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Abstract: One of the important image processing technologies is visual odometry (VO) technology.
VO estimates platform motion through a sequence of images. VO is of interest in the virtual reality
(VR) industry as well as the automobile industry because the construction cost is low. In this study,
we developed stereo visual odometry (SVO) based on photogrammetric geometric interpretation.
The proposed method performed feature optimization and pose estimation through photogrammetric
bundle adjustment. After corresponding the point extraction step, the feature optimization was
carried out with photogrammetry-based and vision-based optimization. Then, absolute orientation
was performed for pose estimation through bundle adjustment. We used ten sequences provided
by the Karlsruhe institute of technology and Toyota technological institute (KITTI) community.
Through a two-step optimization process, we confirmed that the outliers, which were not removed
by conventional outlier filters, were removed. We also were able to confirm the applicability of
photogrammetric techniques to stereo visual odometry technology.
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1. Introduction

Estimation of a platform’s pose using a sensor is a technology that has attracted attention in
various fields, such as robotics and the automobile industry. Typical sensors include the global
positioning system (GPS), light detection and ranging (LiDAR), and the camera. The GPS is the
most popular method, and sub-meter accuracy is possible. However, accurate GPS equipment is very
expensive, and accuracy is greatly reduced in some environments where satellite signals are blocked,
such as downtown or in tunnels [1]. The method using LiDAR is very accurate and stable. However,
since it requires expensive equipment, its application is limited. The method using a camera has a
great advantage that the construction cost is relatively low. This technique is called visual odometry
(VO). VO is divided into monocular visual odometry (MVO) and stereo visual odometry (SVO).
The MVO is slightly cheaper because it uses one camera, but there is a scale uncertainty problem in
pose estimation [2]. It also has relatively unstable image geometry [3]. SVO has an advantage that
camera localization and generation of 3D maps around the vehicle can be achieved simultaneously.
For both MVO and SVO, accuracy and performances are highly dependent on the image processing
algorithms applied. In this study, we focus on SVO.

There has been a significant amount of research on SVO particularly focusing on how to extract
its favorable features without any outliers. Stereo odometry algorithm relying on feature tracking
(SOFT2) [4], which has been known to perform optimally, implemented simultaneous localization
and mapping (SLAM) by performing pose estimation and mapping in parallel. It utilized blob and
corner masks to extract features and the essential matrix to estimate the pose. It also considered
the loop closing for feature and keyframe management. As features are extracted depending on the
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rotation, there is a disadvantage that the performance may degrade depending on the state of the
viewpoint. The RotRocc+ [5] method studied the characteristics of the optical flow and reprojection
error for odometry and eliminated outliers by decoupling the optical flows of motion and exploiting
the characteristics of the flow using a restrictive motion model. Therefore, there was a problem that
outliers were not able to be accurately removed when the estimated vehicle’s motion deviated from the
model. Gradient-based direct visual odometry (GDVO) [6] method used a dual Jacobian optimization
with a multiscale pyramid scheme for outlier removal. This method also applied gradient feature
representation to respond to the lighting changes. However, it did not apply bundle adjustment, and
therefore, the coordinates of the features were incorrect. Elbrus [7] applied the multiple pyramid
Kanade–Lucas–Tomasi (KLT) method to track the feature and selected inliers using 2D track average
motion and rate of disappearance. This method searched for features on multiple scales. It did not use
depth information for elimination outliers. Circular fast retina keypoint (FREAK)-oriented fast and
rotated binary robust independent elementary feature (ORB) visual odometry (CFORB) [8] detected
features based on FREAK-ORB and repeated the process 50 times to perform random sample consensus
(RANSAC) [9] for outlier elimination. This process was carried out using the concept of circular
matching. Other methods used various ways to determine inliers [10–14]. It is notable that VO is
based on features, and the accuracy of a method is highly related to the state of the feature. Most of
the previous methods mentioned above optimized features based on pixels. In this study, we try to
perform feature optimization using image geometry. Based on the photogrammetric analysis, we aim
to apply image geometry for feature optimization and pose estimation.

This paper is structured as follows. Section 2 describes the material and proposed method.
The experimental results are introduced in Section 3. Then, Section 4 shows a discussion of the results
describing the strengths and weaknesses. Finally, Section 5 concludes.

2. Materials and Methods

For the experiment, we used the KITTI dataset provided by The KITTI vision benchmark suit [15].
The KITTI dataset was acquired with the vehicle shown in (a) of Figure 1, and these are distributed on
the KITTI website as in (b) of Figure 1. It contains 11 image sequences and true values for the poses
constructed in various environments, including urban areas, highways, and tree roads. The images
were taken with an optical lens at a viewing angle of about 90 degrees. The camera used was a Sony
ICX267 with a size of 1241 × 376 pixels. These were mounted on a rectified stereo rig.
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The flowchart of the proposed real-time visual odometry technique is shown in Figure 2. First,
we extracted features from images and searched for corresponding points by matching. This process
is important because it takes a significant amount of time in the whole process, and the number
of features and the matching result affect the accuracy of the estimation. Therefore, we compared
the processing time and the number of corresponding points of several candidate methods. Next,
we optimized the corresponding points. As mentioned, this process is necessary because the degree
of the outlier affects the accuracy. In this study, we applied photogrammetry-based and computer
vision-based optimization. In the photogrammetry-based part, we checked the reprojection error and
the distance between the calculated and projected model points. This part is performed after the second
frame because the geometry information between the previous and current image is needed. In the
vision-based part, the outlier filtering in multiple images was based on RANSAC. Finally, we estimated
the pose using the optimized corresponding points. It was based on the absolute orientation of the
photogrammetric bundle adjustment. Finally, the relative positions of the platform were calculated by
continuously accumulating the estimated pose. The detailed explanations are as follows.
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2.1. Feature Extraction and Matching

The corresponding point extraction was carried out in the order of feature extraction and
feature matching. First, in feature extraction, we extracted features such as the corner points or
edges on the image. We selected representative feature extractors, scale invariant feature transform
(SIFT) [17], speed-up robust feature (SURF) [18], and features from accelerated segment test (FAST) [19],
Shi–Tomasi [20], provided by OpenCV.

Feature matching is divided into pairwise matching and sequential tracking. In pairwise matching,
feature description, and matching are performed. After feature extraction, we calculated feature
descriptors as shown in Table 1, and compared the resemblance to determine a corresponding
point according to the matchers listed in Table 1. In sequential tracking, we set a window around a
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feature of one image and tracked the corresponding point from the next image in an image sequence.
Tables 1 and 2 summarize various techniques for pairwise matching and sequential tracking applied in
this study.

Table 1. The pairwise matching methods tested.

Detector Descriptor Matcher

Scale invariant feature
transform (SIFT) SIFT Brute-Force

Speed-up robust
feature (SURF) SURF Brute-Force

Features from accelerated
segment test (FAST)

Binary robust invariant
scalable keypoints (BRISK)

Fast library for approximate
nearest neighbors (FLANN)

FAST
Oriented fast and rotated

binary robust independent
elementary feature (ORB)

FLANN

FAST Fast retina keypoint (FREAK) FLANN

Table 2. The feature tracking method combinations.

Extractor Tracker

FAST Kanade–Lucas–Tomasi tracker
Shi–Thomasi corner Kanade–Lucas–Tomasi tracker

2.2. Corresponding Point Optimization

In Figure 3, the green line indicates the feature movement direction between previous and current
images. The red dot indicates the head direction. In the process of feature extraction, points on moving
objects such as cars can be extracted, as shown in the squares in Figure 3. These features have abnormal
motion vectors and make camera motion misdiagnoses, which greatly reduce the accuracy of the
overall process. The top image was taken while the vehicle was turning right. The motion vectors
within the box were in the opposite direction to the others, which were not correct. The bottom image
was taken at a constant speed. The large motion vectors within the box were also not correct. Based on
these observations, we tried to remove the outlier based on the geometry.
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Figure 4 shows the proposed feature optimization concept. As shown in the figure, we performed
photogrammetry-based optimization using the previous and current images and vision-based
optimization using the current and new images. The photogrammetric optimization was performed
from the second image because it needed the image geometry.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 16 
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Xt−1

Yt−1

Zt−1

1

, (1)

Distance(d1) =

√
(Xt−2 − PrjX)

2 + (Yt−2 − PrjY)
2 + (Zt−2 − PrjZ)

2, (2){
d1 < threshold1 : Status1 = True
d1 > threshold1 : Status2 = False

, (3)

where Xt−1, Yt−1 and Zt−1 are object coordinates in the ground coordinate system at time (t − 1). Tx,
Ty, Tz are translation elements from Lt−1 to Lt−2. r11~33 are 3 × 3 rotation elements from Lt−1 to Lt−2.

Reprjx = − f
r11(Xt−1−Tx)+r12(Yt−1−Ty)+r13(Zt−1−Tz)

r31(Xt−1−Tx)+r32(Yt−1−Ty)+r33(Zt−1−Tz)

Reprjy = − f
r21(Xt−1−Tx)+r22(Yt−1−Ty)+r23(Zt−1−Tz)

r31(Xt−1−Tx)+r32(Yt−1−Ty)+r33(Zt−1−Tz)
,

(4)
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Distance(d2) =

√
(xt−2 − ReprjX)

2 + (yt−2 − ReprjY)
2, (5){

d2 < threshold2 : Status2 = True
d2 > threshold2 : Status2 = False

, (6)

where f is the focal length. Xt−1, Yt−1 and Zt−1 are the object coordinates in the ground coordinate
system at time (t − 1). Tx, Ty, and Tz are the translation elements from Lt−1 to Lt−2. r11~33 are 3 × 3
rotation elements from Lt−1 to Lt−2. xt−2, yt−2 are image coordinates at time (t − 2).
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Then, it selects the appropriate model while inputting the remaining data. In this process, outliers
are removed. Within the next stereo pair (Lt and Rt), we first extracted features corresponding to
the features classified as inliers through photogrammetry-based optimization at (t – 1). Then, we
eliminated the outliers by applying RANSAC while combining two images. We applied RANSAC
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2.3. Absolute Orientation for Pose Estimation

We estimated the platform’s pose through absolute orientation using the collinearity condition.
The collinearity condition is a condition that the three-dimensional coordinates of the object existing in
the image, the image coordinates, and the camera projection center must be on the same straight line
as shown in Figure 7. First, we determined the model points defined as (Pn) between O1 and O2. Then,
we established the relationship between pn and Pn based on the collinearity equation as in Equation (7).

F = xn − f
r11(Xn−Tx)+r12(Yn−Ty)+r13(Zn−Tz)

r31(Xn−Tx)+r32(Yn−Ty)+r33(Zn−Tz)

G = yn − f
r21(Xn−Tx)+r22(Yn−Ty)+r23(Zn−Tz)

r31(Xn−Tx)+r32(Yn−Ty)+r33(Zn−Tz)
,

(7)

where f is focal length. Xn, Yn and Zn are object coordinates in the ground coordinate system at time
(t − 1). xn and yn are left image coordinates at time t. Tx, Ty, Tz are Translation element. r11~33 are
3 × 3 rotation matrix elements. The n is 1 to the number of corresponding points.
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We set Equation (8) by differentiating partially Equation (7) for the unknown. Then, we estimated
geometric elements through the iterative least squares method.
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The estimated geometric elements mean the pose of O3 by O1. Therefore, we converted it to a
4 × 4 transformation matrix and then accumulated the pose by multiplying each result.

3. Results

We performed experiments with ten sequences in the KITTI dataset. The specifications of the
computer used were Windows 10 64 bit, CPU i5-6600 3.30 GHz, RAM 16 GB, and the experiment was
performed in visual studio 2013, Microsoft product in the United States. This section shows the results
of corresponding point optimization and pose estimation. Then, it described the performance of the
proposed method.

3.1. Corresponding Point Optimization Result

In the figure above, the turquoise lines indicate the feature motion vector. Figures 8 and 9 show
the feature tracking results with and without optimization. In the figures, circles indicate the feature
motion vector for the moving vehicle. As shown, it can be seen that this feature has a different motion
vector from the surrounding points. We confirmed that the abnormal features indicated by circles were
eliminated through optimization.
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Figure 13 and Table 3 show the results with or without photogrammetric feature optimization.
The rotation error rate decreased by 8.9383 deg/m and the translation error rate decreased by 0.0176%.
As shown in Figures 10–12, we confirmed that the accuracy was improved by not using dynamic
objects as features.

Table 3. Accuracy with or without optimization.

Rotation Error Rate (deg/m) Translation Error Rate (%)

Before optimization 12.8637 0.0354
After optimization 3.9254 0.0178
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3.2. Pose Estimation Result for Three Cases

We checked the trajectory result by the path shape. We experimented with the sequence acquired
in the area with fewer curves, a large number of curves, and a sharp curve. In Figure 14, the red line
indicates the ground truth provided by KITTI, and the blue line indicates the trajectory estimated by
the proposed method. As shown, the trajectory was more sensitive to the number of curve appearances
rather than the degree of the curve. For three cases, the rotation error rate was 0.0156 deg/m, the
translation error rate 2.8727%, and the processing time per frame was 0.0313 s on average.
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3.3. Estimation Results for Ten Sequences in KITTI Dataset

Finally, we experimented with 00 to 11 (except 01) sequences provided by KITTI. Figure 15 is a
graph showing the error occurrence per mileage with sequence 00, where (a) is about rotation and (b)
is about translation. Figures 16–24 are graphs for sequences 01 to 11.

For ten sequences, the average rotation error was 0.0175 deg/m, the average translation error was
3.5520%, and the processing time per frame was 0.0554 s on average.
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4. Discussion

Through the comparison of Figures 8 and 9, we could see that the features on the moving
object were eliminated by the proposed optimization scheme. In order to confirm the effectiveness
of the optimization, the experiment was performed with sequence 09. Through the comparison of
Figures 10–12, the features on moving objects were eliminated, and the rotation error rate decreased by
8.9383 deg/m, while the translation error rate decreased by 0.0176%. Then, we experimented with
three different zones with different numbers and degrees of curves. The rotation error rate was smaller
than the translation error rate. Also, we observed that the error generally occurred in the curved road
rather than the straight road. In Table 4, the average processing time per frame was 0.0313 s. For ten
sequences provided by KITTI, the average rotation error was 0.0175 deg/m, translation error was
3.5520%, and the running time per frame was 0.0554 s. The rotation error tended to decrease with
the moving distance, but the translation error tended to increase. Through all experiments shown,
we confirmed that the proposed feature optimization scheme worked successfully and that real-time
processing was possible.

Table 4. Pose estimation accuracy for three cases.

Sequence Rotation Error Rate
(deg/m)

Translation Error Rate
(%)

Processing Time Per Frame
(s)

(a) 0.0127 2.3817 0.0269
(b) 0.0108 2.6987 0.0347
(c) 0.0162 2.3109 0.0324

Average 0.0132 2.4638 0.0313

Our research is ongoing and the performance shown here needs further improvements,
particularly compared to known optimal algorithms. For example, SOFT2 [4] achieved a rotation error
of 0.014 deg/m, a translation error of 0.65%, and a processing time of 0.1 s/frame. Nevertheless, our
results support our intention of using photogrammetric analysis as an alternative outlier removal
method. We showed that the proposed photogrammetric processing could enable successful outlier
removal and that real-time processing was feasible even with photogrammetric iterative estimations.
It is notable that we adopted the concept of circular matching proposed in CFORB [8] and enhanced its
performance by photogrammetric optimizations. CFORB achieved a rotation error of 0.0107 deg/m,
a translation error of 3.73%, and a processing time of 0.9 s/frame [8]. CFORB performed slightly
better in translation errors compared to ours. This is because CFORB utilized the time-consuming
RANSAC process repeatedly by 50 loops. One can check this by the large processing time of CFORB.
However, such extensive RANSAC-based outlier removal may not bring accurate pose estimation,
which is supported by the superior angular estimation performance by our method. The proposed
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photogrammetric processing method could effectively remove outliers and estimate the pose correctly
within a very small processing time.

5. Conclusions

Favorable feature extraction and outlier removal are key to visual odometry techniques. In this
paper, we proposed photogrammetric feature optimization applicable to stereo odometry. Using
the estimated poses of previous frames, we repeated the process of projecting and re-projecting the
corresponding points extracted from the current frame onto the previous ones. Then, we removed the
outliers by confirming the projection and re-projection errors. In addition, we optimized the feature
on the new input image through multi-image filtering. Through the experiments, we were able to
confirm the applicability of the proposed photogrammetric feature optimization process to stereo
visual odometry technology.

We need to enhance the performance of the proposed optimization process further as there
were some remaining outliers after optimization. In this paper, we considered photogrammetric
analysis between a stereo pair of current and previous frames. We need to accumulate the results of
incoming frames to remove outliers with better accuracy. Also, we need to consider preprocessing
multiple stereo pairs of previous frames to generate a list of reference features for incoming frames.
The major contribution of this paper is that we showed the feasibility of real-time outlier removal by
photogrammetric analysis.
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