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Abstract: Learning classification models require sufficiently labeled training samples, however, 
collecting labeled samples for every new problem is time-consuming and costly. An alternative 
approach is to transfer knowledge from one problem to another, which is called transfer learning. 
Domain adaptation (DA) is a type of transfer learning that aims to find a new latent space where the 
domain discrepancy between the source and the target domain is negligible. In this work, we 
propose an unsupervised DA technique called domain adversarial neural networks (DANNs), 
composed of a feature extractor, a class predictor, and domain classifier blocks, for large-scale land 
cover classification. Contrary to the traditional methods that perform representation and classifier 
learning in separate stages, DANNs combine them into a single stage, thereby learning a new 
representation of the input data that is both domain-invariant and discriminative. Once trained, the 
classifier of a DANN can be used to predict both source and target domain labels. Additionally, we 
also modify the domain classifier of a DANN to evaluate its suitability for multi-target domain 
adaptation problems. Experimental results obtained for both single and multiple target DA 
problems show that the proposed method provides a performance gain of up to 40%. 

Keywords: domain adaptation; domain adversarial neural networks; large-scale land cover 
classification; representation learning 

 

1. Introduction 

Advances in sensing technologies and satellite missions have enabled the potential to acquire 
remote sensing images over large geographical areas with short revisiting time. The acquired images 
can be utilized for applications such as vegetation monitoring, climate-change detection, urban 
planning, and change detection. Over the years, the remote sensing community has developed 
several machine learning models (ML) to process and analyze remote sensing images. For instance, 
ML models for remote sensing image classification is a well-studied topic. Early approaches [1,2] to 
the problem of classification utilized hand-crafted features to represent an image and train a classifier, 
such as support vector machines (SVM) [3], to perform prediction on unseen examples. With the 
availability of large real-world datasets, such as ImageNet [4], and high-performance computing 
devices, ML models moved toward learning image features from the data itself, thereby significantly 
improving the performance of the models. Such models, also called deep learning models, are being 
utilized by the remote sensing community. While some of the methods proposed take advantage of 
pre-trained models [5,6], others propose to train models (for example, stacked auto-encoders (SAEs) 
and convolutional neural networks (CNN)) from scratch for better discriminative image features 
[7,8].  

In general, the problem of classification starts by building a training set composed of annotated 
samples with the corresponding class labels and training a model using these samples. Performance 
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of the trained model depends on the quality and number of samples collected. In the context of remote 
sensing, labeled sample collection is performed through a ground survey or photo-interpretation by 
an expert [9]. Ground surveying requires expert knowledge, manpower, and it is not usually 
economical, whereas photo-interpretation cannot be used for some applications, such as chlorophyll 
concentration [10] and tree species [11].  

Obtaining a sufficiently labeled dataset to train a model with good generalization capability is 
expensive, time-consuming, and not always feasible. In such a scenario, adapting an existing model 
trained with a related dataset to the problem at hand is potentially useful. A branch of machine 
learning that deals with developing methods that enable knowledge transfer between different but 
related problems is called transfer learning. Transfer learning problems, such as domain adaptation 
(DA), multi-task learning, and domain generalization, have been considered in the literature. The 
focus of this work is on the problem of domain adaptation. 

Domain adaptation techniques focus on learning models that are invariant to a possible 
distribution shift between two datasets, which are called source and target domains. In the context of 
remote sensing, possible causes of the shift include a temporal difference in the acquisition, 
acquisition sensor difference, and a geographical difference between the source and target datasets. 
Due to the distribution shift, a model trained using source domain data is likely to have poor 
performance on the target domain samples. Domain adaptation can be supervised, semi-supervised, 
or unsupervised. Supervised DA methods assume that labeled samples are available for both source 
and target domains, whereas semi-supervised models assume that the labeled sample set available 
for the target domain is “small”. Contrarily, unsupervised DA models consider labels that are 
available only for the source domain. A recent review of the domain adaptation techniques in remote 
sensing [9] groups the proposed methods into four main categories: Domain invariant feature 
selection, adapting data distributions (also called representation learning or domain invariant feature 
extraction), adapting classifiers, and adapting classifiers using active learning methods. 

The first group of methods focuses on obtaining features that are robust to the shifting factors 
and training a model using these features. These features can be obtained through feature selection 
techniques, that is, a subset of features that are invariant to the domain shift are selected from the 
original set of features and used for training. For instance, the authors in [12] proposed a multi-
objective cost function to select a subset of features that are spatially invariant in both supervised and 
semi-supervised DA settings. The proposed objective function is a combination of a class separability 
measure (to select discriminative features) and an invariance measure (to select spatially invariant 
features). This method was further extended to a non-parametric approach which uses kernel-based 
methods in order to capture a non-linear dependence between input and output variables [13]. Data 
augmentation is also an alternative approach to feature selection. In this approach, additional 
synthetically labeled samples are used to enrich the training set and extract features that better model 
invariance between the domains. The authors in [14] adopted this strategy to encode data invariance 
in support vector machines (SVMs). 

The second group of methods proposes learning a joint latent space where all the domains are 
treated equally and a model is trained to simultaneously classify both domains [9]. Among the 
methods proposed, the authors in [15] presented an N-dimensional probability density function (pdf) 
matching technique to align a pair of multi-temporal remote sensing images. The proposed method 
takes into account the correlation between spectral channels while adapting multidimensional 
histograms of the two images. In [16], the transfer component analysis (TCA) [17] is used in a semi-
supervised setting to project samples from both domains into a common latent space where local data 
structures from the original space are preserved. In the context of change detection, Volpi et al. [18] 
used a regularized kernel canonical correlation analysis transform (kCCA) to perform pixel-wise 
alignment of multi-temporal cross sensor images. In hyperspectral image classification, training a 
spatially invariant classifier is useful to overcome the problem of both spatial and spectral shifts in 
land cover images. Jun et al. [19] proposed a method that separates the spatially varying component 
from the original spectral features and utilizes the residual information to model a Gaussian process 
maximum likelihood model (GP-ML). Manifold alignment techniques proposed in [20–24] also focus 
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on projecting samples from both domains into a common space while preserving local manifold 
structures of the datasets during the transformation. In [25], the authors proposed a three-layer 
domain adaptation technique for a multi-temporal very high resolution (VHR) image classification 
problem. The proposed layers are composed of two extreme learning machine (ELM) layers, one for 
regression and the other for multi-class classification, followed by a spatial regularization layer based 
on the random walker algorithm [26].  

The methods proposed above focus on transferring knowledge between multi-temporal and/or 
spatially disjointed images acquired from an overhead view. On the other hand, very large ground-
level labeled image datasets, such as ImageNet [4], have become publicly available. Leveraging such 
datasets for domain adaptation can reduce the problem of labeled sample scarcity in the remote 
sensing community. Sun et al. [27] proposed an algorithm that finds a joint subspace where the 
domain shift between ground-view datasets and over-head view datasets is minimized. 

Methods that adapt parameters of a classifier trained on source domain samples fall into the 
third category. Such methods take advantage of unlabeled samples from the target domain to adapt 
the classifier while keeping the data distributions unchanged. Most of the methods in this category 
assume that the two domains share the same set of classes and features [9]. For instance, the authors 
in [28] explored the possibility of using a binary hierarchical classifier for the transfer of knowledge 
between domains. The classifier is updated using the expectation maximization (EM) algorithm to 
account for the change in the statistics of the target domain. Methods proposed in [29–33] consider 
modifying the formulation of support vector machines (SVMs) to incorporate knowledge from 
unlabeled samples, which come from another domain, in order to obtain a robust classifier. The 
authors in [34] formulated the problem of DA as a multitask learning problem, where regularization 
schemes are used to learn a relationship across tasks. Contrary to the previous methods, where the 
source and target domains are assumed to share the same classes, Bhirat et al. considered the problem 
of DA where the domains have class differences. The authors used change detection techniques to 
identify whether new classes appeared or existing classes disappeared. 

An alternative approach to the third group of methods proposed is to incorporate additional 
expert knowledge through active learning (AL) strategies. AL methodologies provide the user with 
a way to interact with the models, where the user is asked to provide labels for the most informative 
target samples [9]. These labels are then used to gradually modify the optimal classifier trained on 
source samples to learn target domain distribution. Such methods help in dealing with strong 
deformation or the appearance of new objects in the new domain. The main objective of the methods 
in this category is the selection of informative samples so that few additional samples are used to 
update the classifier effectively. For instance, Rajan et al. [35] proposed to select samples that 
maximize the information gain between a posteriori pdfs of the source domain samples and the 
source domain plus the selected samples. In [36], the authors proposed two methods for selecting 
informative samples. In the first method, unlabeled samples that fall within the margins of an SVM 
classifier, which is trained using labeled samples, are considered to be informative samples and are 
included in the training set to adjust the decision boundary, whereas the second method considers 
the prediction disagreement from a committee of SVM classifiers to select informative samples 
(samples with a maximum disagreement between the classifiers). In addition to selecting most 
informative samples using the Breaking Ties heuristic, the authors in [37] also incorporated clustering 
techniques to cope with the appearance of unobserved classes in the training set. Methods proposed 
in [38,39] consider both adding the most informative samples as well as removing (iteratively 
reweighting) misleading source samples. In the context of large-scale land cover classification, the 
change in distribution can be significant and convergence of AL algorithms can be slow due to the 
unexplored regions in the feature space [40]. In order to overcome this problem, the authors in [40] 
proposed to apply initialization strategies that select the first batch of unlabeled samples before 
applying AL techniques. 

One of the main reasons for the necessity of DA techniques is the cost of labeling. AL techniques 
on the other hand aim to use labeled samples, although they propose only using a few samples to 
reduce the cost of labeling. However, the methods proposed above do not consider the real cost and 
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procedure of labeling. The methods proposed in [41,42] take into account this issue and include the 
cost of labeling into the model training process. The authors in [43] approached this problem from a 
different perspective. They proposed region-based query strategies in which the expert is presented 
with compact spatial sample batches for labeling, which is more aligned with human perception and 
reduces the cost and time of labeling. 

The method proposed in this paper, domain adversarial neural network (DANN) [44], falls into 
the second group of DA techniques (i.e., learning a domain-invariant representation). In contrary to 
these methods where DA is performed in two stages, DANN is an end-to-end approach that combines 
both representation and classifier learning into a single stage. First proposed in the machine learning 
community, DANN has also been used in the remote sensing community for the problem of land-use 
classification using hyperspectral images and crop mapping using multispectral images [45]. In this 
work, we evaluate the usefulness of DANN for large-scale land cover classification in an 
unsupervised setting (assuming target domain labels are not available). The proposed method 
considers domain shifts due to temporal, spatial, and a combination of both. In addition, we also 
evaluate the suitability of the method for multi-target domain adaptation, that is, learning 
representation in the presence of multiple target domains. 

This article is organized as follows: A detailed description of the proposed method is presented 
in Section 2. Section 3 is dedicated for dataset description, experimental setup, results, and a 
comparison with an existing method. A discussion of the results and concluding remarks are made 
in Section 4 and Section 5. 

2. Methodology 

Unsupervised representation learning methods for domain adaptation learn a domain-invariant 
representation in two stages. In the first stage, both source and target domain samples are mapped 
to a new latent space where the domain discrepancy is negligible by using a function, 𝐹(𝑥). In the 
second stage, a classifier is trained using labeled source domain samples in the new space and is used 
to predict labels of target domain samples. A possible downside of the two-stage approach is that, 
although the domain discrepancy is negligible, the new features may not be discriminative enough, 
which can result in low classification accuracy. Hence, taking into account the discriminative 
capability of features in the new space while learning the mapping function is vital. 

Domain adversarial neural network (DANN) is a representation learning (RL) technique in 
which both domain invariance and discriminative properties are taken into account while learning 
the mapping function, 𝐹(𝑥). The architecture of a DANN (Figure 1) is composed of three blocks: 
Feature extractor, class predictor, and domain classifier. The feature extractor is a standard feed-
forward network that learns a mapping function, 𝐹: 𝑋 → ℝ  which transforms the input to a new d—
dimensional representation. The function, F, has learnable parameters, 𝜃 . Similarly, both the class 
predictor and domain classifier are feed-forward networks that learn mapping functions, 𝐶: 𝐹(𝑥) →ℝ  and 𝐷: 𝐹(𝑥) → ℝ , where 𝑐 and 𝑑 are the number of classes and domains, respectively. Both the 
class predictor and domain predictors have learnable parameters  𝜃  and  𝜃 , respectively. The 
objective of the class predictor is to learn mapping from the input space to the space of the class labels, 
while the objective of the domain classifier is to learn mapping from the input space to the space of 
the domains, that is, it predicts whether an input is sampled from the source or target domains. 
During training, weights of the classifier are updated to minimize classification error and weights of 
the domain predictor are updated to minimize domain classification error. On the other hand, the 
aim of the feature encoder is twofold: The first is to minimize the class prediction error and the second 
is to update its parameters in such a way that the domain invariance between the source and target 
domains is minimized. In order to accomplish this, the feature encoder maximizes the domain 
classifier loss, that is, when the domain classifier tries to minimize the domain classification loss, 
thereby increasing its ability to discriminate the source of input, the feature encoder does the opposite 
in order to confuse the domain classifier. Hence, the feature encoder and domain classifier work in 
an adversarial manner, hence the name adversarial. 
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Figure 1. Block diagram of a domain adversarial neural network’s (DANN’s) architecture. The output 
of the feature extractor is a representation of an input in the new latent space, which is then directly 
fed to the class and domain classifiers. 

Mathematically, the cost function for a DANN is expressed as ℒ θ , θ , θ  ℒ θ , θ − 𝜆ℒ (𝜃 , 𝜃 ), (1) 

where ℒ(𝜃 , 𝜃 ) and ℒ(𝜃 , 𝜃 ) are the total loss for the class and domain predictors, respectively. The 
parameters 𝜃 , 𝜃 , and 𝜃  are trainable weights associated with the feature extractor, class predictor, 
and domain classifier, respectively. The parameter 𝜆 in Equation 1 is a hyper-parameter that controls 
the contribution of the domain discriminator to the total loss. The learning algorithm [44] updates 𝜃  
to maximize the loss, ℒ , (Equation 3) while keeping 𝜃  and  𝜃  fixed. Similarly, 𝜃  and  𝜃  are 
simultaneously updated to minimize ℒ (Equation 2) while keeping 𝜃  fixed. 𝜃 , 𝜃  argmin, ℒ θ , θ , 𝜃 , (2) 

𝜃  argmax ℒ 𝜃 , 𝜃 , θ . (3) 

The gradient update rule is as follows: θ ⟵ 𝜃 − 𝛼 ℒ − 𝜆 ℒ  , (4) 

θ ⟵ 𝜃 − 𝛼 ℒ , (5) 

θ ⟵ 𝜃 − 𝛼 ℒ . (6) 

In order to utilize the standard backpropagation algorithm for training, the authors in [44] 
proposed a gradient reversal layer (GRL) that acts as an identity transformation during forward 
propagation and changes the sign of a subsequent level gradient during backpropagation, that is, a 
gradient is multiplied by –1 before passing it to the preceding layer. The GRL is inserted between the 
feature extractor and domain classifier blocks and does not have parameters to be learned. 
Mathematically, this layer, ℛ(𝑥) , is defined by two equations for the forward (Equation 7) and 
backpropagation (Equation 8) properties [44]: ℛ(𝑥)  x, (7) 

ℛ( )  −𝐼, (8) 

where 𝐼 is an identity matrix. 
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This work deals with the problem of domain adaption for large-scale land cover classification, 
that is, we consider remote sensing images that cover wide geographical areas acquired at different 
times. Such images are affected by spectral shift due to photographic distortion, changes in scale and 
illumination, and variation in the observed content [9], which makes it difficult to find a generic 
model for efficient classification. Hence, we adopt the DANN method in order to obtain a model that 
performs better, irrespective of the spectral shift in such images. This method takes data sampled 
from both source and target domains as input and learns a new representation. We also evaluate the 
suitability of the method to learn a generic representation for target domain samples drawn from 
multiple domains, referred to as multi-target domain adaptation from here on. 

With regard to the cost function, the binary cross-entropy loss function (Equation 9) is used for 
the classifier of the DANN as we are dealing with a binary classification (vegetation and non-
vegetation) problem. For the domain classifier, depending on the number of target domains and the 
source domain, we utilize either the binary cross entropy (Equation 9) loss or the multi-class cross 
entropy (Equation 10) loss. For instance, when we are dealing with a single-target domain (𝑇 ) the 
objective of the domain classifier is to distinguish whether the input data is from the source domain 
(𝑆) or 𝑇 . Since we are dealing with two classes, we employ the binary cross entropy as a loss function. 
On the other hand, when we are seeking a domain invariant representation in the presence of a source 
domain (𝑆) and multiple target domains (𝑇 , 𝑇 , … , 𝑇 ), we are dealing with a d-class classification 
problem and hence, we employ the multi-class cross entropy loss function. − ∑ 𝑦 𝑙𝑜𝑔𝑦 + (1 − 𝑦 ) 𝑙𝑜𝑔(1 − 𝑦 ) , (9) 

− ∑ ∑ 𝑦 𝑙𝑜𝑔𝑦 , (10) 

where 𝑁  is the number of training samples, 𝑑  is the number of domains (source plus target) 
considered for adaptation, and 𝑦  and 𝑦  represent the true and predicted classes/domains of an 
input sample, respectively. 

3. Experimental Results 

3.1. Dataset Description 

In order to validate the proposed method, we used Landsat 8 multi-spectral images 
characterized by a spatial resolution of 30 meters. The images were selected from three different 
geographical areas (Figure 2), northern, central, and southern Europe, and over three seasons, winter, 
spring, and summer. The winter images were acquired in January 2016, whereas the spring and 
summer images were acquired in May and August 2016, respectively. Moreover, each image covered 
a geographical area of approximately 33,000 km2 and was composed of more than 30 million pixels. 
Examples of images from each region per season are shown in Figure 3. For the purpose of training, 
we labeled parts of the images into two categories, vegetation and non-vegetation. We split the 
datasets into training (8000 labeled samples), validation (1000 labeled samples), and test sets. The 
number of labeled samples for each region per season is given in Table 1. 
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Figure 2. The three geographical areas considered for the study. 

 
Figure 3. Sample image crops from the central-east (top), northeast (middle), and southeast (bottom) 
regions. 

Table 1. Labeled pixel samples used for training and tests from both domains. Central-east (CE), 
northeast (NE), southeast (SE). 

Domain Vegetation Non-vegetation 
CE Spring (CESP) 7668 7405 

CE Summer (CESU) 7531 7161 

Winter Spring Summer 
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CE Winter (CEWI) 6995 6857 
NE Spring (NESP) 6315 6081 

NE Summer (NESU) 6529 6869 
NE Winter (NEWI) 7210 7061 
SE Spring (SESP) 7356 7380 

SE Summer (SESU) 7102 7343 
SE Winter (SEWI) 7346 7343 

3.2. Experimental Setup 

With regard to the network architecture (Figure 4), all three blocks were made up of fully 
connected layers. The output of the feature encoder was directly connected to the class classifier and 
the domain discriminator. The input to the feature encoder was 8-dimensional pixel samples. The 
main hyper-parameters of the network were the number of hidden layers, the number of neurons in 
each layer, the learning rate, the mini-batch training size, and lambda. In order to select the best 
configuration, we conducted a grid-based hyper-parameter search by training a classifier for each 
domain and selecting a configuration with the smallest classification loss on the corresponding 
domain validation set. With regard to the number of neurons in a hidden layer and the mini-batch 
size, we experimented with values ranging from 22 to 26 and 25 to 29, respectively. For the learning 
rate, the search was conducted on values ranging from 10-1 to 10-5 with a step of 0.1. Moreover, during 
the DANN training, the selected base learning was decreased by 0.1 every 100 training epochs. While 
conducting the configuration search, we observed that the accuracy on the validation sets exceeded 
98% for all domains, hence we decided to limit the number of hidden layers to one. Finally, instead 
of using a fixed value, lambda was exponentially incremented at every epoch starting from 0 to 1. 
Accordingly, the best configuration for each domain is shown in Table 2. The network, implemented 
in Tensorflow, was kept the same for both single- and multi-target domain adaptation problems. 
Adam optimizer [46] was used for training with the number of training epochs fixed to 500. 

 
Figure 4. Network architecture based on fully connected layers employed for training. The number 
of neurons in the hidden layer (𝑛) of the feature extractor is 32. The number of output neurons for the 



Remote Sens. 2019, 11, 1153 9 of 21 

 

domain classifier (𝑑) depends on the number of target domains considered for adaptation plus the 
source domain. The class predictor has two outputs: Non-vegetation (𝑐 ) and vegetation (𝑐 ). 

Table 2. Mini-batch size, learning rate, and the number of neurons used for training depending on 
the source domain considered. 

Source Domain Learning Rate Number of Neurons Mini-batch Size 
CESP 10-2 64 256 
CESU 10-2 32 32 
CEWI 10-1 32 32 
NESP 10-1 4 128 
NESU 10-2 64 128 
NEWI 10-2 16 512 
SESP 10-2 32 32 
SESU 10-2 32 256 
SEWI 10-2 64 64 

3.3. Experimental Results 

As mentioned in Section 2, we conducted experiments when we had single-target domain data 
and data from multiple target domains. As a performance metric, we report overall accuracy values 
(the number of correctly classified test samples divided by the total number of test samples) and 
provide lower bound (overall accuracy of a classifier trained on source domain data and tested with 
target domain data) and upper bound (overall accuracy of a classifier trained and tested with labeled 
samples from the target domain) values for the purpose of comparison. Moreover, the reported 
performance values are averaged over ten experiments and the corresponding standard deviation is 
also reported. 

3.3.1. Single-Target Domain Adaptation 

In this scenario, we conducted experiments where one of the domains, for example, northeast 
summer (NESU), was considered as a source domain data and the others, such as southeast winter 
(SEWI), were individually considered as target domain samples. We categorized these experiments 
into three main groups. The first and second group of experiments attempted to perform spatial (the 
distribution shift between source and target domains was due to the geographical difference between 
the samples) and temporal (the distribution shift between source and target domains was due to the 
difference in acquisition time) domain adaptations, respectively, whereas the third group of 
experiments dealt with spatiotemporal domain adaptation. The distribution shift was due to both 
geographical and temporal, which was more challenging compared to the first two scenarios. 

In the case of spatial domain adaptation (Table 3–5), the proposed method provided an 
improvement ranging from 1.1% to 14.1% in the overall accuracy of target domain samples compared 
to the lower boundary values in most of the source-target domain combinations. However, there were 
exceptions where the performance of the proposed method was much lower than the corresponding 
lower boundary. For instance, when northeast winter (NEWI) was used as a source domain, the 
performance on target domains central-east winter (CEWI) and SEWI dropped by 9.7% and 11.9%, 
respectively. Similarly, for the southeast summer (SESU)–NESU and SESU–central-east summer 
(CESU) experiments, the accuracy dropped by 19.1% and 11.6%, respectively. However, DANN 
performance improved when the source and target domains were interchanged. A possible reason 
for the decrease (increase in the reverse direction) in performance could be due to the difference in 
the network hyper-parameters employed for training. 

Table 3. Spatial domain adaptation average overall accuracy (in %) and standard deviation results 
realized over ten independent runs for the spring season. Rows in green and blue are the results of 
the proposed method and lower bound values, respectively. The upper bound accuracy is shown at 
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the top of each row in brackets. Values in bold and red fonts indicate an increase and decrease in 
accuracy, respectively, by the proposed method compared to the lower-bound.    

Target Domain 

So
ur

ce
 D

om
ai

n 

 
NESP 

(99.9, 0.003) 
CESP 

(1.0, 0.0) 
SESP 

(99.5, 0.005) 

NESP  
99.3, 0.013 81.5, 0.033 
98.1, 0.022 71.7, 0.051 

CESP 
96.7, 0.011 

 
83.8, 0.062 

88.7, 0.078 69.9, 0.065 

SESP 
61.5, 0.011 98.1, 0.011 

 
64.3, 0.042 95.8, 0.068 

Table 4. Spatial domain adaptation average overall accuracy (in %) and standard deviation results 
realized over ten independent runs for the summer season. Rows in green and blue are the results of 
the proposed method and lower bound values, respectively. The upper bound accuracy is shown at 
the top of each row in brackets. Values in bold and red fonts indicate an increase and decrease in 
accuracy, respectively, by the proposed method compared to the lower-bound. 

Target Domain 

So
ur

ce
 D

om
ai

n 

 NESU 
(98.8, 0.004) 

CESU 
(1.0, 0.0) 

SESU 
(99.0, 0.0) 

NESU  98.0, 0.017 61.6, 0.026 
83.9, 0.010 53.4, 0.020 

CESU 
95.6, 0.005 

 
72.0, 0.023 

95.8, 0.004 66.9, 0.020 

SESU 68.0, 0.173 83.8, 0.059  
87.1, 0.087 95.4, 0.016 

Table 5. Spatial domain adaptation average overall accuracy (in %) and standard deviation results 
realized over ten independent runs for the winter season. Rows in green and blue are the results of 
the proposed method and lower bound values, respectively. The upper bound accuracy is shown at 
the top of each row in brackets. Values in bold and red fonts indicate an increase and decrease in 
accuracy, respectively, by the proposed method compared to the lower-bound.  

Target Domain 

So
ur

ce
 D

om
ai

n 

 
NEWI 

(1.0, 0.0) 
CEWI 

(99.6, 0.009) 
SEWI 

(1.0, 0.0) 

NEWI  
71.7, 0.026 83.3, 0.093 
81.4, 0.062 95.2, 0.014 

CEWI 
73.2, 0.045 

 
87.6, 0.024 

63.2, 0.042 88.4, 0.038 

SEWI 
89.1, 0.085 74.2, 0.009 

 
91.1, 0.045 71.5, 0.022 

Similar to the spatial domain adaptation, the proposed method yielded an increment of the 
overall accuracy ranging from 0.6% to more than 32%, with respect to the corresponding lower 
boundary accuracy values for more than half the temporal source-target pair experiments (Tables 6–
–8). Similar to the spatial DA case, there were source-target pairs where the proposed method had 
lower performance compared to the lower boundary. The most significant decreases in performance 
were observed for the NEWI–northeast spring (NESP), NEWI–NESU, and CESU–CEWI experiments 
where the accuracies dropped by 21.5%, 40.7%, and 27.9%, respectively. Considering the reverse 
direction (target-source), there was a decrease in performance, with the exception of CESU–CEWI, 
where the accuracy increased by 6.8%. However, the decreases were very small. Besides the network 
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configuration difference in the sour-target and target-source pairs, a possible reason for the decline 
in performance is that the considered source domain can have a positive or negative impact on the 
DA process. 

Table 6. Temporal domain adaptation average overall accuracy (in %) and standard deviation results 
realized over ten independent runs for the northeast region. Rows in green and blue are the results of 
the proposed method and lower bound values, respectively. The upper bound accuracy is shown at 
the top of each row in brackets. Values in bold and red fonts indicate an increase and decrease in 
accuracy, respectively, by the proposed method compared to the lower-bound. 

Target Domain 
So

ur
ce

 D
om

ai
n 

 
NESP 

(99.9, 0.003) 
NESU 

(98.8, 0.04) 
NEWI 

(1.0, 0.0) 

NESP  
94.4, 0.005 83.9, 0.120 
95.0, 0.004 86.0, 0.132 

NESU 93.8, 0.027  73.7, 0.175 
61.3, 0.028 82.2, 0.059 

NEWI 73.1, 0.096 34.1, 0.228  
94.5, 0.036 74.8, 0.130 

In the third category of experiments, we evaluated the suitability of the proposed method for 
spatiotemporal domain adaptation problems. In such cases, the distribution shift between source and 
target domains is a combined result of both temporal and spatial shift, which makes it challenging 
compared to the first two categories. From the results in Table 9–11, the proposed method 
outperformed the lower boundary accuracy values in most of the source-target domain combinations, 
with an increase in the overall accuracy ranging from 0.2% to 37.1%. The challenging nature of the 
spatiotemporal DA was also observed from the results provided in Table 9–11. Among the thirty-six 
source-target pair experiments, the proposed method failed to improve the overall accuracy 
compared to the lower boundary in fifteen of the experiments. Among those pairs, the largest 
decrease in performance was observed in the SESU–NESP (27.7% decrease) and NEWI–central-east 
spring (CESP) (17.2% decrease) experiments. On the other hand, if we consider the reverse directions, 
specifically the NESP–SESU and CESP–NEWI experiments, DANN improved the overall accuracy by 
2.8% and –6.1%, respectively.  Similar to the spatial and temporal experiments, the decline in 
performance observed in the spatiotemporal experiments was possibly due to the architecture 
difference and the choice of the source domain considered for the process. 

Table 7. Temporal domain adaptation average overall accuracy (in %) and standard deviation results 
realized over ten independent runs for the central-east region. Rows in green and blue are the results 
of the proposed method and lower bound values, respectively. The upper bound accuracy is shown 
at the top of each row in brackets. Values in bold and red fonts indicate an increase and decrease in 
accuracy by the proposed method compared to the lower-bound. 

Target Domain 

So
ur

ce
 D

om
ai

n 

 
CESP 

(1.0, 0.0) 
CESU 

(1.0, 0.0) 
CEWI 

(99.6, 0.009) 

CESP  
99.0, 0.0 77.3, 0.125 

98.4, 0.008 51.0, 0.0 

CESU 95.3, 0.009  65.3, 0.078 
94.4, 0.022 93.2, 0.066 

CEWI 
95.9, 0.064 98.6, 0.007 

 
78.5, 0.102 91.8, 0.097 

Table 8. Temporal domain adaptation average overall accuracy (in %) and standard deviation results 
realized over ten independent runs for the southeast region. Rows in green and blue are the results of 
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the proposed method and lower bound values, respectively. The upper bound accuracy is shown at 
the top of each row in brackets. Values in bold and red fonts indicate an increase and decrease in 
accuracy by the proposed method compared to the lower-bound. 

Target Domain 

So
ur

ce
 d

om
ai

n 
 SESP 

(99.5, 0.005) 
SESU 

(99.0, 0.0) 
SEWI 

(1.0, 0.0) 

SESP  
98.0, 0.0 87.3, 0.080 

97.8, 0.007 70.3, 0.061 

SESU 
98.6, 0.005 

 
69.9, 0.077 

96.1, 0.005 76.8, 0.043 

SEWI 
89.8, 0.087 85.5, 0.088 

 
61.6, 0.037 69.2, 0.037 

Table 9. Spatiotemporal domain adaptation average overall accuracy (in %) and standard deviation 
results realized over ten independent runs. Rows in green and blue are the results of the proposed 
method and lower bound values, respectively. The upper bound accuracy is shown at the top of each 
row in brackets. Values in bold and red fonts indicate an increase and decrease in accuracy by the 
proposed method compared to the lower-bound. 

Target Domain 

So
ur

ce
 D

om
ai

n 

 CESP 
(1.0, 0.0) 

CESU 
(1.0, 0.0) 

CEWI 
(99.6, 0.009) 

SESP 
(99.5, 0.005) 

SESU 
(99.0, 0.0) 

SEWI 
(1.0, 0.0) 

NESP  
99.0, 0.0 88.0, 0.074  75.5, 0.011 95.7, 0.015 

98.1, 0.022 84.2, 0.106 72.7, 0.026 97.3, 0.013 

NESU 
93.1, 0.029 

 
86.9, 0.088 63.3, 0.041  95.5, 0.034 

64.3, 0.067 62.1, 0.034 50.8, 0.026 82.9, 0.030 

NEWI 
82.1, 0.161 84.6, 0.087 

 
66.8, 0.156 65.9, 0.126  

99.2, 0.007 99.0, 0.0 76.7, 0.073 72.7, 0.032 

Table 10. Spatiotemporal domain adaptation overall accuracy (in %) results. Rows in green and blue 
are the results of the proposed method and lower bound values, respectively. The upper bound 
accuracy is shown at the top of each row in brackets. Values in bold and red fonts indicate an increase 
and decrease in accuracy by the proposed method compared to the lower-bound. 

Target Domain 

So
ur

ce
 D

om
ai

n 

 NESP 
(99.9, 0.003) 

NESU 
(98.8, 0.004) 

NEWI 
(1.0, 0.0) 

SESP 
(99.5, 0.005) 

SESU 
(99.0, 0.0) 

SEWI 
(1.0, 0.0) 

CESP  
93.9, 0.003 90.3, 0.128  81.8, 0.056 94.4, 0.061 
59.7, 0.077 96.4, 0.005 89.8, 0.028 72.2, 0.044 

CESU 
80.8, 0.046 

 
78.3, 0.160 71.7, 0.047  84.7, 0.018 

77.2, 0.042 82.9, 0.133 75.7, 0.024 86.0, 0.038 

CEWI 
94.9, 0.051 95.1, 0.003 

 
68.8, 0.055 70.4, 0.030  

57.8, 0.054 93.9, 0.025 62.3, 0.062 61.7, 0.032 

Table 11. Spatiotemporal domain adaptation average overall accuracy (in %) and standard deviation 
results realized over ten independent runs. Rows in green and blue are the results of the proposed 
method and lower bound values, respectively. The upper bound accuracy is shown at the top of each 
row in brackets. Values in bold and red fonts indicate an increase and decrease in accuracy by the 
proposed method compared to the lower-bound. 

Target Domain 
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So
ur

ce
 D

om
ai

n 

 CESP 
(1.0, 0.0) 

CESU 
(1.0, 0.0) 

CEWI 
(99.6, 0.009) 

NESP 
(99.3, 0.003) 

NESU 
(98.8, 0.004) 

NEWI 
(1.0, 0.0) 

SESP  
81.8, 0.008 59.6, 0.104  57.7, 0.123 82.3, 0.117 
91.0, 0.073 51.1, 0.003 50.8, 0.007 86.1, 0.062 

SESU 
94.6, 0.067 

 
67.7, 0.127 68.3, 0.076  84.5, 0.086 

99.0, 0.0 62.5, 0.091 96.0, 0.0 96.7, 0.019 

SEWI 
98.4, 0.015 97.9, 0.025 

 
97.1, 0.008 95.2, 0.004  

92.7, 0.013 98.7, 0.009 80.9, 0.024 95.0, 0.0 

 

3.3.2. Multi-Target Domain Adaptation 

The objective of multi-target domain adaptation was to have a single model that performed well 
on two or more target domain datasets that had temporal, spatial, and/or spatiotemporal distribution 
shift. Accordingly, we modified the domain discriminator to a multi-class classifier that utilized the 
multi-class cross entropy loss (Equation (10)) as a cost function. In order to understand the 
performance of the proposed method for multi-domain adaptation, we chose two source domains 
(CE Spring (CESP) and NE Winter (NEWI)) based on their performance on the single-domain 
adaptation problem, that is, we selected the best and worst source domains based on the average 
increment of the target domain samples. In addition, since there were a lot of possible combinations, 
we limited the analysis by ranking the performance improvement in descending order and 
incremented the number of domains. We report the overall accuracy along with the upper and lower 
bound values obtained for target domains ranging from two to eight. Similar to the single-domain 
case, the reported results are averaged over ten experiments. 

From the results in Table 12–18, the proposed method provided an improvement in the overall 
accuracy ranging from 1% to 34.9% with respect to the lower boundary accuracy in almost all of the 
experiments in the case of the CESP source domain. Comparing the multi-domain performances with 
respect to the single-domain, as the number of the target domains increased from two to seven, the 
maximum decrease in accuracy was not more than 7%. When there were eight target domains, the 
accuracy for CESP–NEWI decreased by 15.8% compared to the corresponding single-domain result. 
On the other hand, the performance results in Table 12–18 show that using the NEWI as a source 
domain for multi-target domain adaptation does not provide improvement in almost all of the source-
target combination experiments. The maximum increment obtained with this setup was not more 
than 4%, regardless of the number of target domains. This is mainly due to the distribution of the 
NEWI dataset, which is discussed in Section 4. 

Table 12. Experimental results for two target domains. Average overall accuracy (in %) and standard 
deviation results realized over ten independent runs for the proposed method (green rows) and lower 
bound values (blue rows). Upper bound values are shown in the second row in brackets. Values in 
bold and red fonts indicate an increase and decrease in accuracy by the proposed method compared 
to the lower-bound. 

Target Domain 

So
ur

ce
 D

om
ai

n  NESU 
(98.8, 0.004) 

SEWI 
(1.0, 0.0) 

SESU 
(99.0, 0.0) 

CEWI 
(99.6, 0.009) 

CESP 
89.3, 0.112 92.4, 0.075 

  
59.7, 0.077 72.2, 0.44 

NEWI  70.3, 0.163 54.0, 0.034 
72.7, 0.032 81.4, 0.062 

Table 13. Experimental results for three target domains. Average overall accuracy (in %) and standard 
deviation results realized over ten independent runs for the proposed method (green rows) and lower 
bound values (blue rows). Upper bound values are shown in the second row in brackets. Values in 
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bold and red fonts indicate an increase and decrease in accuracy by the proposed method compared 
to the lower-bound 

Target Domain 
So

ur
ce

 D
om

ai
n  NESU 

(98.8, 0.004) 
SEWI 

(1.0, 0.0) 
CEWI 

(99.6, 0.009) 
SESU 

(99.0, 0.0) 
SESP 

(99.5, 0.005) 

CESP 
90.3, 0.111 93.7, 0.044 83.7, 0.105 

  
59.7, 0.077 72.2, 0.44 51.0, 0.0 

NEWI   53.7, 0.036 71.4, 0.133 70.4, 0.142 
81.4, 0.062 72.7, 0.032 76.7, 0.073 

Table 14. Experimental results for four target domains. Average overall accuracy (in %) and standard 
deviation results realized over ten independent runs for the proposed method (green rows) and lower 
bound values (blue rows). Upper bound values are shown in the second row in brackets. Values in 
bold and red fonts indicate an increase and decrease in accuracy by the proposed method compared 
to the lower-bound 

Target Domain 

So
ur

ce
 D

om
ai

n  NESU 
(98.8, 0.004) 

SEWI 
(1.0, 0.0) 

CEWI 
(99.6, 0.009) 

SESU 
(99.0, 0.0) 

SESP 
(99.5, 0.005) 

CESP 
88.6, 0.099 97.0, 0.025 74.9, 0.101 

 
84.7, 0.028 

59.7, 0.077 72.2, 0.44 51.0, 0.0 69.9, 0.065 

NEWI  94.1, 0.065 70.3, 0.052 76.5, 0.118 78.6, 0.142 
95.2, 0.014 81.4, 0.062 72.7, 0.032 76.7, 0.073 

Table 15. Experimental results for five target domains. Average overall accuracy (in %) and standard 
deviation results realized over ten independent runs for the proposed method (green rows) and lower 
bound values (blue rows ). Upper bound values are shown in the second row in brackets. Values in 
bold and red fonts indicate an increase and decrease in accuracy by the proposed method compared 
to the lower-bound 

Target Domain 

So
ur

ce
 D

om
ai

n 

 NESU 
(98.8, 0.004) 

SEWI 
(1.0, 0.0) 

CEWI 
(99.6, 0.009) 

SESP 
(99.5, 0.005) 

NESP 
(99.9, 0.003) 

SESU 
(99.0, 0.0) 

CESU 
(1.0, 0.0) 

C
ES

P 93.0, 0.034 94.0, 0.056 77.9, 0.073 83.5, 0.035 95.6, 0.025   

59.7, 0.077 72.2, 0.44 51.0, 0.0 69.9, 0.065 88.7, 0.078   

N
EW

I 

 
94.9, 0.040 74.8, 0.028 72.3, 0.072 

 
70.4, 0.048 98.3, 0.021 

95.2, 0.014 81.4, 0.062 76.7, 0.073 72.7, 0.032 99.0, 0.0 

Table 16. Experimental results for six target domains. Average overall accuracy (in %) and standard 
deviation results realized over ten independent runs for the proposed method (green rows) and lower 
bound values (blue rows). Upper bound values are shown in the second column in brackets. Values 
in bold and red fonts indicate an increase and decrease in accuracy by the proposed method compared 
to the lower-bound. 

Source Domain 

Ta
rg

et
 

D
om

ai  CESP NEWI 

CESP 
(1.0, 0.0) 

 
95.4, 0.078 
99.2, 0.007 
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NESU 
(98.8, 0.004) 

93.8, 0.020  
59.7, 0.077 

SEWI 
(1.0, 0.0) 

93.7, 0.045 92.3, 0.075 
72.2, 0.440 95.2, 0.014 

CEWI 
(99.6, 0.009) 

83.5, 0.079 77.1, 0.032 
51.0, 0.0 81.4, 0.062 

SESP 
(99.5, 0.005) 

83.0, 0.032 74.5, 0.102 
69.9, 0.065 76.7, 0.073 

NESP 
(99.9, 0.003) 

95.0, 0.029  
88.7, 0.078 

SESU 
(99.0, 0.0) 

 
71.8, 0.089 
72.7, 0.032 

CESU 
(1.0, 0.0) 

99.0, 0.0 96.9, 0.050 
98.4, 0.008 99.0, 0.0 

Table 17. Experimental results for seven target domains. Average overall accuracy (in %) and 
standard deviation results realized over ten independent runs for the proposed method (green rows) 
and lower bound values (blue rows) Upper bound values are shown in the second column in brackets. 
Values in bold and red fonts indicate an increase and decrease in accuracy by the proposed method 
compared to the lower-bound. 

Source Domain 

Ta
rg

et
 d

om
ai

n 

 CESP NEWI 

CESP 
(1.0, 0.0) 

 99.0, 0.012 
99.2, 0.007 

NESU 
(98.8, 0.004) 

94.6, 0.005  
59.7, 0.077 

SEWI 
(1.0, 0.0) 

93.6, 0.045 94.7, 0.039 
72.2, 0.44 95.2, 0.014 

CEWI 
(99.6, 0.009) 

86.4, 0.094 78.5, 0.043 
81.4, 0.062 81.4, 0.062 

SESP 
(99.5, 0.005) 

82.4, 0.019 78.3, 0.076 
69.9, 0.065 76.7, 0.073 

NESP 
(99.9, 0.003) 

95.7, 0.035 94.6, 0.045 
88.7, 0.078 94.5, 0.036 

SESU 
(99.0, 0.0) 

 
73.6, 0.043 
72.7, 0.032 

CESU 
(1.0, 0.0) 

99.0, 0.0 99.0, 0.0 
98.4, 0.008 99.0, 0.0 

NEWI 
(1.0, 0.0) 

72.8, 0.197  
96.4, 0.005 

Table 18. Experimental results for eight target domains. Green rows are overall accuracy (in %) values 
of the proposed method and blue rows are lower bound values. Upper bound values are shown in 
the second column in brackets. Values in bold and red fonts indicate an increase and decrease in 
accuracy by the proposed method compared to the lower-bound. 

Source Domain 

Ta
rg

et
 D

om
ai

n 

 CESP NEWI 

CESP 
(1.0, 0.0) 

 97.0, 0.057 
99.2, 0.007 

NESU 
(98.8, 0.004) 

92.5, 0.014 94.6, 0.008 
59.7, 0.077 74.8, 0.130 

SEWI 
(1.0, 0.0) 

91.2, 0.077 92.4, 0.065 
72.2, 0.440 95.2, 0.014 

CEWI 70.6, 0.084 79.5, 0.055 
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(99.6, 0.009) 51.0, 0.0 81.4, 0.062 
SESP 

(99.5, 0.005) 
85.5, 0.046 75.5, 0.085 
69.9, 0.065 76.7, 0.073 

NESP 
(99.9, 0.003) 

95.9, 0.013 90.8, 0.119 
88.7, 0.078 94.5, 0.036 

SESU 
(99.0, 0.0) 

79.6, 0.027 71.7, 0.058 
89.8, 0.028 72.7, 0.032 

CESU 
(1.0, 0.0) 

99.0, 0.0 98.3, 0.021 
98.4, 0.008 99.0, 0.0 

NEWI 
(1.0, 0.0) 

74.5, 0.229  
96.4, 0.005 

3.4. Comparison 

Besides the lower bound performance values, we compared the proposed method with 
denoising auto-encoders (DAEs) [47]. A DAE is a type of auto-encoder that aims to learn a mapping 
function that can reconstruct a “clean” input from its corrupted version by first encoding the input 
into a new latent space and then decoding back the input from the latent space. Following the same 
setup as in [16], we conducted feature encoding using this method in two settings: The first setup 
used only source domain samples, i.e., 𝑋 ⊆ 𝑋 , to learn the encoding and the second setting used 
both source and target domain training samples, i.e., 𝑋 ⊆ 𝑋 ∪ 𝑋 , to learn the encoding. We termed 
these settings as 1-DOM and 2-DOM, respectively. After the encoding, we trained a softmax classifier 
using the encoded source domain samples and classified target domain samples. The DAE 
parameters, such as the number of hidden layers, the number of neurons in a hidden layer, the 
learning rate, and the mini-batch training size, followed the same configuration used for the DANN 
(Table 2). During the training of the DAE, a noise sampled from a normal distribution with a mean 
of 0.0 and a standard deviation of 0.01 was added to the input. 

For the purpose of comparison, we focus on single-target DA problems and report the results 
obtained on the best and worst source-target experiments from the spatial, temporal, and 
spatiotemporal DA problems. From the results in Table 19, except for the NEWI–NESU experiment, 
the proposed method significantly outperformed DAEs. 

Table 19. Comparison of the proposed method with denoising auto-encoders (DAEs). The pair of 
values represent the overall accuracy (in %) and the standard deviation averaged from ten different 
realizations. Bold face font is used to indicate the method with superior performance. 

 DAE (1-DOM) DAE (2-DOM) Ours 
NESU–CESU 
(98.8, 0.004) 

98.8, 0.157 98.7, 0.006 98.0, 0.017 

SESU–NESU 
(1.0, 0.0) 

52.1, 0.003 52.1, 0.003 68.0, 0.017 

NESU–NESP 
(99.9, 0.003) 

69.2, 0.063 77.0, 0.074 93.8, 0.027 

NEWI–NESU 
(98.8, 0.004) 

44.2, 0.148 40.8, 0.186 34.1, 0.228 

CESP–NESU 
(98.8, 0.004) 

69.9, 0.157 77.3, 0.149 93.9, 0.003 

SESU–NESP 
(99.9, 0.003) 

62.8, 0.015 63.4, 0.010 97.1, 0.008 

4. Discussion 

From the experimental results reported in Section 3, the proposed method provides significant 
improvement in performance when compared to the accuracy values of the lower boundary and the 
two-stage DA approaches considered. However, there are scenarios where the method fails to 
improve performance. Our observations are as follows: The performance decline in the multi-target 
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domain adaptation scenarios with the increase in the number of domains is an indication that learning 
a domain-invariant representation in the presence of multiple targets is more challenging compared 
to the single-domain adaptation. In addition, the new mapping can have positive impact on 
performance of some domains and negative impact on other domains. For instance, the overall 
accuracy for the target domain SEWI increased by more than 2% while the accuracy for the NESU 
target domain dropped by more than 3% in the three-target domain experiment compared to the 
corresponding single-domain result. Another observation related to both the single-domain and 
multi-domain adaptation results is that the source domain has an impact on the domain adaptation 
results. That is, there are combinations (such as SEWI–SESU and SEWI–NESP) where the source-
target mapping performs very well and the reverse direction (when the target is used as a source and 
the source is used as a target) does not work. This shows that the DA process is impacted by the 
choice of the source domain. 

Our main observation is that the efficacy of the proposed method relies on how well the source 
and target domains are aligned. To explain this, we use two source-target pair experiments, the 
CESP–CEWI and the NEWI–NESU. The principal component analysis (PCA) distributions of the 
corresponding pairs before and after the domain adaptation are shown in Figure 5 and Figure 6. In 
Figure 5, both vegetation and non-vegetation samples from the source and target domains are 
roughly aligned in the same direction. Therefore, during the DA process, the vegetation and non-
vegetation samples from both domains are grouped together. On the other hand, in Figure 6, the 
target domain vegetation samples overlap with the non-vegetation samples of the source domain. 
This is a possible indicator that the source and target distributions have a significant difference. This 
is also justified from the experimental results obtained in both single- and multi-target domain setups, 
where there is a significant drop in performance in almost all combinations when the NEWI domain 
is involved in the DA process. 

 
Figure 5. PCA distribution of source (CESP) and target domain (CEWI) test samples before (top) and 
after (bottom) domain adaptation. 
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Figure 6. PCA distribution of source (NEWI) and target domain (NESU) test samples before (top) and 
after (bottom) domain adaptation. 

5. Conclusion 

Supervised classification problems require sufficiently labeled data for training, however, 
obtaining labeled data is not always feasible as it is a manual process that requires time and money. 
Unsupervised domain adaptation is an alternative approach proposed to mitigate the requirement of 
labeled data. This approach utilizes existing labeled data (also called the source domain) that is 
related to the data at hand (also called the target domain) to train a model. The objective of such 
methods is to minimize the distribution shift due to temporal, spatial, and/or spatiotemporal 
difference between the two domains and eventually to use a model trained on source domain samples 
to classify target domain samples. In this paper, we presented a domain adaptation technique called 
domain adversarial neural networks (DANNs) based on neural networks in the context of large-scale 
land cover classification. 

In contrary to other unsupervised domain adaptation methods that consider a two-stage 
approach to reduce the distribution shift and then learn a classification model, DANN performs the 
domain adaptation and classifier learning in a single stage, thereby learning features that are both 
discriminative and domain invariant. Compared to the standard neural network based classifiers, 
DANNs have an additional block that functions as a domain classifier and provides an additional 
loss that correlates with the domain discrepancy. In this work, we evaluated the usefulness of DANNs 
both in single- and multi-target domain adaptation scenarios. In both scenarios, the proposed method 
provides significant improvement, with the exception of some experiments, in the overall accuracy 
compared to the lower boundary. The exceptions indicate that the adaptation process is asymmetric, 
that is, if a specific source-target pair provides improvement, the reverse (target-source) pair may not 
improve the accuracy. This indicates that the source domain has an impact on the adaptation process. 
In addition, multi-target domain adaptation experiments also show that, with the increase in the 
number of target domains, the suitability of the new mapping to all target domains decreases. Finally, 
in future work we will consider the incorporation of a mechanism that can possibly indicate whether 
the risk of accuracy drop is high or not based on the source and target domains considered for the 
process of adaptation. 
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