
remote sensing

Article

Development of Stereo Visual Odometry Based on
Photogrammetric Feature Optimization

Sung-Joo Yoon and Taejung Kim *

Department of Geoinformatic Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, Korea;
22181415@inha.edu
* Correspondence: tezid@inha.ac.kr; Tel.: +82-32-860-7606

Received: 31 October 2018; Accepted: 26 December 2018; Published: 1 January 2019
����������
�������

Abstract: One of the important image processing technologies is visual odometry (VO) technology.
VO estimates platform motion through a sequence of images. VO is of interest in the virtual reality
(VR) industry as well as the automobile industry because the construction cost is low. In this study,
we developed stereo visual odometry (SVO) based on photogrammetric geometric interpretation.
The proposed method performed feature optimization and pose estimation through photogrammetric
bundle adjustment. After corresponding the point extraction step, the feature optimization was
carried out with photogrammetry-based and vision-based optimization. Then, absolute orientation
was performed for pose estimation through bundle adjustment. We used ten sequences provided
by the Karlsruhe institute of technology and Toyota technological institute (KITTI) community.
Through a two-step optimization process, we confirmed that the outliers, which were not removed
by conventional outlier filters, were removed. We also were able to confirm the applicability of
photogrammetric techniques to stereo visual odometry technology.

Keywords: stereo visual odometry; photogrammetry; feature optimization; pose estimation; KITTI

1. Introduction

Estimation of a platform’s pose using a sensor is a technology that has attracted attention in
various fields, such as robotics and the automobile industry. Typical sensors include the global
positioning system (GPS), light detection and ranging (LiDAR), and the camera. The GPS is the
most popular method, and sub-meter accuracy is possible. However, accurate GPS equipment is very
expensive, and accuracy is greatly reduced in some environments where satellite signals are blocked,
such as downtown or in tunnels [1]. The method using LiDAR is very accurate and stable. However,
since it requires expensive equipment, its application is limited. The method using a camera has a
great advantage that the construction cost is relatively low. This technique is called visual odometry
(VO). VO is divided into monocular visual odometry (MVO) and stereo visual odometry (SVO).
The MVO is slightly cheaper because it uses one camera, but there is a scale uncertainty problem in
pose estimation [2]. It also has relatively unstable image geometry [3]. SVO has an advantage that
camera localization and generation of 3D maps around the vehicle can be achieved simultaneously.
For both MVO and SVO, accuracy and performances are highly dependent on the image processing
algorithms applied. In this study, we focus on SVO.

There has been a significant amount of research on SVO particularly focusing on how to extract
its favorable features without any outliers. Stereo odometry algorithm relying on feature tracking
(SOFT2) [4], which has been known to perform optimally, implemented simultaneous localization
and mapping (SLAM) by performing pose estimation and mapping in parallel. It utilized blob and
corner masks to extract features and the essential matrix to estimate the pose. It also considered
the loop closing for feature and keyframe management. As features are extracted depending on the

Remote Sens. 2019, 11, 67; doi:10.3390/rs11010067 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8939-7854
http://www.mdpi.com/2072-4292/11/1/67?type=check_update&version=1
http://dx.doi.org/10.3390/rs11010067
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 67 2 of 17

rotation, there is a disadvantage that the performance may degrade depending on the state of the
viewpoint. The RotRocc+ [5] method studied the characteristics of the optical flow and reprojection
error for odometry and eliminated outliers by decoupling the optical flows of motion and exploiting
the characteristics of the flow using a restrictive motion model. Therefore, there was a problem that
outliers were not able to be accurately removed when the estimated vehicle’s motion deviated from the
model. Gradient-based direct visual odometry (GDVO) [6] method used a dual Jacobian optimization
with a multiscale pyramid scheme for outlier removal. This method also applied gradient feature
representation to respond to the lighting changes. However, it did not apply bundle adjustment, and
therefore, the coordinates of the features were incorrect. Elbrus [7] applied the multiple pyramid
Kanade–Lucas–Tomasi (KLT) method to track the feature and selected inliers using 2D track average
motion and rate of disappearance. This method searched for features on multiple scales. It did not use
depth information for elimination outliers. Circular fast retina keypoint (FREAK)-oriented fast and
rotated binary robust independent elementary feature (ORB) visual odometry (CFORB) [8] detected
features based on FREAK-ORB and repeated the process 50 times to perform random sample consensus
(RANSAC) [9] for outlier elimination. This process was carried out using the concept of circular
matching. Other methods used various ways to determine inliers [10–14]. It is notable that VO is
based on features, and the accuracy of a method is highly related to the state of the feature. Most of
the previous methods mentioned above optimized features based on pixels. In this study, we try to
perform feature optimization using image geometry. Based on the photogrammetric analysis, we aim
to apply image geometry for feature optimization and pose estimation.

This paper is structured as follows. Section 2 describes the material and proposed method.
The experimental results are introduced in Section 3. Then, Section 4 shows a discussion of the results
describing the strengths and weaknesses. Finally, Section 5 concludes.

2. Materials and Methods

For the experiment, we used the KITTI dataset provided by The KITTI vision benchmark suit [15].
The KITTI dataset was acquired with the vehicle shown in (a) of Figure 1, and these are distributed on
the KITTI website as in (b) of Figure 1. It contains 11 image sequences and true values for the poses
constructed in various environments, including urban areas, highways, and tree roads. The images
were taken with an optical lens at a viewing angle of about 90 degrees. The camera used was a Sony
ICX267 with a size of 1241 × 376 pixels. These were mounted on a rectified stereo rig.

Remote Sens. 2019, 11, x FOR PEER REVIEW 2 of 16

depending on the rotation, there is a disadvantage that the performance may degrade depending on
the state of the viewpoint. The RotRocc+ [5] method studied the characteristics of the optical flow
and reprojection error for odometry and eliminated outliers by decoupling the optical flows of
motion and exploiting the characteristics of the flow using a restrictive motion model. Therefore,
there was a problem that outliers were not able to be accurately removed when the estimated
vehicle’s motion deviated from the model. Gradient-based direct visual odometry (GDVO) [6]
method used a dual Jacobian optimization with a multiscale pyramid scheme for outlier removal.
This method also applied gradient feature representation to respond to the lighting changes.
However, it did not apply bundle adjustment, and therefore, the coordinates of the features were
incorrect. Elbrus [7] applied the multiple pyramid Kanade–Lucas–Tomasi (KLT) method to track the
feature and selected inliers using 2D track average motion and rate of disappearance. This method
searched for features on multiple scales. It did not use depth information for elimination outliers.
Circular fast retina keypoint (FREAK)-oriented fast and rotated binary robust independent
elementary feature (ORB) visual odometry (CFORB) [8] detected features based on FREAK-ORB and
repeated the process 50 times to perform random sample consensus (RANSAC) [9] for outlier
elimination. This process was carried out using the concept of circular matching. Other methods
used various ways to determine inliers [10–14]. It is notable that VO is based on features, and the
accuracy of a method is highly related to the state of the feature. Most of the previous methods
mentioned above optimized features based on pixels. In this study, we try to perform feature
optimization using image geometry. Based on the photogrammetric analysis, we aim to apply image
geometry for feature optimization and pose estimation.

This paper is structured as follows. Section 2 describes the material and proposed method. The
experimental results are introduced in Section 3. Then, Section 4 shows a discussion of the results
describing the strengths and weaknesses. Finally, Section 5 concludes.

2. Materials and Methods

For the experiment, we used the KITTI dataset provided by The KITTI vision benchmark suit
[15]. The KITTI dataset was acquired with the vehicle shown in (a) of Figure 1, and these are
distributed on the KITTI website as in (b) of Figure 1. It contains 11 image sequences and true values
for the poses constructed in various environments, including urban areas, highways, and tree roads.
The images were taken with an optical lens at a viewing angle of about 90 degrees. The camera used
was a Sony ICX267 with a size of 1241 × 376 pixels. These were mounted on a rectified stereo rig.

(a)

(b)

Figure 1. (a) Karlsruhe institute of technology and toyota technological institute (KITTI) platform;
(b) KITTI dataset example [16].

Figure 1. (a) Karlsruhe institute of technology and toyota technological institute (KITTI) platform;
(b) KITTI dataset example [16].

Remote Sens. 2019, 11, 67 3 of 17

The flowchart of the proposed real-time visual odometry technique is shown in Figure 2. First,
we extracted features from images and searched for corresponding points by matching. This process
is important because it takes a significant amount of time in the whole process, and the number
of features and the matching result affect the accuracy of the estimation. Therefore, we compared
the processing time and the number of corresponding points of several candidate methods. Next,
we optimized the corresponding points. As mentioned, this process is necessary because the degree
of the outlier affects the accuracy. In this study, we applied photogrammetry-based and computer
vision-based optimization. In the photogrammetry-based part, we checked the reprojection error and
the distance between the calculated and projected model points. This part is performed after the second
frame because the geometry information between the previous and current image is needed. In the
vision-based part, the outlier filtering in multiple images was based on RANSAC. Finally, we estimated
the pose using the optimized corresponding points. It was based on the absolute orientation of the
photogrammetric bundle adjustment. Finally, the relative positions of the platform were calculated by
continuously accumulating the estimated pose. The detailed explanations are as follows.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 16

The flowchart of the proposed real-time visual odometry technique is shown in Figure 2. First,
we extracted features from images and searched for corresponding points by matching. This process
is important because it takes a significant amount of time in the whole process, and the number of
features and the matching result affect the accuracy of the estimation. Therefore, we compared the
processing time and the number of corresponding points of several candidate methods. Next, we
optimized the corresponding points. As mentioned, this process is necessary because the degree of
the outlier affects the accuracy. In this study, we applied photogrammetry-based and computer
vision-based optimization. In the photogrammetry-based part, we checked the reprojection error
and the distance between the calculated and projected model points. This part is performed after the
second frame because the geometry information between the previous and current image is needed.
In the vision-based part, the outlier filtering in multiple images was based on RANSAC. Finally, we
estimated the pose using the optimized corresponding points. It was based on the absolute
orientation of the photogrammetric bundle adjustment. Finally, the relative positions of the platform
were calculated by continuously accumulating the estimated pose. The detailed explanations are as
follows.

Figure 2. Procedure for proposed method.

2.1. Feature Extraction and Matching

The corresponding point extraction was carried out in the order of feature extraction and
feature matching. First, in feature extraction, we extracted features such as the corner points or edges
on the image. We selected representative feature extractors, scale invariant feature transform (SIFT)
[17], speed-up robust feature (SURF) [18], and features from accelerated segment test (FAST) [19],
Shi–Tomasi [20], provided by OpenCV.

Feature matching is divided into pairwise matching and sequential tracking. In pairwise
matching, feature description, and matching are performed. After feature extraction, we calculated
feature descriptors as shown in Table 1, and compared the resemblance to determine a
corresponding point according to the matchers listed in Table 1. In sequential tracking, we set a
window around a feature of one image and tracked the corresponding point from the next image in

Figure 2. Procedure for proposed method.

2.1. Feature Extraction and Matching

The corresponding point extraction was carried out in the order of feature extraction and
feature matching. First, in feature extraction, we extracted features such as the corner points or
edges on the image. We selected representative feature extractors, scale invariant feature transform
(SIFT) [17], speed-up robust feature (SURF) [18], and features from accelerated segment test (FAST) [19],
Shi–Tomasi [20], provided by OpenCV.

Feature matching is divided into pairwise matching and sequential tracking. In pairwise matching,
feature description, and matching are performed. After feature extraction, we calculated feature
descriptors as shown in Table 1, and compared the resemblance to determine a corresponding
point according to the matchers listed in Table 1. In sequential tracking, we set a window around a

Remote Sens. 2019, 11, 67 4 of 17

feature of one image and tracked the corresponding point from the next image in an image sequence.
Tables 1 and 2 summarize various techniques for pairwise matching and sequential tracking applied in
this study.

Table 1. The pairwise matching methods tested.

Detector Descriptor Matcher

Scale invariant feature
transform (SIFT) SIFT Brute-Force

Speed-up robust
feature (SURF) SURF Brute-Force

Features from accelerated
segment test (FAST)

Binary robust invariant
scalable keypoints (BRISK)

Fast library for approximate
nearest neighbors (FLANN)

FAST
Oriented fast and rotated

binary robust independent
elementary feature (ORB)

FLANN

FAST Fast retina keypoint (FREAK) FLANN

Table 2. The feature tracking method combinations.

Extractor Tracker

FAST Kanade–Lucas–Tomasi tracker
Shi–Thomasi corner Kanade–Lucas–Tomasi tracker

2.2. Corresponding Point Optimization

In Figure 3, the green line indicates the feature movement direction between previous and current
images. The red dot indicates the head direction. In the process of feature extraction, points on moving
objects such as cars can be extracted, as shown in the squares in Figure 3. These features have abnormal
motion vectors and make camera motion misdiagnoses, which greatly reduce the accuracy of the
overall process. The top image was taken while the vehicle was turning right. The motion vectors
within the box were in the opposite direction to the others, which were not correct. The bottom image
was taken at a constant speed. The large motion vectors within the box were also not correct. Based on
these observations, we tried to remove the outlier based on the geometry.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 16

where Xt−1, Yt−1 and Zt−1 are object coordinates in the ground coordinate system at time (t − 1). Tx, Ty,
Tz are translation elements from Lt−1 to Lt−2. r11~33 are 3 × 3 rotation elements from Lt−1 to Lt−2. Reprj = −𝑓 𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇

Reprj = −𝑓 𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇 , (4)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 = 𝑥 − Repr𝑗 + 𝑦 − Repr𝑗 , (5) 𝑑 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∶ 𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑇𝑟𝑢𝑒𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∶ 𝑆𝑡𝑎𝑡𝑢𝑠 = 𝐹𝑎𝑙𝑠𝑒, (6)

where f is the focal length. Xt−1, Yt−1 and Zt−1 are the object coordinates in the ground coordinate
system at time (t − 1). Tx, Ty, and Tz are the translation elements from Lt−1 to Lt−2. r11~33 are 3 × 3 rotation
elements from Lt−1 to Lt−2. xt−2, yt−2 are image coordinates at time (t − 2).

In Equations (1) and (4), the translation and rotation elements are estimated on the pose
estimation step. Through Equation (1), the model point on the model space at (t − 1) is projected onto
the model space at (t − 2). Through Equation (2), the distance between the projected and actual
model points is calculated on the model space. The distances are calculated for all features and
classified as a threshold1 as in ① of Figure 5.

Through Equation (4), the model point on the model space at (t − 1) is re-projected onto the
image at (t − 2). Through Equation (5), the distances between the re-projected and the actual image
points are calculated on the image space and classified as a threshold2 as in ② of Figure 5. As in
Equations (3) and (6), if both threshold1 and threshold2 are satisfied, the feature is extracted as an
inlier. Also, while checking the number of features, this process is repeated using the previous
images.

In vision-based optimization, the RANSAC-based outlier filtering over multiple images was
performed as in Figure 6. This method extracts random samples from the data and creates a model.
Then, it selects the appropriate model while inputting the remaining data. In this process, outliers
are removed. Within the next stereo pair (Lt and Rt), we first extracted features corresponding to the
features classified as inliers through photogrammetry-based optimization at (t – 1). Then, we
eliminated the outliers by applying RANSAC while combining two images. We applied RANSAC in
order from ① to ③ in Figure 6, and the features recognized as inliers in 4 images were saved for
pose estimation.

Figure 3. Example of moving objects in image. Top: sequence 01; frame 07. Bottom: sequence 01;
frame 46.

Figure 3. Example of moving objects in image. Top: sequence 01; frame 07. Bottom: sequence 01;
frame 46.

Remote Sens. 2019, 11, 67 5 of 17

Figure 4 shows the proposed feature optimization concept. As shown in the figure, we performed
photogrammetry-based optimization using the previous and current images and vision-based
optimization using the current and new images. The photogrammetric optimization was performed
from the second image because it needed the image geometry.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 16

Figure 4. Feature optimization concept diagram.

Figure 5. Corresponding point verification concept diagram.

Figure 6. Multiple image filtering concept diagram.

2.3. Absolute Orientation for Pose Estimation

Figure 4. Feature optimization concept diagram.

Figure 5 explains photogrammetric optimization process in detail. Suppose that we have exterior
orientation parameters estimated for the image pair (Lt−1 and Lt−2). The features on the previous
images can be projected onto the current images (Lt−1 and Rt−1) through the estimated exterior
orientation parameters (EOP). When the accurate image point is projected, the projected model point
has a small separation from the calculated model point. Also, this model point is re-projected onto the
previous image; it has a small separation from the corresponding image point. However, in the case of
the inaccurate image point on the current image, when projecting or re-projecting it on the previous
image, the differences are large. Based the separation distance, we selected optimized features.

PrjX
PrjY
PrjZ

1

 =

r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

0 0 0 1

Xt−1

Yt−1

Zt−1

1

, (1)

Distance(d1) =

√
(Xt−2 − PrjX)

2 + (Yt−2 − PrjY)
2 + (Zt−2 − PrjZ)

2, (2){
d1 < threshold1 : Status1 = True
d1 > threshold1 : Status2 = False

, (3)

where Xt−1, Yt−1 and Zt−1 are object coordinates in the ground coordinate system at time (t − 1). Tx,
Ty, Tz are translation elements from Lt−1 to Lt−2. r11~33 are 3 × 3 rotation elements from Lt−1 to Lt−2.

Reprjx = − f
r11(Xt−1−Tx)+r12(Yt−1−Ty)+r13(Zt−1−Tz)

r31(Xt−1−Tx)+r32(Yt−1−Ty)+r33(Zt−1−Tz)

Reprjy = − f
r21(Xt−1−Tx)+r22(Yt−1−Ty)+r23(Zt−1−Tz)

r31(Xt−1−Tx)+r32(Yt−1−Ty)+r33(Zt−1−Tz)
,

(4)

Remote Sens. 2019, 11, 67 6 of 17

Distance(d2) =

√
(xt−2 − ReprjX)

2 + (yt−2 − ReprjY)
2, (5){

d2 < threshold2 : Status2 = True
d2 > threshold2 : Status2 = False

, (6)

where f is the focal length. Xt−1, Yt−1 and Zt−1 are the object coordinates in the ground coordinate
system at time (t − 1). Tx, Ty, and Tz are the translation elements from Lt−1 to Lt−2. r11~33 are 3 × 3
rotation elements from Lt−1 to Lt−2. xt−2, yt−2 are image coordinates at time (t − 2).

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 16

Figure 4. Feature optimization concept diagram.

Figure 5. Corresponding point verification concept diagram.

Figure 6. Multiple image filtering concept diagram.

2.3. Absolute Orientation for Pose Estimation

Figure 5. Corresponding point verification concept diagram.

In Equations (1) and (4), the translation and rotation elements are estimated on the pose estimation
step. Through Equation (1), the model point on the model space at (t − 1) is projected onto the model
space at (t − 2). Through Equation (2), the distance between the projected and actual model points
is calculated on the model space. The distances are calculated for all features and classified as a
threshold1 as in 1© of Figure 5.

Through Equation (4), the model point on the model space at (t − 1) is re-projected onto the image
at (t − 2). Through Equation (5), the distances between the re-projected and the actual image points
are calculated on the image space and classified as a threshold2 as in 2© of Figure 5. As in Equations (3)
and (6), if both threshold1 and threshold2 are satisfied, the feature is extracted as an inlier. Also, while
checking the number of features, this process is repeated using the previous images.

In vision-based optimization, the RANSAC-based outlier filtering over multiple images was
performed as in Figure 6. This method extracts random samples from the data and creates a model.
Then, it selects the appropriate model while inputting the remaining data. In this process, outliers
are removed. Within the next stereo pair (Lt and Rt), we first extracted features corresponding to
the features classified as inliers through photogrammetry-based optimization at (t – 1). Then, we
eliminated the outliers by applying RANSAC while combining two images. We applied RANSAC
in order from 1© to 3© in Figure 6, and the features recognized as inliers in 4 images were saved for
pose estimation.

Remote Sens. 2019, 11, 67 7 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 16

Figure 4. Feature optimization concept diagram.

Figure 5. Corresponding point verification concept diagram.

Figure 6. Multiple image filtering concept diagram.

2.3. Absolute Orientation for Pose Estimation

Figure 6. Multiple image filtering concept diagram.

2.3. Absolute Orientation for Pose Estimation

We estimated the platform’s pose through absolute orientation using the collinearity condition.
The collinearity condition is a condition that the three-dimensional coordinates of the object existing in
the image, the image coordinates, and the camera projection center must be on the same straight line
as shown in Figure 7. First, we determined the model points defined as (Pn) between O1 and O2. Then,
we established the relationship between pn and Pn based on the collinearity equation as in Equation (7).

F = xn − f
r11(Xn−Tx)+r12(Yn−Ty)+r13(Zn−Tz)

r31(Xn−Tx)+r32(Yn−Ty)+r33(Zn−Tz)

G = yn − f
r21(Xn−Tx)+r22(Yn−Ty)+r23(Zn−Tz)

r31(Xn−Tx)+r32(Yn−Ty)+r33(Zn−Tz)
,

(7)

where f is focal length. Xn, Yn and Zn are object coordinates in the ground coordinate system at time
(t − 1). xn and yn are left image coordinates at time t. Tx, Ty, Tz are Translation element. r11~33 are
3 × 3 rotation matrix elements. The n is 1 to the number of corresponding points.

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 16

We estimated the platform’s pose through absolute orientation using the collinearity condition.
The collinearity condition is a condition that the three-dimensional coordinates of the object existing
in the image, the image coordinates, and the camera projection center must be on the same straight
line as shown in Figure 7. First, we determined the model points defined as (Pn) between O1 and O2.
Then, we established the relationship between pn and Pn based on the collinearity equation as in
Equation (7). 𝐹 = 𝑥 − 𝑓 𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇

𝐺 = 𝑦 − 𝑓 𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇𝑟 𝑋 − 𝑇 + 𝑟 𝑌 − 𝑇 + 𝑟 𝑍 − 𝑇 , (7)

where f is focal length. Xn, Yn and Zn are object coordinates in the ground coordinate system at time (t
− 1). xn and yn are left image coordinates at time t. Tx, Ty, Tz are Translation element. r11~33 are 3 × 3
rotation matrix elements. The n is 1 to the number of corresponding points.

We set Equation (8) by differentiating partially Equation (7) for the unknown. Then, we
estimated geometric elements through the iterative least squares method.

⎣⎢⎢⎢
⎢⎡ 𝛿𝐹𝛿𝑇 𝛿𝐹𝛿𝑇 𝛿𝐹𝛿𝑇 𝛿𝐹𝛿𝜔 𝛿𝐹𝛿𝑝 𝛿𝐹𝛿𝑘𝛿𝐺𝛿𝑇 𝛿𝐺𝛿𝑇 𝛿𝐺𝛿𝑇 𝛿𝐺𝛿𝜔 𝛿𝐺𝛿𝑝 𝛿𝐺𝛿𝑘⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⎦⎥⎥⎥

⎥⎤
⎣⎢⎢
⎢⎢⎡
∆𝑇∆𝑇∆𝑇∆𝜔∆𝑝∆𝑘 ⎦⎥⎥

⎥⎥⎤ = −𝐹−𝐺⋮ , (8)

The estimated geometric elements mean the pose of O3 by O1. Therefore, we converted it to a 4 ×
4 transformation matrix and then accumulated the pose by multiplying each result.

Figure 7. Absolute orientation in mobile mapping system (MMS).

3. Results

We performed experiments with ten sequences in the KITTI dataset. The specifications of the
computer used were Windows 10 64 bit, CPU i5-6600 3.30 GHz, RAM 16 GB, and the experiment
was performed in visual studio 2013, Microsoft product in the United States. This section shows the
results of corresponding point optimization and pose estimation. Then, it described the performance
of the proposed method.

3.1. Corresponding Point Optimization Result

In the figure above, the turquoise lines indicate the feature motion vector. Figures 8 and 9
show the feature tracking results with and without optimization. In the figures, circles indicate the
feature motion vector for the moving vehicle. As shown, it can be seen that this feature has a

Figure 7. Absolute orientation in mobile mapping system (MMS).

We set Equation (8) by differentiating partially Equation (7) for the unknown. Then, we estimated
geometric elements through the iterative least squares method.

Remote Sens. 2019, 11, 67 8 of 17

δF
δTx

δF
δTy

δF
δTz

δF
δω

δF
δp

δF
δk

δG
δTx

δG
δTy

δG
δTz

δG
δω

δG
δp

δG
δk

...
...

...
...

...
...

∆Tx

∆Ty

∆Tz

∆ω

∆p
∆k

=

 −F0

−G0
...

 , (8)

The estimated geometric elements mean the pose of O3 by O1. Therefore, we converted it to a
4 × 4 transformation matrix and then accumulated the pose by multiplying each result.

3. Results

We performed experiments with ten sequences in the KITTI dataset. The specifications of the
computer used were Windows 10 64 bit, CPU i5-6600 3.30 GHz, RAM 16 GB, and the experiment was
performed in visual studio 2013, Microsoft product in the United States. This section shows the results
of corresponding point optimization and pose estimation. Then, it described the performance of the
proposed method.

3.1. Corresponding Point Optimization Result

In the figure above, the turquoise lines indicate the feature motion vector. Figures 8 and 9 show
the feature tracking results with and without optimization. In the figures, circles indicate the feature
motion vector for the moving vehicle. As shown, it can be seen that this feature has a different motion
vector from the surrounding points. We confirmed that the abnormal features indicated by circles were
eliminated through optimization.

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 16

different motion vector from the surrounding points. We confirmed that the abnormal features
indicated by circles were eliminated through optimization.

Figures 10–12 shows the photogrammetric feature optimization result within sequence 09. In
the top images, the red point indicates an outlier removed by vision-based optimization, and the
orange point indicates an outlier removed by photogrammetry-based optimization. We confirmed
that the features for the moving object were removed in two steps.

Figure 13 and Table 3 show the results with or without photogrammetric feature optimization.
The rotation error rate decreased by 8.9383 deg/m and the translation error rate decreased by
0.0176%. As shown in Figures 10–12, we confirmed that the accuracy was improved by not using
dynamic objects as features.

Figure 8. Top: before optimization (top image). Bottom: after optimization (sequence 01; frame 02).

Figure 9. Top: before optimization (top image). Bottom: after optimization (sequence 03; frame 233).

Figure 8. Top: before optimization (top image). Bottom: after optimization (sequence 01; frame 02).

Remote Sens. 2019, 11, 67 9 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 16

different motion vector from the surrounding points. We confirmed that the abnormal features
indicated by circles were eliminated through optimization.

Figures 10–12 shows the photogrammetric feature optimization result within sequence 09. In
the top images, the red point indicates an outlier removed by vision-based optimization, and the
orange point indicates an outlier removed by photogrammetry-based optimization. We confirmed
that the features for the moving object were removed in two steps.

Figure 13 and Table 3 show the results with or without photogrammetric feature optimization.
The rotation error rate decreased by 8.9383 deg/m and the translation error rate decreased by
0.0176%. As shown in Figures 10–12, we confirmed that the accuracy was improved by not using
dynamic objects as features.

Figure 8. Top: before optimization (top image). Bottom: after optimization (sequence 01; frame 02).

Figure 9. Top: before optimization (top image). Bottom: after optimization (sequence 03; frame 233). Figure 9. Top: before optimization (top image). Bottom: after optimization (sequence 03; frame 233).

Figures 10–12 shows the photogrammetric feature optimization result within sequence 09. In the
top images, the red point indicates an outlier removed by vision-based optimization, and the orange
point indicates an outlier removed by photogrammetry-based optimization. We confirmed that the
features for the moving object were removed in two steps.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 16

Figure 10. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 60).

Figure 11. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 526).

Figure 12. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame
1436).

Figure 10. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 60).

Remote Sens. 2019, 11, 67 10 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 16

Figure 10. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 60).

Figure 11. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 526).

Figure 12. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame
1436).

Figure 11. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 526).

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 16

Figure 10. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 60).

Figure 11. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 526).

Figure 12. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame
1436).

Figure 12. Top: before optimization (top image). Bottom: after optimization (sequence 09; frame 1436).

Figure 13 and Table 3 show the results with or without photogrammetric feature optimization.
The rotation error rate decreased by 8.9383 deg/m and the translation error rate decreased by 0.0176%.
As shown in Figures 10–12, we confirmed that the accuracy was improved by not using dynamic
objects as features.

Table 3. Accuracy with or without optimization.

Rotation Error Rate (deg/m) Translation Error Rate (%)

Before optimization 12.8637 0.0354
After optimization 3.9254 0.0178

Remote Sens. 2019, 11, 67 11 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16

Figure 13. Estimated trajectory based on whether or not optimization is performed.

Table 3. Accuracy with or without optimization.

 Rotation Error Rate (deg/m) Translation Error Rate (%)
Before optimization 12.8637 0.0354
After optimization 3.9254 0.0178

3.2. Pose Estimation Result for Three Cases

We checked the trajectory result by the path shape. We experimented with the sequence
acquired in the area with fewer curves, a large number of curves, and a sharp curve. In Figure 14,
the red line indicates the ground truth provided by KITTI, and the blue line indicates the trajectory
estimated by the proposed method. As shown, the trajectory was more sensitive to the number of
curve appearances rather than the degree of the curve. For three cases, the rotation error rate was
0.0156 deg/m, the translation error rate 2.8727%, and the processing time per frame was 0.0313 s on
average.

(a)

(b)

Figure 13. Estimated trajectory based on whether or not optimization is performed.

3.2. Pose Estimation Result for Three Cases

We checked the trajectory result by the path shape. We experimented with the sequence acquired
in the area with fewer curves, a large number of curves, and a sharp curve. In Figure 14, the red line
indicates the ground truth provided by KITTI, and the blue line indicates the trajectory estimated by
the proposed method. As shown, the trajectory was more sensitive to the number of curve appearances
rather than the degree of the curve. For three cases, the rotation error rate was 0.0156 deg/m, the
translation error rate 2.8727%, and the processing time per frame was 0.0313 s on average.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16

Figure 13. Estimated trajectory based on whether or not optimization is performed.

Table 3. Accuracy with or without optimization.

 Rotation Error Rate (deg/m) Translation Error Rate (%)
Before optimization 12.8637 0.0354
After optimization 3.9254 0.0178

3.2. Pose Estimation Result for Three Cases

We checked the trajectory result by the path shape. We experimented with the sequence
acquired in the area with fewer curves, a large number of curves, and a sharp curve. In Figure 14,
the red line indicates the ground truth provided by KITTI, and the blue line indicates the trajectory
estimated by the proposed method. As shown, the trajectory was more sensitive to the number of
curve appearances rather than the degree of the curve. For three cases, the rotation error rate was
0.0156 deg/m, the translation error rate 2.8727%, and the processing time per frame was 0.0313 s on
average.

(a)

(b)

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 16

(c)

Figure 14. (a) Estimated result with fewer curves area; (b) The result with a high number of curves
area; (c) The result with sharp curve.

3.3. Estimation Results for Ten Sequences in KITTI Dataset

Finally, we experimented with 00 to 11 (except 01) sequences provided by KITTI. Figure 15 is a
graph showing the error occurrence per mileage with sequence 00, where (a) is about rotation and
(b) is about translation. Figures 16–24 are graphs for sequences 01 to 11.

For ten sequences, the average rotation error was 0.0175 deg/m, the average translation error
was 3.5520%, and the processing time per frame was 0.0554 s on average.

Figure 15. Graph of error over mileage for sequence 00.

Figure 16. Graph of error over mileage for sequence 02.

Figure 14. (a) Estimated result with fewer curves area; (b) The result with a high number of curves
area; (c) The result with sharp curve.

Remote Sens. 2019, 11, 67 12 of 17

3.3. Estimation Results for Ten Sequences in KITTI Dataset

Finally, we experimented with 00 to 11 (except 01) sequences provided by KITTI. Figure 15 is a
graph showing the error occurrence per mileage with sequence 00, where (a) is about rotation and (b)
is about translation. Figures 16–24 are graphs for sequences 01 to 11.

For ten sequences, the average rotation error was 0.0175 deg/m, the average translation error was
3.5520%, and the processing time per frame was 0.0554 s on average.

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 16

(c)

Figure 14. (a) Estimated result with fewer curves area; (b) The result with a high number of curves
area; (c) The result with sharp curve.

3.3. Estimation Results for Ten Sequences in KITTI Dataset

Finally, we experimented with 00 to 11 (except 01) sequences provided by KITTI. Figure 15 is a
graph showing the error occurrence per mileage with sequence 00, where (a) is about rotation and
(b) is about translation. Figures 16–24 are graphs for sequences 01 to 11.

For ten sequences, the average rotation error was 0.0175 deg/m, the average translation error
was 3.5520%, and the processing time per frame was 0.0554 s on average.

Figure 15. Graph of error over mileage for sequence 00.

Figure 16. Graph of error over mileage for sequence 02.

Figure 15. Graph of error over mileage for sequence 00.

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 16

(c)

Figure 14. (a) Estimated result with fewer curves area; (b) The result with a high number of curves
area; (c) The result with sharp curve.

3.3. Estimation Results for Ten Sequences in KITTI Dataset

Finally, we experimented with 00 to 11 (except 01) sequences provided by KITTI. Figure 15 is a
graph showing the error occurrence per mileage with sequence 00, where (a) is about rotation and
(b) is about translation. Figures 16–24 are graphs for sequences 01 to 11.

For ten sequences, the average rotation error was 0.0175 deg/m, the average translation error
was 3.5520%, and the processing time per frame was 0.0554 s on average.

Figure 15. Graph of error over mileage for sequence 00.

Figure 16. Graph of error over mileage for sequence 02. Figure 16. Graph of error over mileage for sequence 02.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 16

Figure 17. Graph of error over mileage for sequence 03.

Figure 18. Graph of error over mileage for sequence 04.

Figure 19. Graph of error over mileage for sequence 05.

Figure 17. Graph of error over mileage for sequence 03.

Remote Sens. 2019, 11, 67 13 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 16

Figure 17. Graph of error over mileage for sequence 03.

Figure 18. Graph of error over mileage for sequence 04.

Figure 19. Graph of error over mileage for sequence 05.

Figure 18. Graph of error over mileage for sequence 04.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 16

Figure 17. Graph of error over mileage for sequence 03.

Figure 18. Graph of error over mileage for sequence 04.

Figure 19. Graph of error over mileage for sequence 05. Figure 19. Graph of error over mileage for sequence 05.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 16

Figure 20. Graph of error over mileage for sequence 06.

Figure 21. Graph of error over mileage for sequence 07.

Figure 22. Graph of error over mileage for sequence 08.

Figure 20. Graph of error over mileage for sequence 06.

Remote Sens. 2019, 11, 67 14 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 16

Figure 20. Graph of error over mileage for sequence 06.

Figure 21. Graph of error over mileage for sequence 07.

Figure 22. Graph of error over mileage for sequence 08.

Figure 21. Graph of error over mileage for sequence 07.

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 16

Figure 20. Graph of error over mileage for sequence 06.

Figure 21. Graph of error over mileage for sequence 07.

Figure 22. Graph of error over mileage for sequence 08. Figure 22. Graph of error over mileage for sequence 08.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 16

Figure 23. Graph of error over mileage for sequence 09.

Figure 24. Graph of error over mileage for sequence 10.

4. Discussion

Through the comparison of Figures 8 and 9, we could see that the features on the moving object
were eliminated by the proposed optimization scheme. In order to confirm the effectiveness of the
optimization, the experiment was performed with sequence 09. Through the comparison of Figures
10–12, the features on moving objects were eliminated, and the rotation error rate decreased by
8.9383 deg/m, while the translation error rate decreased by 0.0176%. Then, we experimented with
three different zones with different numbers and degrees of curves. The rotation error rate was
smaller than the translation error rate. Also, we observed that the error generally occurred in the
curved road rather than the straight road. In Table 4, the average processing time per frame was
0.0313 s. For ten sequences provided by KITTI, the average rotation error was 0.0175 deg/m,
translation error was 3.5520%, and the running time per frame was 0.0554 s. The rotation error
tended to decrease with the moving distance, but the translation error tended to increase. Through
all experiments shown, we confirmed that the proposed feature optimization scheme worked
successfully and that real-time processing was possible.

Our research is ongoing and the performance shown here needs further improvements,
particularly compared to known optimal algorithms. For example, SOFT2 [4] achieved a rotation
error of 0.014 deg/m, a translation error of 0.65%, and a processing time of 0.1 s/frame. Nevertheless,
our results support our intention of using photogrammetric analysis as an alternative outlier
removal method. We showed that the proposed photogrammetric processing could enable
successful outlier removal and that real-time processing was feasible even with photogrammetric
iterative estimations. It is notable that we adopted the concept of circular matching proposed in
CFORB [8] and enhanced its performance by photogrammetric optimizations. CFORB achieved a
rotation error of 0.0107 deg/m, a translation error of 3.73%, and a processing time of 0.9 s/frame [8].

Figure 23. Graph of error over mileage for sequence 09.

Remote Sens. 2019, 11, 67 15 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 16

Figure 23. Graph of error over mileage for sequence 09.

Figure 24. Graph of error over mileage for sequence 10.

4. Discussion

Through the comparison of Figures 8 and 9, we could see that the features on the moving object
were eliminated by the proposed optimization scheme. In order to confirm the effectiveness of the
optimization, the experiment was performed with sequence 09. Through the comparison of Figures
10–12, the features on moving objects were eliminated, and the rotation error rate decreased by
8.9383 deg/m, while the translation error rate decreased by 0.0176%. Then, we experimented with
three different zones with different numbers and degrees of curves. The rotation error rate was
smaller than the translation error rate. Also, we observed that the error generally occurred in the
curved road rather than the straight road. In Table 4, the average processing time per frame was
0.0313 s. For ten sequences provided by KITTI, the average rotation error was 0.0175 deg/m,
translation error was 3.5520%, and the running time per frame was 0.0554 s. The rotation error
tended to decrease with the moving distance, but the translation error tended to increase. Through
all experiments shown, we confirmed that the proposed feature optimization scheme worked
successfully and that real-time processing was possible.

Our research is ongoing and the performance shown here needs further improvements,
particularly compared to known optimal algorithms. For example, SOFT2 [4] achieved a rotation
error of 0.014 deg/m, a translation error of 0.65%, and a processing time of 0.1 s/frame. Nevertheless,
our results support our intention of using photogrammetric analysis as an alternative outlier
removal method. We showed that the proposed photogrammetric processing could enable
successful outlier removal and that real-time processing was feasible even with photogrammetric
iterative estimations. It is notable that we adopted the concept of circular matching proposed in
CFORB [8] and enhanced its performance by photogrammetric optimizations. CFORB achieved a
rotation error of 0.0107 deg/m, a translation error of 3.73%, and a processing time of 0.9 s/frame [8].

Figure 24. Graph of error over mileage for sequence 10.

4. Discussion

Through the comparison of Figures 8 and 9, we could see that the features on the moving
object were eliminated by the proposed optimization scheme. In order to confirm the effectiveness
of the optimization, the experiment was performed with sequence 09. Through the comparison of
Figures 10–12, the features on moving objects were eliminated, and the rotation error rate decreased by
8.9383 deg/m, while the translation error rate decreased by 0.0176%. Then, we experimented with
three different zones with different numbers and degrees of curves. The rotation error rate was smaller
than the translation error rate. Also, we observed that the error generally occurred in the curved road
rather than the straight road. In Table 4, the average processing time per frame was 0.0313 s. For ten
sequences provided by KITTI, the average rotation error was 0.0175 deg/m, translation error was
3.5520%, and the running time per frame was 0.0554 s. The rotation error tended to decrease with
the moving distance, but the translation error tended to increase. Through all experiments shown,
we confirmed that the proposed feature optimization scheme worked successfully and that real-time
processing was possible.

Table 4. Pose estimation accuracy for three cases.

Sequence Rotation Error Rate
(deg/m)

Translation Error Rate
(%)

Processing Time Per Frame
(s)

(a) 0.0127 2.3817 0.0269
(b) 0.0108 2.6987 0.0347
(c) 0.0162 2.3109 0.0324

Average 0.0132 2.4638 0.0313

Our research is ongoing and the performance shown here needs further improvements,
particularly compared to known optimal algorithms. For example, SOFT2 [4] achieved a rotation error
of 0.014 deg/m, a translation error of 0.65%, and a processing time of 0.1 s/frame. Nevertheless, our
results support our intention of using photogrammetric analysis as an alternative outlier removal
method. We showed that the proposed photogrammetric processing could enable successful outlier
removal and that real-time processing was feasible even with photogrammetric iterative estimations.
It is notable that we adopted the concept of circular matching proposed in CFORB [8] and enhanced its
performance by photogrammetric optimizations. CFORB achieved a rotation error of 0.0107 deg/m,
a translation error of 3.73%, and a processing time of 0.9 s/frame [8]. CFORB performed slightly
better in translation errors compared to ours. This is because CFORB utilized the time-consuming
RANSAC process repeatedly by 50 loops. One can check this by the large processing time of CFORB.
However, such extensive RANSAC-based outlier removal may not bring accurate pose estimation,
which is supported by the superior angular estimation performance by our method. The proposed

Remote Sens. 2019, 11, 67 16 of 17

photogrammetric processing method could effectively remove outliers and estimate the pose correctly
within a very small processing time.

5. Conclusions

Favorable feature extraction and outlier removal are key to visual odometry techniques. In this
paper, we proposed photogrammetric feature optimization applicable to stereo odometry. Using
the estimated poses of previous frames, we repeated the process of projecting and re-projecting the
corresponding points extracted from the current frame onto the previous ones. Then, we removed the
outliers by confirming the projection and re-projection errors. In addition, we optimized the feature
on the new input image through multi-image filtering. Through the experiments, we were able to
confirm the applicability of the proposed photogrammetric feature optimization process to stereo
visual odometry technology.

We need to enhance the performance of the proposed optimization process further as there
were some remaining outliers after optimization. In this paper, we considered photogrammetric
analysis between a stereo pair of current and previous frames. We need to accumulate the results of
incoming frames to remove outliers with better accuracy. Also, we need to consider preprocessing
multiple stereo pairs of previous frames to generate a list of reference features for incoming frames.
The major contribution of this paper is that we showed the feasibility of real-time outlier removal by
photogrammetric analysis.

Author Contributions: All authors contributed in the developing method and editing of the paper. S.-J.Y. is the
main author who designed whole experiments and wrote the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea
government (MSIP) (No. NRF-2016R1A2B4013017).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, H.K.; Lee, J.G.; Jee, G.I. Channelwise multipath detection for general GPS receivers. J. Inst. Control
Robot. Syst. 2002, 8, 818–826.

2. Gräter, J.; Schwarze, T.; Lauer, M. Robust scale estimation for monocular visual odometry using structure
from motion and vanishing points. In Proceedings of the 2015 IEEE Intelligent Vehicles, Seoul, Korea, 28
June–1 July 2015; pp. 475–480.

3. Jeong, J.; Kim, T. Analysis of dual-sensor stereo geometry and its positioning accuracy. Photogramm. Eng.
Remote Sens. 2014, 80, 653–661. [CrossRef]

4. Cvišić, I.; Ćesić, J.; Marković, I.; Petrović, I. SOFT-SLAM: Computationally efficient stereo visual simultaneous
localization and mapping for autonomous unmanned aerial vehicles. J. Field Robot. 2018, 35, 578–595.
[CrossRef]

5. Buczko, M.; Willert, V. Flow-decoupled normalized reprojection error for visual odometry. In Proceedings of
the 2016 IEEE 19th International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil,
1–4 November 2016; pp. 1161–1167.

6. Zhu, J. Image gradient-based joint direct visual odometry for stereo camera. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017;
pp. 4558–4564.

7. The Elbrus method on KITTI site. Available online: www.cvlibs.net/datasets/kitti/eval_odometry_detail.
php?&result=87e2f700437fe9c32003ee8b60ff5f828507ddf4 (accessed on 17 December 2018).

8. Mankowitz, D.J.; Rivlin, E. CFORB: Circular FREAK-ORB visual odometry. arXiv, 2015; arXiv:1506.05257.
9. Wu, F.L.; Fang, X.Y. An improved RANSAC homography algorithm for feature based image mosaic.

In Proceedings of the 7th WSEAS International Conference on Signal Processing, Computational Geometry
& Artificial Vision, Athens, Greece, 24–26 August 2007; pp. 202–207.

http://dx.doi.org/10.14358/PERS.80.7.653
http://dx.doi.org/10.1002/rob.21762
www.cvlibs.net/datasets/kitti/eval_odometry_detail.php?&result=87e2f700437fe9c32003ee8b60ff5f828507ddf4
www.cvlibs.net/datasets/kitti/eval_odometry_detail.php?&result=87e2f700437fe9c32003ee8b60ff5f828507ddf4

Remote Sens. 2019, 11, 67 17 of 17

10. Wang, R.; Schwörer, M.; Cremers, D. Stereo dso: Large-scale direct sparse visual odometry with stereo
cameras. In Proceedings of the International Conference on Computer Vision (ICCV), Venezia, Italy,
22–27 October 2017; pp. 3903–3911.

11. Buczko, M.; Willert, V. How to distinguish inliers from outliers in visual odometry for high-speed automotive
applications. In Proceedings of the Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June
2016; pp. 478–483.

12. Persson, M.; Piccini, T.; Felsberg, M.; Mester, R. Robust stereo visual odometry from monocular techniques.
In Proceedings of the Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 686–691.

13. Buczko, M.; Willert, V. Monocular outlier detection for visual odometry. In Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 739–745.

14. Deigmoeller, J.; Eggert, J. Stereo visual odometry without temporal filtering. In Proceedings of the German
Conference on Pattern Recognition, Hannover, Germany, 12–15 September 2016; pp. 166–175.

15. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013,
32, 1231–1237. [CrossRef]

16. The KITTI Vision Benchmark Suite—Andreas Geiger. Available online: www.cvlibs.net/datasets/kitti/
(accessed on 2 December 2018).

17. Mu, K.; Hui, F.; Zhao, X. Multiple vehicle detection and tracking in highway traffic surveillance video based
on SIFT feature matching. J. Inf. Process. Syst. 2016, 12, 183–195.

18. Patel, M.S.; Patel, N.M.; Holia, M.S. Feature based multi-view image registration using SURF. In Proceedings
of the 2015 International Symposium on Advanced Computing and Communication (ISACC), Silchar, India,
14–15 September 2015; pp. 213–218.

19. Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the European
Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 430–443.

20. Jiang, J.; Yilmaz, A. Good features to track: A view geometric approach. In Proceedings of the 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain,
6–13 November 2011; pp. 72–79.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364913491297
www.cvlibs.net/datasets/kitti/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Feature Extraction and Matching
	Corresponding Point Optimization
	Absolute Orientation for Pose Estimation

	Results
	Corresponding Point Optimization Result
	Pose Estimation Result for Three Cases
	Estimation Results for Ten Sequences in KITTI Dataset

	Discussion
	Conclusions
	References

