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Abstract: Simultaneous localization and mapping (SLAM) methods based on an RGB-D camera
have been studied and used in robot navigation and perception. So far, most such SLAM methods
have been applied to a static environment. However, these methods are incapable of avoiding the
drift errors caused by moving objects such as pedestrians, which limits their practical performance
in real-world applications. In this paper, a new RGB-D SLAM with moving object detection for
dynamic indoor scenes is proposed. The proposed detection method for moving objects is based on
mathematical models and geometric constraints, and it can be incorporated into the SLAM process as
a data filtering process. In order to verify the proposed method, we conducted sufficient experiments
on the public TUM RGB-D dataset and a sequence image dataset from our Kinect V1 camera; both
were acquired in common dynamic indoor scenes. The detailed experimental results of our improved
RGB-D SLAM were summarized and demonstrate its effectiveness in dynamic indoor scenes.
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1. Introduction

Simultaneous localization and mapping (SLAM) technology has become a fundamental
prerequisite in many robotic applications [1,2]. Because of its ability to conduct navigation and
perception simultaneously in an unknown environment, SLAM has attracted the attention of many
scholars, and has gradually become a research hotspot over the past decades [3]. Current SLAM
technology mainly includes two types of systems, distinguished by different data acquisition devices.
The first type is based on light detection and ranging (LiDAR) sensors [4]. LiDAR-based SLAM is
expensive, and mainly used in driverless cars. The second type, visual SLAM [5] with imaging sensor,
has the advantages of low price and small volume; it can provide more abundant texture information for
motion estimation. Owing to the ability of autonomous localization and quick environmental perception,
visual SLAM plays an important role in global positioning system (GPS)-denied environments,
for instance, indoor scenes [6,7].

Depending on the number of sensors, visual SLAM can be classified into monocular-camera- [8–11],
stereo-camera- [12–14], and multiple-camera- [15,16] based versions. Monocular camera based visual
SLAM cannot obtain scale information of the environment, so it is usually combined with inertial
measurement units (IMUs) to obtain three dimensional (3D) information in the scene [17]. As for
stereo-camera- and multiple-camera-based SLAM systems, they can obtain 3D coordinates of feature
points by photogrammetry. However, extracting feature points and stereo matching takes a lot of time.
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Subsequently, many scholars have tried to improve the efficiency of SLAM systems by using new
algorithms for feature extraction and matching, such as Speeded-Up Robust Features (SURF) [18] and
oriented FAST and rotated BRIEF (ORB) [19].

As a new type of depth sensor, an RGB-D camera, such as Microsoft Kinect, has the advantages of
directly obtaining 3D coordinates like a LiDAR sensor, and providing texture information as an imaging
sensor. Due to its low power consumption and small volume, RGB-D cameras are widely used as data
acquisition devices on current robots. Meanwhile, effective RGB-D-based SLAM algorithms have been
proposed [20,21]. Some of these algorithms are based on sparse features, such as ORB-SLAM2 [22],
which is a representative RGB-D SLAM system. These SLAM systems use the correspondence between
current and previous frames to estimate cameras’ ego-motion iteratively. These correspondences can
be established by matching feature points, lines, and even planes. Dense-point-cloud-matching-based
algorithms have also been proposed, such as the method proposed in literature [23]. These methods
are based on the assumption that the grayscale values of corresponding areas are invariant, and adopt
an energy minimization function for iterative calculation of the camera’s six degree of freedom
(DoFs) motion.

However, most SLAM methods are based on the assumption that the environment is static.
In other words, the geometric distribution of objects in the scene is assumed to be stationary in the
process. These methods are unable to distinguish the features in static and dynamic objects, which
leads to the deterioration of SLAM systems because of erroneous data association and faults in motion
estimation. Therefore, the question of how to build a robust SLAM system in a dynamic environment
has attracted much attention from scholars in recent years.

The first remarkable SLAM system to combine detection and tracking of moving objects method
was proposed by Wang et al. [24]. They used a laser rangefinder to obtain the data and verify their
algorithm in urban outdoor environments. After that, one of the basic ideas of SLAM in a dynamic
environment is to identify the moving objects and then eliminate their associated data. By means
of dense scene flow representation, the visual SLAM system proposed by Alcantarilla et al. [25] can
detect moving objects within a distance of about five meters. However, it has distance limitation
in moving object detection, and misjudges static points as dynamic ones in some non-artificial and
poor texture scenes. The dense RGB-D SLAM proposed by Wang et al. [26] combines moving object
segmentation with dense SLAM. It merges regions of which the predominant parts share the same
fundamental matrices across the whole SLAM process into a group. Based on the assumption that the
largest group corresponds to the static environment, it then removes the largest group and gets the
areas of moving objects. Another dense 3D SLAM, proposed by Bakkay et al. [27], assumes a constant
motion during a fixed time interval. Those pixels, of which the absolute velocities are higher than the
preset threshold, are taken as seed segmentation of moving objects. Starting from these seeds, they
use a region growing algorithm to identify dynamic areas. The motion removal approach proposed
by Sun et al. [28] roughly determines the moving areas by subtracting the corresponding pixels of
the continuous frames. They then apply the maximum-a-posterior (MAP) to precisely moving object
determination. This approach is integrated into the front end of dense visual odometry (DVO), and
tested in TUM RGB-D datasets [29]. However, only one moving cluster can be segmented, and the
performance is not as good as original DVO in a lowly dynamic environment. Recently, with the rapid
development of deep learning algorithms, there are some SLAM systems combined with deep learning
methods to judge moving objects. Yang et al. [30] proposed an RGB-D SLAM integrated with the Faster
R-CNN algorithm [31]. It detects the rectangular areas of humans through Faster R-CNN and removes
the feature points in these rectangular areas and the corresponding data, so as to obtain robust results.
Zhong et al. proposed a Detect-SLAM [32], which is based on ORB-SLAM and a deep detector to
determine and remove dynamic objects. The DRE-SLAM proposed by Yang et al. [33] combines the
YOLOv3 algorithm [34] with the multi-view constraint to identify dynamic pixels on moving objects.

Another idea of SLAM in a dynamic environment is to incorporate new, robust data processing
mathematical methods into the process of the SLAM system, and then reduce the impact of moving
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objects. Moratuwage et al. used the random finite set (RFS) model to express features and measurement
results in the current sensor field of view (FOV) [35]. They then used a Bayes recursion to estimate the
static feature map and obtain the dynamic feature locations. The CoSLAM proposed by Zou et al. [36]
studies the problem of visual SLAM in dynamic environments with multiple cameras. This SLAM
system uses the re-projection error to distinguish static and dynamic feature points. It works robustly
in both highly dynamic environments and static environments, however, the data is processed offline
and it has a large drift error in dynamic experiments. The DVO algorithm, proposed by Kerl et al. [37],
estimates the camera’s ego-motion by considering the probabilistic model in the error function, which
reduces the influence of large residuals and thus obtains robust results. Lee et al. [38] used a pose
graph to represent robot poses, and false constraints of the pose graph that were associated with
moving objects were pruned according to an error metric based on the grouped nodes. The correct
results were then obtained by re-optimizing the new pose graph. In addition to detecting moving
objects, there are methods that attempt to find static backgrounds or features to estimate the camera’s
ego-motion. The background-model-based dense-visual-odometry (BaMVO) algorithm proposed by
Kim et al. [39] estimates the background model from depth scenes and the ego-motion of the camera
through eliminating the influence of moving objects. The RGB-D SLAM proposed by Li et al. [40]
uses foreground edge points to estimate camera’s ego-motion, and static weights, which indicate the
probability that an edge point is static, are combined with intensity assisted iterative closest point
(IAICP) algorithm in order to reduce the effect of dynamic moving objects on the motion estimation.
Since this method requires depth edges, it is more suitable for geometry rich environments where
depth edges abound than the texture-poor environments.

In this paper, a new RGB-D SLAM method with moving object detection for dynamic indoor
scenes is presented. The rest of the paper is organized as follows. Section 2 illustrates the proposed
RGB-D SLAM in three parts of the flowchart. In Section 3, abounding experiments are reported to
analyze the performance of our RGB-D SLAM in common dynamic indoor scenes. Conclusions and
future work are discussed in the last section.

2. Methodology

Figure 1 illustrates the proposed RGB-D SLAM in a flowchart, which consists of the following
parts: (1) input data and pre-processing; (2) moving object detection and elimination; (3) camera pose
estimation. Detailed processes of the algorithms and models are given in the following sub-sections.
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2.1. Input Data and Preprocessing

In this part, we mainly introduce the image data used in our RGB-D SLAM and the pre-processing
steps. In order to test the proposed method, we recorded RGB-D sequence images at 640× 480 resolution
with a Microsoft Kinect V1 camera, shown in Figure 2a. The camera was calibrated first, in order to use
these sequence images in later high-accuracy processing. Although the RGB-D camera was adjusted in
production, it did not satisfy the requirements of the experiment. A flat calibration board, as shown in
Figure 2b, was used to calibrate the RGB camera and depth camera. We captured infrared images, RGB
images, and depth images of the flat calibration board at different distances and directions. We then
used a MATLAB-based calibration toolbox [41] to calculate the calibration parameters of the RGB
camera and depth camera. The internal parameters and lens distortion coefficients are shown in Table 1,
and the external parameters are shown in Table 2. Using these parameters, we can map the depth
image to the RGB image.
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Figure 2. RGB-D camera and flat calibration board used in data acquisition and camera calibration. (a)
Microsoft Kinect V1 sensor used in data acquisition; (b) flat calibration board used in camera calibration.

Table 1. Internal parameters and distortion coefficients of the RGB camera and depth camera.

Camera fx fy cx cy k1 k2 k3 p1 p2

RGB 584.35 584.33 317.97 252.80 −0.10585 0.27096 0.0 0.00504 −0.00166
Depth 519.95 519.55 315.82 238.71 0.04810 −0.19281 0.0 0.00458 −0.00014

1 The unit of fx, fy, cx, and cy is the pixel.

Table 2. External parameters of the RGB camera and depth camera.

Rotation Angles (◦) −0.00079 −0.00084 −0.00541

Translation Vector (mm) −25.59983 0.16700 −0.40571
1 The unit of rotation angles is the degree and the unit of translation vector is the mm.

In order to calculate the camera pose and detect moving objects, we then needed to input the
current RGB image, depth image, and previous RGB image. These two RGB images, the current frame
and the previous frame, were used for the extraction and matching of point features. In addition to the
RGB images, we also needed to use the current depth image. However, due to the influence of optical
conditions and imaging modes, some areas of invalid holes existed in the depth images.

Figure 3a shows an original depth image of TUM RGB-D datasets. Owing to the reflection of the
computer screen and the optical conditions of some areas, there are invalid holes in Figure 3a. Since the
existence of these holes would weaken the effect of next clustering step, we needed to fill them in the
pre-processing. Here, we used an algorithm based on morphological reconstruction [42] to fill these
holes. As can be seen from Figure 3b, several obvious holes were filled in the depth image. The purpose
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of this is to better cluster in the subsequent steps, because these invalid holes are sometimes marked as
a separate category by the clustering process and may mislead the judgement of moving objects.
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2.2. Moving Object Detection and Elimination

In this sub-section, we introduce the principle and pipeline of our moving object detection method
using example images taken from the TUM RGB-D dataset. Our RGB-D SLAM takes the proposed
moving object detection method as a data processing front-end. This approach is based on two
assumptions. The first one is that enough feature points, i.e., more than twenty pairs of matching points,
exist in the static environment. These feature points are used to calculate the camera’s pose. Common
indoor scenes have many artificial objects, which can basically meet this assumption. The other one is
that the parallax between two consecutive frames of the static environment captured by the RGB-D
camera is small. The parallax here refers to the difference between the image coordinates of the same
feature point on different frames. The reason for this assumption is that we can better find out the
inconsistency of feature points caused by the motion of the moving objects in this situation, and
then use our method to detect and eliminate the outliers. Large parallax between two consecutive
frames will result in tracking loss. Commonly used RGB-D cameras, such as the Microsoft Kinect V1,
can provide a high rate of 30 frames per second (FPS), which ensures that the parallax between two
consecutive frames is sufficiently small (i.e., less than ten pixels). Therefore, these two assumptions
can be satisfied when tested in an indoor environment using a common RGB-D sensor.

The first part of our moving object detection method is shown in Figure 4. We used previous and
current RGB images for the extraction and matching of point features. The corresponding feature
points are connected with yellow lines. As can be seen from the picture (Figure 4a), dense feature
points were extracted from the plaid shirt of the right experimenter, and some points were extracted
from the torso of the left experimenter wearing a black T-shirt. Feature points on moving objects will
cause errors in the later estimation of camera pose, so we need to eliminate them. Before judging the
moving areas, we need to cluster the depth image. In Figure 4b, the k-means clustering algorithm was
used to cluster the filled current depth image. The number of clusters was set to ten in this example.
We can see that the two experimenters in the clustered filled depth image are almost divided into a
single category, and distinguished from the static environment.

Figure 5a shows the position of feature points on the current RGB images. From Figure 5a, we can
see that feature points are spread among moving objects and static environments. We then mapped the
positions of these feature points onto the clustered depth map, as Figure 5b shows. We can now count
the distribution of feature points in the c-th cluster areas. Note that we have not yet excluded outliers
in this step, so we use a statistic of the number and percentage of all feature points, Nc

ini and Pc
ini.
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We then used the fundamental matrix constraint [43] to identify inconsistency of feature points
caused by the motion of the moving objects, and then eliminate the mismatched points. The fundamental
matrix F3×3 describes the relationship between the point m3×1 and its corresponding epipolar line l′m,
which can be expressed as follows:

l′m = F3×3 ·m3×1. (1)

Here, m3×1 is a homogeneous coordinate by padding with one in the third row. Since the corresponding
point m′3×1 of point m3×1 is on the epipolar line l′m, there must be:

m′3×1
T
· F3×3 ·m3×1 = 0. (2)
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That is, if the point m of the first image is obtained, its corresponding point on the second image will
be constrained on the epipolar line l′m, as Figure 6 shows.
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Eight points are randomly selected to calculate a fundamental matrix Fi in the i-th iteration.
We can then compute the distance di

j of the j-th point according to Fi:

di
j = (m′j

T
· Fi
·m j)

2
. (3)

Sampson distance weight is used to divide inliers and outliers to improve the robustness of the
algorithm. It can be expressed as follows:

wi
j =

1
(Fi
·m j)1

2 + (Fi
·m j)2

2 + (FiT
·m′j)1

2 + (FiT
·m′j)2

2
. (4)

We can then get the weighted distance:
wdi

j = wi
j · d

i
j. (5)

We took wdi as the array of all distances in the i-th iteration and computed the median of wdi.
After reaching the maximum number of iterations, the least median of squares method [44] was used
to select the best fundamental matrix with the smallest median. The smallest median was taken as the
threshold. If the distance wdi

j of the j-th point was less than the threshold, the j-th point was divided as
an inlier, otherwise it was divided as an outlier.

In the third step, we used the fundamental matrix constraint mentioned above to determine the
inliers and outliers. We then mapped the positions of these inliers and outliers onto the clustered
depth map, as Figure 7a shows. Here, the distribution of inliers in the c-th cluster area can be counted.
Note that we excluded outliers in this step, so we employed the number Nc

f irst and percentage Pc
f irst here

as the statistical properties of the first fundamental matrix constraint. In this process, the eliminated
outliers contain a small number of mismatching points and some points located in moving parts. As is
shown in Figure 7a, the number of outliers removed from moving cluster areas is larger than that
in the static environment. This is because feature points on a moving object are more inconsistent
than points on a static area. Next, for the remaining inliers, the fundamental matrix constraint was
used again to further eliminate the outliers. The positions of the inliers and outliers on the clustered
depth map obtained this time are shown in Figure 7b, and the distribution of inliers in the c-th cluster
area can be counted. Note that we have excluded outliers again, so we call the number Nc

second and
percentage Pc

second here the statistical properties of the second fundamental matrix constraint. As is
shown in Figure 7, since the number of feature points removed in the moving cluster areas is more
than that in the static areas, the proportion of points in the moving areas will decrease.
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Figure 7. The third step of the moving object detection method. (a) The positions of the inliers (blue
circle marks) and outliers (red x marks) on the clustered depth map after the first fundamental matrix
constraint; (b) the positions of the inliers (blue circle marks) and outliers (red x marks) on the clustered
depth map after the second fundamental matrix constraint. Different gray values represent different
cluster areas.

The last step of our moving object detection method is to input the statistical characteristics
obtained from the previous three steps into the moving objects judgment model designed by us. If a
cluster area satisfies our model, it will be judged as a moving objects area. Otherwise it will be judged
as a static area. The model consists of three modules, and the first module of our model can be
expressed as follows:

Module 1 : (Nc
ini −Nc

f irst)/Nc
ini × 100 > Treduce. (6)

Treduce is the threshold that we set to find the cluster areas, where a large number of outliers were
removed after the first fundamental matrix constraint. However, if a cluster area has a few feature
points at the beginning, it will also meet Treduce, even if a small number of outliers are removed.
Therefore, we needed to set up the second module, which can be expressed as follows:

Module 2 : Pc
ini > Tini. (7)

This threshold Tini is to reduce the interference of small areas with a few feature points, which is easy
to satisfy the first module. Normally, because the number of outliers removed from moving cluster
areas is larger than that from the static cluster areas, the proportion of points in the moving cluster
areas will decrease and the proportion of points in the static cluster areas will increase. Based on this,
we set up the third module:

Module 3 : (Nc
ini −Nc

second) > 0. (8)

If the c-th cluster area satisfies all modules of our moving objects judgement model, the area will be
judged to be a moving object. The judgement result of this example is shown in Figure 8a, and the
result is a binary image. We can then use this binary image to filter the remaining feature points.
As can be seen from Figure 8b, feature points on the moving persons have been eliminated, and the
remaining feature points are basically located in the static environment.

In this part, we have illustrated the steps of our moving object detection method through example
data from the TUM RGB-D dataset, and the final result in Figure 8 also shows the effectiveness of our
method in detecting moving objects. Our RGB-D SLAM takes the proposed moving object detection
method as a data filtering process, and estimates the camera pose more robustly and accurately.
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Figure 8. The final step of the moving object detection method. (a) The moving object judgement result
of this example; (b) the remaining feature points on the current RGB image. The black areas in the
binary image represent moving objects detected by our method. The star symbols in the RGB image
represent the remaining feature points.

2.3. Camera Pose Estimation

After moving object detection and elimination, most of the remaining feature points were located
in the static environment. We took the first frame as an initial keyframe and set its position to be the
center of a local 3D coordinate system. The relationship between the 3D feature points obtained by the
depth sensor, and their image points by the imaging sensor, can be expressed as follows:

λi


ui
vi
1i

 = K · (R · Pi + t) = K · (T ·


Xi
Yi
Zi
1

)
(1:3)

. (9)

Here, the R ∈ SO(3) and t ∈ R3 represent the orientation and position of the camera,
respectively. The matrix T, containing camera exterior parameters R and t, transforms the
homogeneous world coordinate system Pi(Xi, Yi, Zi, 1)T to the current camera coordinate system
P′i (X

′

i , Y′i , Z′i ). K represents the interior parameters of the camera, which was obtained from the camera

calibration. The homogeneous pixel coordinate pi(ui, vi, 1)T is the corresponding re-projected point of
Pi(Xi, Yi, Zi, 1)T. We then used the efficient perspective-n-point method (EPnP) to estimate the camera
pose [45]. Due to the unknown camera pose and noise in the observation, there was a re-projection
error between world map points and matched feature points, as Figure 9 shows.

We then used bundle adjustment (BA) to optimize the camera pose by minimizing the re-projection
error of all matches. It can be defined as follows:

{R, t} = argmin
R,t

n∑
i=1

(∥∥∥∥∥pi −
1
λi
·K · (T · Pi)(1:3)

∥∥∥∥∥2)
. (10)

In order to construct the unconstrained error equation, we used a six-dimensional vector ξ ∈ R6 of Lie
algebra [46] to represent the camera pose R and t. Because the above equation is a least squares problem,
we needed to calculate the derivative of the re-projection error ei with respect to the optimization
variables:

∂ei
∂δξ

=
∂ei
∂p′i

∂p′i
∂P′i

∂P′i
∂δξ

= −


fx 1

Z′i
0 − fx

X′i
Z′2i

− fx
X′i Y′i
Z′2i

fx(1 +
X′2i
Z′2i

) − fx
Y′i
Z′i

0 fy
1

Z′i
− fy

Y′i
Z′2i

− fy(1 +
Y′2i
Z′2i

) fy
X′i Y′i
Z′2i

fy
X′i
Z′i

. (11)
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Here, the fx and fy are the camera interior parameters. In addition to camera pose, we also needed to
optimize the 3D world map point Pi(Xi, Yi, Zi, )

T. The partial derivative of the re-projection error ei
with respect to Pi(Xi, Yi, Zi, )

T can also be obtained via the chain rule of derivative calculation:

∂ei
∂Pi

=
∂ei
∂p′i

∂p′i
∂P′i

∂P′i
∂Pi

= −


fx 1

Z′i
0 − fx

X′i
Z′2i

0 fy
1

Z′i
− fy

Y′i
Z′2i

R. (12)

Through Equation (11) and (12), we linearize the 2D pixel re-projection error ei with respect to
camera pose and 3D world map point. We can then use the Levenberg–Marquardt method implemented
in g2o [47] to solve the least squares optimization problem described in Equation (10). Finally, a robust
result of camera pose R and t can be obtained. In the following experimental section, we detail
experiments we performed with a testing dataset to verify the effectiveness of our RGB-D SLAM
system in common dynamic indoor scenes.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 20 
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3. Experimental Results

In order to evaluate the effectiveness of our new SLAM method, we conducted a series of
experiments using two datasets: sequence images captured by our RGB-D camera, and the public
TUM RGB-D datasets with ground-truth. In the first experimental part, we qualitatively evaluated
the proposed moving object detection method, the data filtering front-end of our improved RGB-D
SLAM, with our homemade sequence images in typical dynamic indoor scenes like corridor and office.
In the second part, we tested our improved RGB-D SLAM with the public TUM RGB-D datasets.
We conducted experiments to analyze the performance of our improved RGB-D SLAM system with
moving object detection method and the one without moving object detection method in dynamic
environments. For the purpose of comparison, we also compared our SLAM system with the DVO
and the BaMVO, both of which are the state-of-the-art RGB-D SLAM methods that can run robustly
in a dynamic indoor environment. All the experiments were conducted on a computer with an Intel
Core i7-6820HQ CPU with 2.7 GHz and 16 GB RAM. The details of the experimental results are
described below.

3.1. Testing with Sequence Images Captured by Our RGB-D Camera

In order to test the effectiveness of the proposed method, we recorded some RGB-D sequence
images at 640× 480 resolution with a Microsoft Kinect V1 sensor. All the data was recorded at a frame
rate of 30 Hz in common scenarios, including the office and the corridor. The experimenter walked at
normal speed as a moving object. The RGB-D camera was calibrated using the method described in
Section 2.1. Using calibration parameters, we were able to project the depth image onto the RGB image.
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The first scenario is an office environment, where we captured two types of sequence images.
Frames selected evenly from the experimental results are shown in Figure 10. In the first sequence
images of office, the camera was fixed and the experimenter passed through the view with a direction
parallel to the camera plane. The experimenter was about 1.5 m away from the camera and walked at
a normal speed. In the second sequence images of office, as shown in Figure 10b, the experimenter
walked away from the camera with a direction perpendicular to the camera plane at a normal speed,
and the interval of presented images is 10 frames. The three rows from top to bottom are RGB images,
depth images, and motion detection results. The black parts in the binary images in the third row are
the moving object detected by our method, and the white part is the background. As can be seen from
Figure 10, our method can detect and remove the moving objects well in the frames with obvious
pedestrian characteristics.
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Figure 10. Selected experimental results of the proposed method using sequence images captured in
an office environment. The three rows from top to bottom are RGB images, depth images, and moving
object detection results. (a) The experimenter passed through the view with a direction parallel to the
camera plane. (b) The experimenter walked away from the camera with a direction perpendicular to
the camera plane. The moving objects detected by our method are colored in black, as shown in the
third row.

The second scenario was a corridor environment. There are two types of sequence images in this
scenario. Figure 11 shows some frames evenly selected from the experimental results. In the first
sequence images, the camera was fixed. The experimenter approached the camera and turned around.
As shown in Figure 11a, the spacing is 20 frames. As for the second sequence images, the camera
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was unfixed and swung from side to side. The experimenter just walked away from the camera with
a normal speed. In Figure 11b, the spacing of the selected frames is 10 frames. According to our
moving object detection method, we can get the corresponding binary images as shown in third row of
each sub-figure. It is worth mentioning that some of the background parts were treated as moving
objects, like Frame 215 in Figure 11a and Frame 120 in Figure 11b. Nonetheless, it can be seen from the
Figure 11 that these misclassified parts are mainly white walls and floor tiles. Few feature points will
be extracted in these areas, so, even if they are removed, this situation will have little influence on
the subsequent camera pose estimation. Overall, our method can detect moving objects well in most
frames. After the moving objects are detected, the feature points belonging to the moving objects are
eliminated in the subsequent process.
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Figure 11. Some experimental results of the proposed method using sequence images captured in
a corridor environment. (a) RGB-D camera was fixed and the experimenter approached the camera
and then turned away from it; (b) RGB-D camera swung from side to side and the experimenter just
walked away from the camera plane. The moving objects detected by our method are colored in black,
as shown in the third row of each sub-figure.

3.2. Evaluation Using TUM RGB-D SLAM Datasets

In this part, the TUM RGB-D SLAM datasets were used to evaluate the proposed RGB-D SLAM
method. The RGB and depth images were recorded at frame rate of 30 Hz and a 640× 480 resolution.
Ground-truth trajectories obtained from a high-accuracy motion-capture system are provided in the
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TUM datasets. Evaluation tools are available for trajectory accuracy estimation with the ground-truth
data. The TUM datasets have a Dynamic Objects category containing three typical dynamic indoor
scenes: desk, sitting, and walking. In the desk sequence, a person sits at a desk in an office. In the sitting
sequences, two persons sit at a desk with a little gesture. These two scenarios can be considered lowly
dynamic environments. In the walking sequences, two persons walk through an office scene. Walking
sequences can be used to evaluate the robustness of the proposed method in highly dynamic scenes
with quickly moving objects. As is described on the website of the TUM datasets, the RGB-D camera
has four different states of motion in the sitting and walking sequences, which are static, xyz, halfsphere,
and rpy. The camera is fixed on a position when it is static state, and moves along three directions at
the xyz state. For the halfsphere state, the camera moves on a 1 m diameter hemisphere. As for the rpy
state, the camera rotates along the principal axes (row-pitch-yaw) at the same position.

Firstly, we conducted a quantitative evaluation of our new SLAM method on dynamic TUM
datasets. The ATE, which represents the difference between the estimated trajectory and the
ground-truth, was used as the evaluation metric. In particular, an easy-to-use open-source package evo
was employed for the evaluation (github.com/MichaelGrupp/evo). Figure 12 shows the accuracy on
two highly dynamic datasets. The blue lines represent the ATE of the RGB-D SLAM without moving
object detection, and the lines in orange represent the ATE of our new SLAM method with moving
object detection. As we can see in blue lines of Figure 12a,b, when there are pedestrians in the FOV of
the camera, the ATE values increase dramatically. However, the ATE values of orange lines at those
same moments were greatly reduced, because the influence of pedestrians was eliminated with our
new RGB-D SLAM.
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Figure 12. Accuracy of the experiment without moving object detection (blue) and the experiment
with our new method (orange) on two highly dynamic datasets. The horizontal axis represents
time in seconds, and the longitudinal axis represents the absolute trajectory error (ATE) in meters.
(a) 1341846315–1341846327 s part of the fr3/walking_xyz dataset; (b) 1341846446–1341846457 s part of
the fr3/walking_halfsphere dataset. The RGB images of blue lines indicate the presence of pedestrians
in the FOV of the camera. The black areas in the binary images of orange lines indicate that our
improved RGB-D SLAM excluded the influence of pedestrians at these moments when ATE values
increased dramatically.

Table 3 shows the ATE on the sitting and walking dynamic datasets of RGB-D SLAM with and
without the proposed moving object detection. From the root mean square error (RMSE) column,
we can see that the proposed RGB-D SLAM system with moving object detection method had a lower
RMSE than the one without moving object detection in these dynamic environments. In the first
two sitting datasets, the new RGB-D SLAM with moving object detection improved the accuracy

github.com/MichaelGrupp/evo
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slightly. This is because the sitting datasets are lowly dynamic scenes where pedestrians are sitting
on chairs, so the pedestrians have little impact on the camera’s ego-motion estimation. The next four
walking datasets represent highly dynamic scenes with quick moving objects. By using our moving
object detection method, the proposed RGB-D SLAM greatly improved the accuracy in these datasets.
The results clearly demonstrate the effectiveness and robustness of our RGB-SLAM in both lowly and
highly dynamic indoor scenes.

Table 3. ATE on the sitting and walking dynamic datasets of the proposed RGB-D SLAM with and
without the moving object detection. The numbers in bold indicate that these terms are better than
those of another method.

Dynamic TUM RGB-D
Datasets

Without Moving Object
Detection ATE (m)

With Moving Object
Detection ATE (m)

Max. Avg. Min. RMSE Max. Avg. Min. RMSE

fr3/sitting_static 0.0381 0.0078 0.0007 0.0087 0.0255 0.0059 0.0002 0.0066
fr3/sitting_halfsphere 0.0971 0.0194 0.0018 0.0230 0.0919 0.0152 0.0017 0.0196

fr3/walking_static 0.6391 0.3513 0.0587 0.3843 0.6161 0.2691 0.0231 0.3080
fr3/walking_xyz 1.3661 0.6309 0.0612 0.7328 0.8196 0.2768 0.0430 0.3047

fr3/walking_halfsphere 1.5683 0.5831 0.0690 0.6891 0.6246 0.2972 0.1088 0.3116
fr3/walking_rpy 1.1136 0.4975 0.1118 0.5523 0.9351 0.4637 0.0708 0.4983

1 The unit of each term is the meter. RMSE = root mean square error.

To demonstrate the results intuitively, several accuracy heat maps of the proposed RGB-D SLAM
with and without our moving object detection method are shown in Figure 13. The gray dotted
line represents the reference ground-truth. The color solid lines represent the estimated trajectories.
The color bar represents the size of the ATE. Each row shows the results of the two methods with the
same dataset, and the two color bars of each row have the same maximum error and minimum error.
Comparing the three pairs of trajectories, we can observe that the proposed RGB-D SLAM with moving
object detection method showed better accuracy in both lowly and highly dynamic indoor scenes.

We then compared our new method with the state-of-the-art RGB-D SLAM methods DVO and
BaMVO for comparison. The DVO method proposed by Kerl et al. [37] uses a robust error function
that reduces the influence of large residuals caused by moving objects. The BaMVO proposed by
Kim et al. [39] detects moving objects through accumulation of the warped difference images between
the current and remapped depth images over a period of time. These two RGB-D SLAM methods
can run robustly in a dynamic indoor environment. For a fair comparison of the three methods, we
closed the loop closure detection of our RGB-D SLAM in the experiment and used the RMSE results
of these two reference methods in their papers. We adopted the relative pose error (RPE) as another
evaluation metric, which described the error with a distance of one second in the estimated trajectory
file. Meanwhile, we calculated both the translation and the rotation part of RPE as an evaluation of
six DoFs.

Table 4 shows the RPE results of DVO, BaMVO, and our RGB-D SLAM. We calculated the RMSE
of three methods in nine scenes, including lowly and highly dynamic indoor environments. As we can
see in Table 4, our RGB-D SLAM system performed better in most scenes of TUM dynamic datasets
in terms of the translation RMSE and rotation RMSE. In the lowly dynamic environment, compared
with the other two methods, our system had a lower RPE in the translation and rotation parts. As for
the highly dynamic environment, our system improved the precision greatly when compared with
DVO, and had better accuracy in most scenes when compared with BaMVO. This shows that the
proposed RGB-D SLAM system with a moving object detection method can yield smaller errors than
the reference methods, and performs better in common dynamic environments.
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Figure 13. Several accuracy heat maps of the proposed RGB-D SLAM with and without our moving
object detection method. The three accuracy heat maps of the left column were estimated without
using the moving object detection method on the (a) fr3/sitting_halfsphere, (c) fr3/walking_xyz, and
(e) fr3_walking_halfsphere sequences. The three accuracy heat maps of the right column were estimated
using the method on the (b) fr3/sitting_halfsphere, (d) fr3/walking_xyz, and (f) fr3_walking_halfsphere
sequences. The two color bars of each row have the same maximum error and minimum error.
The redder the color is, the larger the ATE is.
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Table 4. Translation RMSE and rotation RMSE of relative pose error (RPE) for TUM RGB-D datasets in
the dynamic objects category. The numbers in bold indicate that these terms are better than those of
another method.

TUM RGB-D Datasets
Category: Dynamic Objects

Translation RMSE (m/s) Rotation RMSE (◦/s)

DVO BaMVO Ours DVO BaMVO Ours

Low Dynamic
Environment

fr2/desk_with_person 0.0354 0.0352 0.0069 1.5368 1.2159 0.4380
fr3/sitting_static 0.0157 0.0248 0.0077 0.6084 0.6977 0.2595
fr3/sitting_xyz 0.0453 0.0482 0.0117 1.4980 1.3885 0.4997

fr3/sitting_halfsphere 0.1005 0.0589 0.0245 4.6490 2.8804 0.5643
fr3/sitting_rpy 0.1735 0.1872 0.0234 6.0164 5.9834 0.7838

High Dynamic
Environment

fr3/walking_static 0.3818 0.1339 0.1881 6.3502 2.0833 3.2101
fr3/walking_xyz 0.4360 0.2326 0.2158 7.6669 4.3911 3.6476

fr3/walking_halfsphere 0.2628 0.1738 0.1908 5.2179 4.2863 3.3321
fr3/walking_rpy 0.4038 0.3584 0.3270 7.0662 6.3398 6.3215

1 Relative pose error for pose pairs with a distance of 1 second.

4. Conclusions

In this paper, we present a new RGB-D SLAM method with moving object detection for dynamic
indoor scenes. The proposed RGB-D SLAM has two main innovations. First, we developed a
new method to detect and eliminate moving objects based on mathematical models and geometric
constraints. The proposed moving object detection method can be incorporated into the SLAM system
as a data filtering process. Second, we clustered the filled depth images and used them to segment
moving objects. Therefore, our improved RGB-D SLAM can detect moving objects and alleviate the
impact of them better than those methods for which the moving object detection is based on subtraction
between consecutive images.

In the experimental section, the proposed RGB-D SLAM was qualitatively evaluated with our
homemade sequence images in some typical dynamic indoor scenes like corridor and office. We then
conducted experiments to demonstrate that the proposed RGB-D SLAM can greatly improve the
accuracy in dynamic indoor scenes by using our moving object detection method. We also presented
the quantitative evaluation results of our improved RGB-D SLAM by comparing with DVO and
BaMVO, which both are the state-of-the-art RGB-D SLAM algorithms in dynamic environments by
incorporating data processing methods or moving object detection into the SLAM process. These
quantitative evaluations were carried out using the TUM RGB-D datasets. All the experimental results
show that the proposed RGB-D SLAM was able to run effectively and stably in common dynamic indoor
scenes. The attained accuracy of pose estimation was generally higher than that of reference methods.

In the future, we plan to continue improving our RGB-D SLAM method by introducing other
clustering methods, such as the Gaussian mixture model. In addition, we intend to combine our
moving object detection model with a lightweight deep learning method, so as to achieve robust results
of moving object detection in challenging dynamic environments.
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Abbreviations

The following abbreviations are used in this manuscript:

SLAM Simultaneous localization and mapping
LiDAR Light detection and ranging
GPS Global positioning system
IMUs Inertial measurement units
3D Three-dimension
SURF Speeded-Up Robust Features
ORB Oriented FAST and rotated BRIEF
ORB-SLAM ORB feature based SLAM
DoFs Degree of freedom
DVO Dense visual odometry
RFS Random finite set
FOV Field of view
BaMVO Background model-based dense-visual-odometry
IAICP Intensity assisted iterative closest point
FPS Frames per second
EPnP Efficient perspective-n-point method
BA Bundle adjustment
ATE Absolute trajectory error
RMSE Root mean square error
RPE Relative pose error
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