71–78. [CrossRef]

13. Xiao, W.; Vallet, B.; Schindler, K.; Paparoditis, N. Simultaneous detection and tracking of pedestrian from
panoramic laser scanning data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 295–302.
[CrossRef]

14. Yan, Z.; Duckett, T.; Bellotto, N. Online learning for human classification in 3D LiDAR-based tracking.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017.

15. Yang, S.; Wang, C. Simultaneous egomotion estimation, segmentation, and moving object detection. J. F. Robot.
2011, 28, 565–588. [CrossRef]

16. Schauer, J.; Nüchter, A. Removing non-static objects from 3D laser scan data. ISPRS J. Photogramm. Remote Sens.
2018, 143, 15–38. [CrossRef]

17. Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description.
Comput. Vis. Image Underst. 2014, 125, 251–264. [CrossRef]

18. Moosmann, F.; Stiller, C. Joint self-localization and tracking of generic objects in 3D range data. In Proceedings
of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 1146–1152.

19. Yu, Y.; Li, J.; Guan, H.; Wang, C. Automated Detection of Three-Dimensional Cars in Mobile Laser Scanning
Point Clouds Using DBM-Hough-Forests. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4130–4142. [CrossRef]

20. Yokoyama, H.; Date, H.; Kanai, S.; Takeda, H. Detection and classification of pole-like objects from mobile
laser scanning data of urban environments. Int. J. Cad/Cam 2013, 13, 31–40.

21. Anderson, J.; Massaro, R.; Curry, J.; Reibel, R.; Nelson, J.; Edwards, J. LADAR: Frequency-Modulated,
Continuous Wave LAser Detection And Ranging. Photogramm. Eng. Remote Sens. 2017, 83, 721–727. [CrossRef]

22. Halmos, M.J.; Henderson, D.M. Pulse compression of an FM chirped CO 2 laser. Appl. Opt. 1989, 28, 3595–3602.
[CrossRef]

23. Slotwinski, A.R.; Goodwin, F.E.; Simonson, D.L. Utilizing GaalAs Laser Diodes As A Source For Frequency
Modulated Continuous Wave (FMCW) Coherent Laser Radars. In Laser Diode Technology and Applications;
International Society for Optics and Photonics: Bellingham, WA, USA, 1989; pp. 245–252.

24. Reid, D.B. An Algorithm for Tracking Multiple Targets. IEEE Trans. Automat. Contr. 1979, 24, 843–854.
[CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2010.06.006
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.005
http://dx.doi.org/10.1016/j.cviu.2006.07.015
http://dx.doi.org/10.1016/j.robot.2016.11.014
http://dx.doi.org/10.5194/isprsannals-III-3-295-2016
http://dx.doi.org/10.1002/rob.20392
http://dx.doi.org/10.1016/j.isprsjprs.2018.05.019
http://dx.doi.org/10.1016/j.cviu.2014.04.011
http://dx.doi.org/10.1109/TGRS.2016.2537830
http://dx.doi.org/10.14358/PERS.83.10.721
http://dx.doi.org/10.1364/AO.28.003595
http://dx.doi.org/10.1109/TAC.1979.1102177

Remote Sens. 2019, 11, 1154 22 of 22

25. Amditis, A.; Thomaidis, G.; Maroudis, P.; Lytrivis, P.; Karaseitanidis, G. Multiple Hypothesis Tracking
Implementation. Laser Scanner Technol. 2012.

26. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the Kdd, Portland, OR, USA, 2–4 August 1996; Volume 96,
pp. 226–231.

27. Birant, D.; Kut, A. ST-DBSCAN: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 2007,
60, 208–221. [CrossRef]

28. Pingel, T.J.; Clarke, K.C.; McBride, W.A. An improved simple morphological filter for the terrain classification
of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [CrossRef]

29. Blackman, S.; Popoli, R. Design and Analysis of Modern Tracking Systems (Artech House Radar Library); Artech
House: Norwood, MA, USA, 1999.

30. Fortmann, T.; Bar-Shalom, Y.; Scheffe, M. Sonar tracking of multiple targets using joint probabilistic data
association. IEEE J. Ocean. Eng. 1983, 8, 173–184. [CrossRef]

31. Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. Acm Comput. Surv. 2006, 38, 13. [CrossRef]
32. Wohlkinger, W.; Vincze, M. Ensemble of shape functions for 3D object classification. In Proceedings of the

2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, 7–11 December 2011;
pp. 2987–2992.

33. Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D. Matching 3D models with shape distributions.
In Proceedings of the International Conference on Shape Modeling and Applications, Genova, Italy,
7–11 May 2001; pp. 154–166.

34. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence,
RI, USA, 16–21 June 2012; pp. 3354–3361.

35. Papageorgiou, D.J.; Salpukas, M.R. The maximum weight independent set problem for data association in
multiple hypothesis tracking. In Optimization and Cooperative Control Strategies; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 235–255.

36. Östergård, P.R.J. A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 2001, 8, 424–436.
[CrossRef]

37. Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi-object tracking.
arXiv 2016, arXiv:1603.00831.

38. Stiefelhagen, R.; Bernardin, K.; Bowers, R.; Garofolo, J.; Mostefa, D.; Soundararajan, P. The CLEAR 2006
evaluation. In Proceedings of the International Evaluation Workshop on Classification of Events, Activities and
Relationships; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–44.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.datak.2006.01.013
http://dx.doi.org/10.1016/j.isprsjprs.2012.12.002
http://dx.doi.org/10.1109/JOE.1983.1145560
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1016/S1571-0653(05)80045-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data
	Moving Object Detection
	Moving Points Detection and Clustering
	Clustering Static Points—Completing the Objects

	Moving Object Tracking
	Kalman Filter with Doppler Images
	Gating and Proposing Track Hypotheses
	Scoring
	Feature Description of Point Clouds of Objects
	Managing and Confirming Track Hypotheses

	Experiments and Evaluations
	Moving Object Detection
	Moving Object Tracking

	Conclusions
	References

