
  

Remote Sens. 2019, 11, 62; doi:10.3390/rs11010062 www.mdpi.com/journal/remotesensing 

Article 

A Hybrid GIS Multi-Criteria Decision-Making 

Method for Flood Susceptibility Mapping at 

Shangyou, China 

Yi Wang 1, Haoyuan Hong 2,3,4,*, Wei Chen 5, Shaojun Li 6, Dragan Pamučar 7, Ljubomir Gigović 8, 

Siniša Drobnjak 9, Dieu Tien Bui 10,11 and Hexiang Duan 1 

1 Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China; 

cug.yi.wang@gmail.com (Y.W.); dhx12cug@163.com (H.D.) 
2 Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, 

Nanjing 210023, China 
3 State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 

210023, China 
4 Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and 

Application, Nanjing 210023, Jiangsu, China 
5 College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, 

China; chenwei0930@xust.edu.cn 
6 State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil 

Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; sjli@whrsm.ac.cn 
7 Department of Logistics, University of Defence, Belgrade 11000, Serbia; dpamucar@gmail.com 
8 Department of Geography, University of Defence, Belgrade 11000, Serbia; gigoviclj@gmail.com 
9 Military Geographical Institute, Belgrade 11000, Serbia; sdrobnjak81@gmail.com 
10 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam 
11  Geographic Information System Group, Department of Business and IT, University of South-Eastern 

Norway, N-3800 Bø i Telemark, Norway; Dieu.T.Bui@usn.no 

* Correspondence: hong_haoyuan@outlook.com; 171301013@stu.njnu.edu.cn  

Received: 28 November 2018; Accepted: 28 December 2018; Published: 30 December 2018 

Abstract: Floods are considered one of the most disastrous hazards all over the world and cause 

serious casualties and property damage. Therefore, the assessment and regionalization of flood 

disasters are becoming increasingly important and urgent. To predict the probability of a flood, an 

essential step is to map flood susceptibility. The main objective of this work is to investigate the use 

a novel hybrid technique by integrating multi-criteria decision analysis and geographic information 

system to evaluate flood susceptibility mapping (FSM), which is constructed by ensemble of 

decision making trial and evaluation laboratory (DEMATEL), analytic network process, weighted 

linear combinations (WLC) and interval rough numbers (IRN) techniques in the case study at 

Shangyou County, China. Specifically, we improve the DEMATEL method by applying IRN to 

determine connections in the network structure based on criteria and to accept imprecisions during 

collective decision making. The application of IRN can eliminate the necessity of additional 

information to define uncertain number intervals. Therefore, the quality of the existing data during 

collective decision making and experts’ perceptions that are expressed through an aggregation 

matrix can be retained. In this work, eleven conditioning factors associated with flooding were 

considered and historical flood locations were randomly divided into the training (70% of the total) 

and validation (30%) sets. The flood susceptibility map validates a satisfactory consistency between 

the flood-susceptible areas and the spatial distribution of the previous flood events. The accuracy 

of the map was evaluated by using objective measures of receiver operating characteristic (ROC) 

curve and area under the curve (AUC). The AUC values of the proposed method coupling with the 

WLC fuzzy technique for aggregation and flood susceptibility index are 0.988 and 0.964, 

respectively, which proves that the WLC fuzzy method is more effective for FSM in the study area. 
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The proposed method can be helpful in predicting accurate flood occurrence locations with similar 

geographic environments and can be effectively used for flood management and prevention. 

Keywords: flood susceptibility; GIS modeling; multi-criteria decision-making; interval rough 

numbers; expert knowledge 

 

1. Introduction 

In recent decades, extreme weather events and meteorological disasters have frequently 

occurred in the context of global warming. Climate change is considered a critical factor in the growth 

and development of global warming [1-3]. As the most serious meteorological disasters, floods 

frequently occur around the world and cause casualties and property losses [4-6]. According to 

statistics, the current losses from floods among all natural disasters comprise 40%. The serious 

influences of floods on natural ecosystems and human activities have become an important factor to 

restrict sustainable development of societies and economies [4,7]. Therefore, the assessment and 

regionalization of flood disaster risks are becoming increasingly important and urgent. Although it 

is a very difficult task to prevent floods, we can predict and compensate for the disaster. To predict 

the probability of a flood, an essential step is to map flood susceptibility. 

Flooding is a complicated phenomenon and there are many human factors and natural factors 

in the occurrence and development of floods. Among them, climate change plays an important role 

for extreme flood occurrence [8,9]. For instance, climate change may influence land use and result in 

flood hazards [10]. In recent years, the impact of climate change on flood risk and occurrence has 

been studied at a global scale [11,12]. Flood susceptibility mapping (FSM) can identify and predict 

future flood hazards based on statistical or deterministic methods. Mapping the areas that are 

susceptible to historic disaster locations is crucial for flood prevention and management [13]. 

Furthermore, it can be the basis for decision makers (DMs) to reduce the damage caused by disasters. 

To produce susceptibility maps, prediction methods combine different conditioning factors and 

weights the importance of these factors using subjective decision-making rules based on the 

experience of experts. 

China has experienced severe floods since ancient times. In recent decades, the frequency of 

floods and disaster losses have greatly increased [12]. Jiangxi province is located in the south of China 

and characterized with a subtropical, warm, and humid monsoon climate. Specifically, this area is 

influenced by the continental monsoon climate, and nearly twenty climate-warming, extreme-

weather and disaster-climate events occurred, especially floods, which have caused great losses to 

the national economy [14]. According to the Ministry of Water Resources of the People’s Republic of 

China, flood disasters have become very serious in recent years. For instance, the number of floods 

reached 31 during 2003–2008, and the total number of deaths was 114. Therefore, flood disaster risks 

assessment and regionalization must be conducted to avoid and reduce economic losses in the study 

area. Many scholars around the world have studied flood disaster risks and presented various 

methods to deal with the problem [7,15-17]. These commonly used methods can be mainly divided 

into three categories: (1) hydrological methods of WetSpa [18], SWAT [19] and HYDROTEL [18] and 

hydrodynamic approaches based on the shallow water equations initialized by rainfall [9,13,20-23]. 

However, the time cost of parameter setting and model construction in these methods is very high. 

(2) Statistical and data-driven methods. In the past decade, FSM has been conducted using remote 

sensing data and geographic information system (GIS). Examples of the GIS-based methods in flood 

contributions, including weights of evidence [24], logistic regression (LR) [25], analytic hierarchy 

process (AHP) [26], frequency ratios (FR) [27,28]. These methods are often based on statistical 

assumptions and the selection of flood conditioning factors is a challenging problem in FSM. (3) 

Machine learning methods which can cope with complex nonlinear problems without statistical 

assumptions [22], such as neuro-fuzzy logic [23], artificial neural networks (ANNs) [29,30], decision 

trees (DTs) [31], support vector machines (SVMs) [19,24,32]. The poor projection from nonlinear 
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structures due to different data ranges in the datasets is the main shortcoming of such methods. 

Therefore, the optimal method to examine flood susceptibility is a complicated process and this 

problem is still debated. As mentioned previously, GIS has been widely used to perform flood 

modeling and risk mapping [31,33]. At present, the combination of multi-criteria decision analysis 

(MCDA) and GIS is a fundamental strategy to deal with the problem of risk reduction and flood 

management [1,12,26,34-39]. The integration of GIS and MCDA provides decision makers the single 

option for geographical region and different weight coefficients for different options. It means that 

this integration can create remarkable capabilities which complement each other. On the one hand, 

we can use the GIS environment to manipulate, store, manage, analyze and visualize spatial data. On 

the other hand, MCDA provides a rich mixture of procedures, techniques and algorithms to design 

and structure the decision problems and evaluates the alternative decisions [40]. Using MCDA-GIS 

for flood spatial prediction application can improve the understanding of uncertainties surroundings. 

Recently, the integration of remote sensing (RS) and GIS have been used to map flooded areas 

[39,41-45]. It is suitable to perform flood detection using remote sensing images. For prediction, the 

detection is used to produce new ground truth data that are in agreement with the recent remote 

sensing data. Furthermore, these RS data can be used for image classification to obtain land use/cover 

information using well-known classifiers and the extraction of normalized difference vegetation 

index (NDVI), etc. Meanwhile, the risk analysis of floods is unimaginative without the support of GIS 

due to its powerful geostatistical tools. Following the recent contributions previously mentioned, we 

combine the two techniques for FSM. The main objective of this work is to investigate a novel hybrid 

MCDA-GIS technique to evaluate flood hazards, which is constructed by ensemble of decision 

making trial and evaluation laboratory (DEMATEL), analytic network process (ANP) and interval 

rough numbers (IRN) techniques. Specifically, we improve the DEMATEL method by applying IRN 

to determine connections in the network structure based on criteria and to accept imprecisions during 

collective decision making. The application of IRN can eliminate the necessity of additional 

information to define uncertain number intervals. Therefore, the quality of the existing data during 

collective decision making and experts’ perceptions that are expressed through an aggregation matrix 

can be retained. The flood susceptibility map is the first step in the development of flood risk 

management and is expected to be used by local governments for effective management planning 

purposes. In this paper, the FSM application of the IRN-DEMATEL-ANP method is presented in the 

case study at Shangyou County, China. To validate the effectiveness of the proposed method, the 

resultant susceptibility map was compared with historical flood locations. Moreover, the commonly 

used objective measures of receiver operating characteristic (ROC) curve and area under the curve 

(AUC) [46,47] were used for evaluation. 

The remainder of the paper is structured as follows. Section 2 briefly describes the study area of 

Shangyou County, China and some available data. Section 3 introduces the proposed method and 

the phases of this method. Section 4 reports the evaluation of flood-prone areas at Shangyou County. 

The last section presents some concluding remarks and the future work. 

2. Study Area and Data 

2.1. Description of Study Area 

The Shangyou area is located in Ganzhou in the southern Jiangxi Province. This area is located 

in the northern hilly district of Nanling between longitudes 114°00′ E and 114°40′ E and latitudes 

25°42′ N and 26°01′ N. The area and population of the Shangyou district are almost 1543.0 km2 and 

3.22 million people, respectively. According to the Shangyou Meteorological Bureau, this district 

belongs to a subtropical monsoon climate. The average annual sunshine time is 1708.3 h, which is an 

intermediate level in Jiangxi Province, and the average annual temperature is 18.6 °C. January and 

July are the coldest and hottest months in each year, with an average of −2.7 °C and 38.0 °C, 

respectively. During 1959–2016, the average annual rainfall was 1483.4 mm and it was between 933.7 

and 2147.6 mm from 1959 to 2014. The rainfall in the study area can greatly vary in spring and 

summer and the annual rainy season is usually from April to August. Specifically, the average annual 
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rainfall from June to August is approximately 1055.8 mm and the largest daily rainfall can be over 

105 mm during this time, while the monthly rainfall from September to January is only 69.3 mm, 

which indicates that the rainfall in these months is very small. 

2.2. Available Data 

To produce the flood inventory map is an important step in FSM. The optimal method to create 

flood inventory maps is still debated [30]. In this study, field surveys and remote sensing images 

were applied to create a flood inventory map, as shown in Figure 1, where “Nonflood” represents 

locations without historical flood occurrences. The triangles and circles in Figure 1 denote historical 

flood locations (HFLs) and locations without historical flood, respectively. Figure 2 illustrates some 

flood field photos of the study area. The selection of flood conditioning factors is another key issue 

that has been studied by many researchers. In this study, the factors of altitude, slope, plan curvature, 

topographic wetness index (TWI), sediment transport index (STI), NDVI, distance from rivers, 

rainfall, land cover/use, lithology, and soil were used to analyze the flood susceptibility. Detailed 

information regarding these flood conditioning factors can be found in Table 1. 

 

Figure 1. Flood inventory map of the study area. 
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(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 2. Flood field photos (a-f) of the study area. 
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Table 1. Available data used in the susceptibility assessment, including the data sources and associated factor classes for FSM in the study area. 

Sub-Classification  Source of Data GIS Data Type  Scale or Resolution 

Spatial database Data layers  Spatial database Derived map Spatial database 

Flood inventory Flood inventory 

Jiangxi Meteorological Bureau and 

Department of Civil Affairs of Jiangxi 

province 

Point and 

polygon 
- - 

Topographic map 

Slope 

ASTER GDEM Version 2 

GRID 
Slope gradient 

(in degrees) 
30 m 

Elevation GRID Elevation 30 m 

TWI GRID 
Topographic 

wetness index 
30 m 

SPI GRID 
Stream power 

index 
30 m 

STI GRID 

Sediment 

transport 

index 

30 m 

River Drainage network 
ARC/INFO 

Line coverage 

Drainage 

network 
30 m 

Soil Soil 

Institute of 

Soil Science, Chinese Academy of 

Sciences 

Polygon Soil 1:1,000,000 

Geology Map Lithology types China Geology Organization 
ARC/INFO 

coverage 
Lithology 1:200,0000 

Land-use type Land use 

Landsat 7 ETM + images 

ARC/INFO 

GRID 
Land use 30 m 

Normalized difference 

vegetation index 
NDVI 

ARC/INFO 

GRID 
NDVI 30 m 

Rainfall Rainfall Jiangxi Meteorological Bureau GRID 
Precipitation 

map (mm) 
1:50,000 
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3. Methodology 

3.1. Methodological Background 

Spatial MCDA consists several procedures, including the use of both geographic data, the 

preferences of the decision maker (DM), the manipulation of these data and preferences according to 

specified decision rules [40,48]. This method exploits the capabilities of GIS in the management of 

spatial data and the flexibility of MCDA to combine real spatial information (e.g., slope and land use) 

with value-based information (e.g., expert opinions, standards, and surveys) [49]. The main 

advantage of integrating GIS and MCDA is that their specific capabilities can complement each other. 

The methodological hierarchy of this paper is based on a MCDA-GIS structure. The proposed 

methodology to define flood hazard zones at Shangyou County, China includes the main steps from 

a methodological perspective as shown in Figure 3. 

Conditioning factor standardization 
using Fuzzy Logic

GIS Technique

Problem identification and construction of architectural models

Collection and construction of GIS database of spatial conditioning factors

Conditioning factor maps 
reclassification

Aggregation method (weighted linear combination)

Final flood susceptibility maps (flood  susceptibility index - FSI)

Validation - Analysis and comparison 
FSI VS. historical flood locations 

Discussion and analysis of final results

Identification of conditioning factors for evaluating the risk of flooding

Cause-and-effect relationship (CER) 
diagram by IRN-DEMATEL

weight coefficients of the conditioning 
factors by IRN-ANP

IRN-DEMATEL-ANP method

Threshold value (α) and cause-and-
effect relationship diagram

Conditioning factor map generation 
and classification

 

Figure 3. Flowchart of the applied methodology. 

In this study, we used ArcGIS 10.3 software to construct and collect all flood conditioning factors 

in the GIS database of ESRI, which includes a completely new approach to the formulation of spatial 

databases. Additionally, all the GIS analyses, including production and classification of conditioning 

factor maps, conditioning factor standardization with fuzzy logic, conditioning factor map 

reclassification, weighted linear combinations (WLC), aggregation methods and creation of the final 

flood susceptibility maps, were conducted by using the ArcGIS 10.3 software. All these functions that 

were used in these GIS analyses are included in the 3D and spatial-analyst extensions. Meanwhile, 

FSI values and HFLs were produced from validation analysis and comparisons, and a database in 

Microsoft Excel with Visual Basic support and the XLSTAT Add-in were used for the DEMETAL-

ANP method. 

When solving real problems, the available conditioning factors have not the same contribution 

to flood occurrence, thus the DMs should define importance of each conditioning factor by using 

appropriate weight coefficients (weights). The WLC method requires normalization of the weights. 
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After determining weight coefficients of the conditioning factors, the hybrid IRN-DEMATEL-ANP 

method is used to calculate the normalized weight conditioning factors, and then apply the WLC 

method to obtain final flood susceptibility maps. 

3.2. IRN-DEMATEL-ANP Method 

IRN-DEMATEL-ANP method is ensemble by IRN, DEMATEL and ANP methods, which is used 

to calculate the normalized weight conditioning factors. We introduce this method followed by the 

order of integration. 

3.2.1. DEMATEL Method 

The DEMATEL method was originally developed by the Science and Human Affairs Program 

of the Battelle Memorial Institute of Geneva to study complex and intertwined problematic groups 

[50]. It is a comprehensive method in both the design and analysis of structural methods that are 

characterized by causal relationships between complex factors [51]. The result of this method is a sum 

of the direct and indirect effects of all the factors that are transferred to and received by other factors. 

Meanwhile, the DEMATEL method is based on graph theory and used to identify the dependent 

factors and degree of dependence between them. Specifically, it enables the visual planning and 

solving problems so that all the relevant factors can be classified into causal and consequential factors 

to better understand their interrelations. Moreover, it can improve our understanding of the complex 

structure of the analysed problem and define relationships both between factors and between the 

structure level and strength of factors [52]. 

In this paper, we improve the DEMATEL method by applying IRN [53] to accept imprecisions 

during collective decision making. The application of IRN can eliminate the necessity of additional 

information to define uncertain number intervals [54-58]. Therefore, the quality of the existing data 

during collective decision making and experts’ perceptions that are expressed through an 

aggregation matrix can be retained. Previous studies proved that the original DEMATEL method can 

be modified to comply with their problems [59-62]. The improved IRN-DEMATEL method in this 

paper was motivated by the work of Gigović et al. [38]. We will introduce IRN-DEMATEL in Section 

3.2.3. The basic idea of IRN is necessary to be illustrated first. 

3.2.2. IRN Method 

The interval rough numbers technique is used to deal with uncertainty. IRN consist of both 

lower and upper limit interval rough sequences, which give the range of this uncertainty. The lower 

limit and upper limit rough sequence contain detail object classes, and object classes are calculated 

by criterion value. This is a construction process from top to bottom. 

The theory of IRN is introduced in this subsection and the calculation details are provided in 

Section 4.2. Before definition, the criterion number k and the expert number m are known. For each 

pair-wise criterion, each expert gives an interval 
',  

eL e U

ij ijz z , where ijz  indicates the degree of the 

ith criterion Ci affecting the jth criterion Cj, the superscripts eL and e’U represent the expert lower and 

upper interval limits, respectively. And the expert serial number e is from 1 to m. The object classes 

are defined as: 

 
1eL L

ij ij

L

Lim z z
M

  , subject to 
L eL

ij ijz z  (1) 

 
1eL U

ij ij

U

Lim z z
M

  , subject to 
U eL

ij ijz z  (2) 

where ML and MU are the number meeting the constraints, L and U are the index of expert meeting 

 , 1,L U m . It is worth noting that object classes count the numbers larger or less than the 
eL

ijz  
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value given by the current expert e. For the 
'e U

ijz  given by the current expert e, the definition form 

of 
'e U

ijz  is similar to 
eL

ijz , we just define 
eL

ijz  as demonstration in this paper. 

The rough sequences define as: 

     ,eL eL eL

ij ij ijRN z Lim z Lim z 
   (3) 

     ' ' ',e U e U e U

ij ij ijRN z Lim z Lim z 
   (4) 

IRN consists of this two rough sequences, and the IRN can be defined as 

     ',e eL e U

ij ij ijIRN z RN z RN z 
   (5) 

In other word, IRN contains a total of four values in two intervals. 

3.2.3. IRN-DEMATEL Method 

IRN-DEMATEL can provide the network relationship map among criteria, and the CER diagram 

is constructed by mapping all coordinate sets to visualize the complex interrelationship. For the 

subsequent analysis, the matrix definitions need to be stated. The direct-relation fuzzy matrix Z 

consists of the comparison of the pare-wise criteria value ijz  provided by each expert, and the 

definition has completed before. The means of triangular fuzzy number ij

ez  is the stack vector of min, 

average and max values that form the average matrix 
eZ . 

( ) ( ) ( )
, , ,= , , )l m r

ij ij e ij e ij e
ez z z z（  (6) 

where 

( ) ( )
, ,= min{ }, {1,2,...., ,..., }

M

l l
ij e ij e M e mz z  (7) 

1

( ) ( )
, ,

1
=




m

t

m m
ij e ij t

m
z z  (8) 

( ) ( )
, ,= max{ }, {1,2,...., ,..., }

M

r r
ij e ij e M e mz z  (9) 

The normalized initial direct-relation matrix D is calculated by summing and normalize average 

matrix 
eZ , the element ijd  in the D defines as: 

( ) ( ) ( )

( ) ( ) ( )
, , ,

= , , )ij r m l

l m r
ij ij e ij e ij e
e

Q q q q

z z z z
d （  (10) 

   ( ) ( ) ( )

1
max , ,=


 

n l m r

j ij
eQ q q qz  (11) 

Q is the sum of 
eZ  and D can be separated into submatrix  1 2 3, ,D D D . The total-relationship 

matrix is defined as: 

   
12lim w

w
T D D D D I D




       (12) 

where I is the identity matrix satisfied 
2 1lim ( ) ( )     k

w s s s sD D D D I D . 
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Each IRN consists of two rough sequences, and every rough sequence includes an upper and 

lower approximation, so the normalized matrix of average perception ( )ij n n
D IRN d


     

can be 

divided into four sub-matrices, i.e.,  ' ', , ,L U L UD D D D D        , where ( )L

ij n n
D Lim d


    , 

( )U

ij
n n

D Lim d


 
 

, ' '( )L

ij n n
D Lim d


     and ' '( )U

ij
n n

D Lim d


 
 

. Moreover,  lim
m

L

m
D O


 , 

 lim
m

U

m
D O


 ,  'lim

m
L

m
D O


  and  'lim

m
U

m
D O


 , where O denotes a zero matrix. For a more 

effective explanation, we calculate in these four sub-parts: 

   

   

   

   

1
2

1
2

1
' 2 ' ' '

1
' 2 ' ' '

lim

lim

lim

lim

L L mL L

m

U U mU U

m

L L m L L

m

U U m U U

m

I D D D I D

I D D D I D

I D D D

and

I D

I D D D I D

















    

    

    

 














  

 (13) 

Therefore, the matrix of the total influences T can be obtained by calculating the following 

elements: 

   

   

   

   

1
2

1
2

1
' 2 ' ' '

1
' 2 ' '

'

'

'

' '

lim

lim

lim

( )

( )

( )

li (m )

L L

ij n n

U U

ij n n

L L

i

L L mL L

m

U U mU U

m

L L m

j n n

U U

ij

L L

m

U U m U U

m

T Lim t

T Lim t

T Lim t

and

T L

I D D D I D

I D D D I D

I D D D I D

I D D D I D im t

























     

     

  

   

   

   

  

   

      n n














 (14) 

where ( )L

ij n n
D Lim d


    , ( )U

ij
n n

D Lim d


 
 

, ' '( )L

ij n n
D Lim d


     

and ' '( )U

ij
n n

D Lim d


 
 

. 

The sub-matrices LT , UT , 'LT  and 'UT  represent the rough-interval matrix of the total 

influences  ' ', , ,L U L UT T T T T        . A total-relationship matrix can be defined based on equations 

(13) and (14): 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

n n nn

IRN t IRN t IRN t

IRN t IRN t IRN t
T

IRN t IRN t IRN t

 
 
 
 
 
 

 (15) 

where ( ) ( ), ( )L U

ij ij ijIRN t RN t RN t     is a IRN that is used to express the indirect effects of factor i on 

factor j. Then, the matrix T reflects the inter-dependence of each pair of factors. 

The total-relationship matrix T, which are denoted as vectors R and C, respectively, and have 

rank n × 1: 

 ' '

1 1 1 1
11 1

( ) ( ) , , ,
n

n n n nL U L U

i ij ij ij ij ijj j j j
nj n

IRN R IRN t t t t t
   

 

               
      (16) 

 ' '

1 1 1 1
11 1

( ) ( ) , , ,
n

n n n nL U L U

i ij ij ij ij iji i i i
ni n

IRN C IRN t t t t t
   

 

               
       (17) 
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The value Ri denotes the sum of the i-th row of matrix T and shows the total direct and indirect 

effects that criterion I delivers to other factors. Similarly, the value Ci is the sum of the j-th column of 

matrix T and represents the total direct and indirect effects that factor j receives from other factors. 

In cases where i = j, the equation (Ri + Ci) indicates the effect of the factors and the equation (Ri − Ci) 

indicates the intensity of the factors compared to others [35]. 

The threshold value α is calculated as the mean of all elements in T, Equation (18): 

1 1
( )

n n

iji j
IRN t

N


 
  


 

 (18) 

where N denotes the number of matrix elements (15). 

And the CER diagram is constructed by mapping all coordinate sets of (Ri + Cj, Ri − Cj) to visualize 

the complex interrelationship. The procedure for this method is described in the following sections. 

The IRN-DEMATEL algorithm is shown as follows:  

Algorithm 1: IRN-DEMATEL  

Input: The expert pairwise comparison matrices Z 

Output: CER diagram 

Step 1: Analysis of factors by experts. 

Step 2: Calculation of the average matrix 
eZ . 

Step 3: A normalized initial direct-relationship matrix  [ ]  ij n nD IRN d  can be obtained based 

on the average matrix Z. 

Step 4: The total-relationship matrix  [ ]  ij n nT IRN t . 

Step 5: Calculate the sums of the rows Ri and columns Cj of the total-relationship matrix T [35]. 

Step 6: Set a threshold value (α) and construct a CER diagram. 

3.2.4. IRN-DEMATEL-ANP Method 

The ANP method considers the dependence and feedback of the criteria, which avoids the 

hierarchical constraints. In fact, ANP is a generalization of the AHP method. The calculation of the 

relative weights of criteria with traditional ANP mandates that the interdependence levels of factors 

are treated as reciprocal values. On the contrary, the interdependence levels of factors do not have 

reciprocal values when using the DEMATEL method, which is closer to real circumstances [63,64]. 

The following section deals with a novel approach, namely, the integration of the IRN-DEMATEL 

method into the ANP method, i.e., the IRN-DEMATEL-ANP method, which is shown as follows: 

Algorithm 2: IRN-DEMATEL-ANP  

Input: Total-relation matrix T 

Output: Weighted super matrix Wα 

Step 1: Develop an unweighted super matrix. 

Step 2: Create a normalized total-influence matrix for criteria Tcα., which Tcα is the normalized 

matrix of T 

Step 3: Calculating the elements of the unweighted super matrix W, which is the transpose of Tcα. 

Step 4: Develop a weighted normalized super matrix Wα, which is TDα multiplication by W. The 

weighted normalized super matrix Wα can be calculated by the normalized influence matrix T with 

respect to the perspectives. TDα is the result of Tcα divided by dimension. 

Step 5: Find the limit of the weighted super matrix Wα, which multiply the weighted super matrix 

by itself multiple times results in the limit super matrix. The weight of each evaluation criterion is 

solved. 

The IRN-DEMATEL construct the total-relation matrix T and we need ANP to confirm the final 

weight. Because the T is calculated in Algorithm 1. The Computation process of T is omitted and T is 

as the Input in Algorithm 2. A network model for the ANP method should be defined prior to the 
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development of the unweighted super matrix. This network model can be defined based on the total-

relationship matrix and CER diagram. 

The unweighted super matrix is created when each level with the total degree of influence from 

the total-relationship matrix T is normalized by IR’DEMATEL. To normalize this matrix, we must 

determine the sum of the column elements of the matrix. 

1 2

11 12 1 1 21 22 2 2 1 2

11
11 12 1

12
1

1 1

21 22 221

22

2

2 2

1

2
1 2

                               

... ... ... ...

. . .

 

. . .

 
. . . .
. . . .
. . . .

. . . 

n

nmnm m n n

n
c c c

m

n
c c c

c

m

n

n
n

n n nn
c c c

nmn

D D D

c c c c c c c c c

c

c T T T
D

c

c
T T T

c
T

D

c

c

c
D

T T T
c











































 
 



 

(19) 

where the matrix 11

cT  contains factors from group D1 and influences with respect to the factors from 

group D1, the matrix 12

cT  (20) contains factors from the group (criteria) D2 and influences with 

respect to the factors from group D2, etc. 

12 1 1 1

1 1 1

12 1 1 1

12 12 12

12 12 1212

12 12 12

( ) ... ( ) ... ( )

...

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )

j m

i ij m

m m j m m

c c c

c c c c

c c c

IRN t IRN t IRN t

IRN t IRN t IRN tT

IRN t IRN t IRN t

 
 
 
 
 
 
 
 

 (20) 

Normalization of total-influence matrix for criteria Tcα is conducted once Tc is developed. The 

criteria total-influence matrix Tc yields Tcα after normalization. The normalized matrix Tcα is shown 

below Equation (21): 
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(21) 

The total-influence matrix Tc describes the interdependence among the dimensions and criteria, 

so we can transpose the normalized total-influence matrix Tcα by the dimensions based on the basic 

concept of ANP, resulting in the unweighted super matrix W = [Tcα]’, as shown in Equation (22): 
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(22) 

where the matrix W11 denotes the values of the factor influences from group D1 in relation to the other 

factors from group D1. 

The elements of the weighted normalized super matrix Wα can be obtained by multiplying the 

elements from the unweighted super matrix W and the corresponding elements from the normalized 

total-influence matrix 
DT  . The elements of the normalized total-influence matrix 

DT 

 can be 

obtained by normalizing the total-influence matrix TD, as shown in Equation (23): 

11 1 1

1

1

( ) ... ( ) ... ( )

...

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )

j n

D D D

i ij in
D D D D

n nj nn

D D D

IRN t IRN t IRN t

T IRN t IRN t IRN t

IRN t IRN t IRN t
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 
 
 
 
 
 
 
 

 (23) 

where ( ) ( ) / ( )j j

D D iIRN t IRN t IRN d   and the value of ( )iIRN d  can be obtained from 

1
( ) ( )

n ij

i Dj
IRN d IRN t


 . 

Once the elements of the matrix 
DT   are obtained, the elements of the new weighted super matrix 

Wα can be calculated. The elements of the matrix Wα can be obtained by multiplying the normalized 

total-influence matrix with dimensions 
DT   and unweighted super matrix W. It’s worth noting that 

the weighted super matrix Wα need multiply itself several time in Step 5. We multiply the rough 

weighted super matrix by itself multiple times to obtain the rough-limit super matrix, and then the 

weight of each evaluation criteria can be obtained. The rough-interval weighted super matrix can be 

raised to the limiting powers until the super matrix has converged and become a long-term stable 

super matrix to obtain the global priority vectors, or IRD’ANP influence weights, such as lim k

k
W


 , 

where W denotes the limit super matrix and k denotes any number. Furthermore, we aggregate the 

criteria after determining their weight coefficients [52]. 

4. Results 

The procedures of the conditioning factor selection and zoning of flood hazards at Shangyou 

County include six experts with experience in the fields of risk management, hydrology, spatial 

planning and environmental protection. These experts’ interviews were used to collect data that were 

further processed and their opinions were aggregated. 

4.1. Conditioning Factor Selection 

The selection of flood conditioning factors is very important and complex, and many scientists 

have different viewpoints regarding this topic. According to previous literature, topography, climate, 

human activity and soil are the key factors for occurrence and development of floods [24,25]. As 

mentioned in Section 2.2, eleven conditioning factors were selected to analyse the flood susceptibility. 

Figure 4C1–C11 shows all the factors that were uniformly transformed into a grid spatial size of 30 × 

30 m and a grid of the Kelantan area was constructed. 
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Figure 4. Maps of the standardized criteria for the study area: (C1) altitude, (C2) slope, (C3) plan 

curvature, (C4) TWI, (C5) STI, (C6) NDVI, (C7) distance from rivers, (C8) rainfall, (C9) land cover/use, 

(C10) lithology, (C11) soil and final map. 

4.2. MCDA-GIS Evaluation 

This phase involves the standardization, experts’ work, weighting, summary analysis, and 

aggregation and validation of all the conditioning factors to be considered in the decision making. 

Since all the data were collected in various ways with different formats, the first step of MCDA is to 

normalize these data that can be used for comparison [38]. For this aim, the technique of the fuzzy 

concept was used according to the literature and experience of the experts. The fuzzy logic concept 

is flexible and suitable for modelling data in which there is no exact boundary of the set, determined 

by 0 or 1 [65]. In such cases, the affiliation of objects to a set is defined based on the degree of 

belonging to one of the functions of sigmoidal, J-shaped, linear or user-defined. The membership 

functions that are used often depend on the characteristics of the input data and the decisions and 

experience of experts. In this study, we used the discrete classification in which experts directly 

determined the values of the elements of fuzzy sets, as listed in Table 2. It should be noted that 

elements of the conditioning factors of land cover/use, lithology and soil have categorical values. For 

the other conditioning factors, which represented values of gradual change between locations, the 

elements of the set were standardized by using the fuzzy concept based on the linear membership 

function. A scale ranging from zero to one byte was used for fuzzification, where zero indicates the 
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lowest hazard and one indicates the most dangerous element of the set value in relation to the 

likelihood of flooding occurrence. 

Table 2. Fuzzy standardization of the conditioning factors. 

Conditioning 

Factors 

Fuzzy Membership 

Function 

Control Points/Value 

Points 
Final Utility 

Altitude (C1) 
Linearly monotonically 

decreasing  
c = 200 m; d = 800 m 

0–200 m: equal to 1; 200–800 m: between 0 and 1; 

more than 800 m: equal to 0 

Slope (C2) 
Linearly monotonically 

decreasing  
c = 5°; d = 25° 

0°–5°: equal to 1; 5°–25°: between 0 and 1; more 

than 25°: equal to 0 

Curvature (C3) 
Linearly monotonically 

decreasing 
c = -10; d = 10  

0–−10: equal to 1; −10–10: between 0 and 1; more 

than 10: equal to 0 

TWI (C4) 
Linearly monotonically 

increasing 
a = 4; b = 12  

0–4: equal to 0; 4–12: between 0 and 1; more than 

12: equal to 1 

STI (C5) 
Linearly monotonically 

decreasing 
c = 1; d = 50  

0–1: equal to 1; 1–50: between 0 and 1; more than 

50: equal to 0 

NDVI (C6) 
Linearly monotonically 

decreasing 
c = 0; d = 50  

−1–0: equal to 1; 0–0, 6: between 0 and 1; more than 

0, 6: equal to 0 

Distance from 

river (C7) 

Linearly monotonically 

decreasing 
c = 100 m; d = 1000 m 

0–100 m: equal to 1, 100–1000 m: between 0 and 1; 

more than 1000 m: equal to 0 

Rainfall (C8) 
Linearly monotonically 

increasing 
a = 1000 mm; b = 2000 mm 

0–1000 mm: equal to 0; 1000–2000 mm: between 0 

and 1; more than 2000 mm: equal to 1 

Land cover use 

(C9) 

Discrete categorical 

data 
Water = 1; Residential = 0.9; Bare soil = 0.7; Grass = 0.5; Farmland = 0.3; Forest = 0.1 

Lithology (C10) 
Discrete categorical 

data 
D = 0.9; A = 0.8; I = 0.7; C = 0.6; G = 0.5; H = 0.4; B = 0.3; E = 0.2; F = 0.1 

Soil (C11) 
Discrete categorical 

data 

WR = 0.9; ATc = 0.8; RGc = 0.7; CMo = 0.6; LVh = 0.5; ACh = 0.3; ACu = 0.2; Alh = 

0.1 

After standardization, the experts should define the significance measures of the conditioning 

factors by using the suitable coefficient weights (weights) or the conditioning factors weights. In this 

work, the IRN-DEMATEL method was used by the experts to analyse the factors and six experts were 

considered in this research. The following scale was used during evaluation: 1—very low influence, 

2—low influence, 3—moderate influence, 4—high influence, and 5—very high influence. All the 

experts participated in the evaluation of the clusters and conditioning factors. Once the evaluation 

by the experts was completed, six pairwise comparison matrices were obtained, as shown in Table 3. 

Table 3. Expert comparison matrix in the pairwise conditioning factors. 

Expert 1 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 (0:0) (3:5) (3:5) (2:5) (2:4) (3:4) (3:5) (2:5) (2:4) (1:4) (4:4) 

C2 (3:3) (0:0) (4:5) (1:4) (1:5) (2:5) (3:4) (3:4) (3:4) (2:4) (4:5) 

C3 (5:5) (3:3) (0:0) (4:4) (4:5) (3:5) (2:4) (3:4) (3:3) (2:5) (4:4) 

C4 (3:3) (5:5) (5:5) (0:0) (3:5) (2:4) (3:4) (3:4) (4:4) (3:4) (3:5) 

C5 (3:5) (3:3) (3:5) (3:5) (0:0) (2:5) (3:4) (3:4) (4:5) (1:4) (3:5) 

C6 (4:4) (4:4) (3:5) (2:5) (2:5) (0:0) (2:4) (2:4) (5:5) (2:5) (4:5) 

C7 (4:4) (4:4) (4:5) (2:5) (2:4) (2:3) (0:0) (4:4) (2:4) (2:4) (3:4) 

C8 (4:4) (4:5) (5:5) (1:5) (1:5) (4:4) (2:5) (0:0) (2:4) (1:4) (3:4) 

C9 (3:3) (2:2) (4:4) (1:4) (1:5) (3:5) (4:4) (2:4) (0:0) (2:4) (3:3) 

C10 (4:5) (2:2) (2:4) (5:5) (2:5) (2:4) (4:4) (2:5) (2:4) (0:0) (3:4) 

C11 (1:2) (1:3) (2:4) (2:4) (1:4) (3:4) (3:4) (3:5) (2:4) (1:4) (0:0) 

Expert 6 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

C1 (0:0) (2:4) (2:3) (1:3) (1:5) (2:5) (2:3) (1:3) (1:5) (2:5) (3:4) 

C2 (3:4) (0:0) (4:5) (1:5) (1:3) (2:3) (4:4) (2:3) (2:5) (2:5) (3:4) 

C3 (3:5) (3:5) (0:0) (3:5) (3:3) (3:4) (2:3) (2:3) (2:5) (3:4) (4:5) 
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C4 (3:4) (4:5) (4:5) (0:0) (2:4) (2:3) (3:3) (4:4) (4:5) (2:3) (2:4) 

C5 (4:5) (3:5) (3:4) (2:4) (0:0) (1:3) (4:5) (4:5) (3:4) (2:5) (3:4) 

C6 (3:5) (3:4) (3:4) (1:4) (1:3) (0:0) (2:3) (1:5) (4:5) (3:3) (4:4) 

C7 (3:5) (3:5) (4:4) (2:4) (2:3) (2:4) (0:0) (3:5) (1:5) (3:5) (3:3) 

C8 (3:4) (4:4) (4:5) (1:4) (1:3) (4:5) (1:3) (0:0) (1:5) (2:5) (4:5) 

C9 (2:4) (1:3) (4:5) (1:5) (1:3) (2:4) (3:5) (1:3) (0:0) (3:3) (2:5) 

C10 (4:5) (1:3) (1:5) (4:5) (1:4) (1:3) (4:5) (1:3) (1:3) (0:0) (4:4) 

C11 (1:3) (1:5) (1:3) (1:5) (1:3) (4:4) (2:3) (4:5) (1:5) (2:5) (0:0) 

Table 3 lists expert comparison matrix in the pairwise conditioning factors. It can be seen that 

the values of i and j are different, thus the experts expressed uncertainty when defining the influences 

of the conditioning factors during evaluation. In accord with the implementation of the IRN-

DEMATEL method, the initial comparison matrices with pairwise conditioning factors are 

transformed into interval rough. The IRN consists of two rough sequences. In the following, we show 

the formation of rough individual sequences for a single position in conditioning factor matrices. The 

determination of the elements of the interval rough comparison matrix elements z1, z2, …, z6 

representing expert in is demonstrated by calculating elements at the position C2–C3. Two rough 

sequences at the position C2–C3 that constitute IRN are obtained for each matrix 
ez . Two classes of 

objects 
L

ijz  and 
U

ijz  are defined for the position C2–C3 from the comparison matrices. Each class 

includes six elements: 

2,3 ={4;5;4;4;3;4}Lz
 

2,3 ={5;5;5;4;4;5}Uz
 

Applying Equations (1) and (2), we can produce rough sequences for every object class. For the 

first class, we obtain 

Expert 1 

rough sequence for C2-C3 

     1

2,3

1
4 4 4 4 3 4 3.8

5

LLim z Lim        

     1

2,3

1
4 4 5 4 4 4 4.2

5

LLim z Lim        

Expert 2 

rough sequence for C2-C3 

     2

2,3

1
5 4 5 4 4 3 4 4.0

6

LLim z Lim         

     2

2,3

1
5 5 5.0

1

LLim z Lim    

… 
… 

… 

Expert 6 

rough sequence for C2-C3 

     6

2,3

1
4 4 4 4 3 4 3.8

5

LLim z Lim        

     6

2,3

1
4 4 5 4 4 4 4.2

5

LLim z Lim        

For second object class, 

Expert 1 

rough sequence for C2-C3 

     1

2,3

1
5 5 5 5 4 4 5 4.67

6

ULim z Lim         

     1

2,3

1
5 5 5 5 5 5.0

4

ULim z Lim       

Expert 2 

rough sequence for C2-C3 
     2

2,3

1
5 5 5 5 4 4 5 4.67

6

ULim z Lim         
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     2

2,3

1
5 5 5 5 5 5.0

4

ULim z Lim       

… 
… 

… 

Expert 6 

rough sequence for C2-C3 

     6

2,3

1
5 5 5 5 4 4 5 4.67

6

ULim z Lim         

     6

2,3

1
5 5 5 5 5 5.0

4

ULim z Lim       

Thus, rough sequences that constitute IRN can be obtained: 

Expert 1 IRN for C2-C3 

 1

2,3( ) 3.8,4.2LRN z  ,  1

2,3( ) 4.67,5.0URN z   

    1

2,3( ) 3.8,4.2 , 4.67,5.0IRN z   

Expert 2 IRN for C2-C3 

 2

2,3( ) 4.0,5.0LRN z  ,  2

2,3( ) 4.67,5.0URN z   

    2

2,3( ) 4.0,5.0 , 4.67,5.0IRN z   

… 
… 

… 

Expert 6 IRN for C2-C3 

 6

2,3( ) 3.8,4.2LRN z  ,  6

2,3( ) 4.67,5.0URN z   

    6

2,3( ) 3.8,4.2 , 4.67,5.0IRN z   

The IRN of other comparison matrices are obtained by applying the same method as shown in 

Table 4 as follows. 

The interval rough matrices that refer to the responses are aggregated on the next level of the 

IRN-DEMATEL method. The mean IRN values are obtained based on the conditioning factor 

response matrices from Table 3 according to Equations (6)–(9). Therefore, the interval rough average 

matrix of can be obtained as listed in Table 5 as follows. 

Once the average matrix of the conditioning factors is obtained, the determination of the initial 

direct-relationship matrix can be conducted. In this step, the initial direct-relationship matrix of the 

conditioning factors is transformed into the total-relationship matrix of the conditioning factors, as 

shown in Table 6. 
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Table 4. Interval rough expert comparison matrix in the pairwise conditioning factors. 

Expert 1 

 C1 C2 C3 C4 C5 ... C11 

C1 [(0,0),(0,0)] [(2.5,3),(3,67,4,33)] [(2.5,3),(3,3.75)] [(1.5,2),(3,3.75)] [(1.5,2),(4.25,5)] 

... 

[(3,4),(4,4.25)] 

C2 [(3,4),(3.75,4)] [(0,0),(0,0)] [(3.8,4.2),(4.47,5)] [(1,1,25),(3,75,5)] [(1,25,2),(3,4)] [(3,5,4),(3,67,4,33)] 

C3 [(3,5),(4.25,5)] [(3,3.5),(3,5)] [(0,0),(0,0)] [(3.25,4),(4.25,5)] [(3,3.25),(3,4.25)] [(4,4),(4.75,5)] 

C4 [(3,3.5),(3,4)] [(4,5),(4.75,5)] [(4.25,5),(4.75,5)] [(0,0),(0,0)] [(2,2.25),(3.5,4.67)] [(2.67,3.33),(4,4.5)] 

C5 [(4,4.5),(3,5)] [(3,3.25),(3.5,5)] [(3,3.25),(3.67,4.33)] [(2.25,3),(4,4.5)] [(0,0),(0,0)] [(3,3.25),(3.67,4.33)] 

C6 [(3.5,5),(3.75,4)] [(4,4.25),(3,4)] [(3,3.25),(4,4.5)] [(1.25,2),(3.67,4.33)] [(1,1.25),(3.4,25)] [(4,4.25),(4,4.5)] 

C7 [(3.25,4),(4.25,5)] [(2,75,4),(4.25,5)] [(3.33,4.33),(4,4.25)] [(1,2),(4,4.5)] [(2,2),(3,4)] [(3,3.5),(3,3.5)] 

C8 [(3,4),(3.5,4)] [(3.67,4.33),(4,4.5)] [(3.5,5),(4.25,5)] [(1,1),(3.33,4.33)] [(1,1),(2.5,4)] [(3,4),(4.5,5)] 

C9 [(2.75,4),(2.75,4)] [(1.25,2),(2,3)] [(4,4.5),(4.5,5)] [(1,1.5),(3.5,5)] [(1.5,2),(2.5,4)] [(2.5,3),(3.25,5)] 

C10 [(3.67,4.33),(4.5,5)] [(1.5,2),(2.25,3)] [(1.25,2),(3.5,5)] [(4.25,5),(4.5,5)] [(1,1.25),(2.67,4.5)] [(3,3.25),(3.75,4)] 

C11 [(1,1.5),(2,3)] [(1,1.25),(2.75,5)] [(1.5,2),(2.33,3.5)] [(1.25,2),(3.5,5)] [(1,1),(2.33,3.33)] [(0,0),(0,0)] 

Expert 6 

 C1 C2 C3 C4 C5 ... C11 

C1 [(0,0),(0,0)] [(2,2.5),(4,5)] [(2,2.5),(3.75,5)] [(1,1.5),(3.75,5)] [(1,1.5),(3.5,4.67)] 

... 

[(2.67,3.33),(4,4.25)] 

C2 [(2.67,3.33),(3,3.75)] [(0,0),(0,0)] [(3.8,4.2),(4.67,5)] [(1,1.25),(3.33,4.33)] [(1,1.25),(4,5)] [(3,3.5),(4,5)] 

C3 [(2.33,3.67),(4,4.25)] [(3,3.5),(2.33,3.67)] [(0,0),(0,0)] [(3,3.25),(3.5,4.67)] [(3,3.25),(4.25,5)] [(4,4),(4,4.75)] 

C4 [(2.67,3.33),(3,3.5)] [(4,4.75),(3.67,4.33)] [(3.5,4.67),(4,4.75)] [(0,0),(0,0)] [(2,2.25),(4.25,5)] [(2,3),(4.5,5)] 

C5 [(3.67,4.33),(4.5,5)] [(2.5,4),(3,3.25)] [(3,3.25),(4,5)] [(2,2.25),(4.5,5)] [(0,0),(0,0)] [(3,3.25),(4,5)] 

C6 [(2.5,4),(3,3.75)] [(2.67,3.33),(4,4.25)] [(3,3.25),(4.5,5)] [(1,1.25),(4,5)] [(1,1.25),(4.25,5)] [(4,4.25),(4.5,5)] 

C7 [(2.5,3.67),(4,4.25)] [(2.33,3.33), (4,4.25)] [(3.75,5),(4,4.25)] [(2,2),(4.5,5)] [(2,2),(3.67,4.33)] [(3,3.5),(3.5,4)] 

C8 [(2.67,3.33),(3,3.5)] [(4,4.5),(4,5)] [(3.4,5),(4,4.25)] [(1,1),(3.75,5)] [(1,1),(3.5,5)] [(3.67,4.33),(4,4.5)] 

C9 [(2.33,3.33),(2,2.75)] [(1,1.25),(1.67,2.33)] [(4,4.5),(4,4.5)] [(1,1.5),(3,4.5)] [(1.5,2),(3.5,5)] [(2,2.5),(2.67,3.67)] 

C10 [(4,5),(4,4.5)] [(1,1.5),(1.5,2.67)] [(1,1.25),(3,4.5)] [(4,4.25),(4,4.5)] [(1,1.25),(3.25,5)] [(3.25,4),(3.75,4)] 

C11 [(1,1.5),(1.67,2.33)] [(1,1.25),(2,4)] [(1,1.5),(2.75,4)] [(1,1.25),(3,4.5)] [(1,1),(2.75,4)] [(0,0),(0,0)] 

Table 5. Interval rough average matrix of the conditioning factors. 

 C1 C2 C3 C4 ... C11 

C1 [(0,0),(0,0)] [(2.25,2.75),(3.83,4.67)] [(2.25,2.75),(3.38,4.38)] [(1.25,1.75),(3.38,4.38)] 
... 

[(2.83,3.67),(4,4.25)] 

C2 [(2.83,3.67),(3.5,3.75)] [(0,0),(0,0)] [(3,3.5),(3.54,4.67)] [(1,1.25),(3.54,4.67)] [(3.25,3.75),(3.83,4.67)] 
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C3 [(2.67,4.33),(4.13,4.63)] [(2.67,4.33),(3,3.5)] [(0,0),(0,0)] [(3.13,3.63),(3.88,4.83)] [(4,4),(4.38,4.88)] 

C4 [(2.83,3.67),(3,3.5)] [(4.38,4.88),(3.83,4.67)] [(4.38,4.88),(3.88,4.83)] [(0,0),(0,0)] [(2.33,3.17),(4.25,4.75)] 

C5 [(3.83,4.67),(3.75,4.75)] [(3,3.25),(3,4.5)] [(3,3.25),(3.83,4.67)] [(2.13,2.63),(4.25,4.75)] [(3,3.25),(3.83,4.67)] 

C6 [(3.4,5),(3.38,3.88)] [(2.83,3.67),(4,4.25)] [(3,3.25),(4.25,4.75)] [(1.13,1.63),(3.83,4.67)] [(4,4.25),(4.25,4.75)] 

C7 [(2.88,3.83),(4.13,4.63)] [(2.54,3.67),(4.13,4.63)] [(3.54,4.67),(4,4.25)] [(1,2),(4.25,4.75)] [(3,3.5),(3.25,3.75)] 

C8 [(2.83,3.67),(3.25,3.75)] [(3.83,4.67),(4,4.5)] [(3.25,4.75),(4.13,4.63)] [(1,1),(3.54,4.67)] [(3.33,4.17),(4.25,4.75)] 

C9 [(2.38,2.88),(2.54,3.67)] [(1.13,1.63),(1.83,2.67)] [(4.25,4.75),(4,4.5)] [(1,1.5),(3.25,4.75)] [(2.25,2.75),(2.96,4.33)] 

C10 [(4.25,4.75), (3.83,4,67)] [(1.25,1.75),(1.88,2.83)] [(1.13,1.63),(3.25,4.75)] [(4.13,4.63),(4.25,4.75)] [(3.13,3.63),(3.75,4)] 

C11 [(1,1.5),(1.83,2.67)] [(1,1.25),(2.38,4.5)] [(1.25,1.75),(2.54,3.75)] [(1.13,1.63),(3.25,4.75)] [(0,0),(0,0)] 

Table 6. The total relationship matrix of the conditioning factors. 

 C1 C2 C3 C4 ... C11 

C1 [(0.22,0.35),(0.56,0.78)] [(0.29,0.36),(0.62,0.94)] [(0.29,0.36),(0.70,1.00)] [(0.17,0.24),(0.72,1.02)] 

 

[(0.34,0.46),(0.76,1.01)] 

C2 [(0.34,0.49),(0.65,0.86)] [(0.27,0.34),(0.55,0.87)] [(0.36,0.43),(0.72,1.03)] [(0.19,0.26),(0.74,1.05)] [(0.41,0.53),(0.78,1.04)] 

C3 [(0.39,0.57),(0.68,0.88)] [(0.41,0.47),(0.62,0.95)] [(0.33,0.40),(0.66,0.95)] [(0.28,0.35),(0.77,1.05)] [(0.47,0.58),(0.80,1.04)] 

C4 [(0.43,0.60),(0.66,0.85)] [(0.48,0.55),(0.65,0.94)] [(0.49,0.56),(0.75,1.01)] [(0.22,0.29),(0.69,0.95)] [(0.55,0.67),(0.83,1.03)] 

C5 [(0.41,0.58),(0.71,0.91)] [(0.40,0.48),(0.67,0.99)] [(0.41,0.48),(0.79,1.07)] [(0.25,0.33),(0.82,1.09)] [(0.47,0.61),(0.86,1.08)] 

C6 [(0.37,0.55),(0.67,0.87)] [(0.40,0.47),(0.64,0.94)] [(0.39,0.45),(0.76,1.03)] [(0.21,0.29),(0.77,1.05)] [(0.43,0.57),(0.82,1.04)] 

C7 [(0.37,0.54),(0.67,0.85)] [(0.41,0.49),(0.61,0.90)] [(0.42,0.48),(0.73,0.99)] [(0.21,0.30),(0.76,1.01)] [(0.44,0.57),(0.79,0.99)] 

C8 [(0.35,0.51),(0.62,0.85)] [(0.39,0.47),(0.60,0.94)] [(0.40,0.47),(0.69,1.02)] [(0.20,0.27),(0.71,1.04)] [(0.43,0.56),(0.75,1.02)] 

C9 [(0.32,0.49),(0.56,0.79)] [(0.29,0.38),(0.52,0.85)] [(0.37,0.45),(0.65,0.96)] [(0.19,0.27),(0.65,0.97)] [(0.39,0.54),(0.68,0.97)] 

C10 [(0.36,0.51),(0.62,0.83)] [(0.30,0.38),(0.55,0.86)] [(0.30,0.38),(0.67,0.97)] [(0.27,0.34),(0.71,0.98)] [(0.40,0.52),(0.72,0.97)] 

C11 [(0.35,0.52),(0.61,0.79)] [(0.37,0.44),(0.63,0.90)] [(0.35,0.42),(0.72,0.96)] [(0.22,0.30),(0.73,0.98)] [(0.37,0.49),(0.70,0.90)] 



Remote Sens. 2019, 11, 62 20 of 32 

 

The values of total direct and indirect effects that the jth conditioning factor has received from 

other conditioning factors and transferred to others can be obtained by summing the elements of the 

total-relationship matrix of the clusters/conditioning factors at each row and column. These values 

and the threshold value (α) of the total-relationship matrix are used to define CER diagram as shown 

in Figure 5, which is created to visualize the complicated causal relationship of the conditioning 

factors into a visible structural model. 

The elements of matrix T in Table 5 with values above the threshold value α are identified and 

mapped on the diagram, as shown in Figure 5, where the x–axis and denotes IRN Ci + Ri and the y–

axis denotes IRN Ci − Ri. These values are used to demonstrate the relationship between two factors. 

The arrows that denote a cause-and-effect membership are oriented from factors with values below 

α to elements with values above α. 

Ci+Ri

Ci-Ri

10.00 10.50 11.00 11.50 12.00 12.50

-2.00

-1.00

0.00

1.00

2.00

C1

C2

C3

C4

C5

C6 C7

C8

C9

C10

C11

 

Figure 5. CER diagram. 

The weight coefficients of the conditioning factors were input into the IRN-ANP method based 

on the CER diagram. First, the elements of the interval-rough unweighted and weighted super 

matrices were calculated based on the total-relationship matrix of the conditioning factors. The total-

influence matrix T was included in the ANP method and the unweighted and weighted super 

matrices were obtained. The influential weights of the stable matrix were defined once the 

unweighted and weighted super matrices were computed. The weights of the conditioning factors 

were obtained based on the values in the weighted super matrix, as shown in Table 7. 

Table 7. Weight coefficients of the conditioning factors.Conditioning factor. 

 Weight Coefficient Rank Crisp Weight Coefficient 

Altitude (C1) [(0.034,0.331),(0.040,0.337)] 4 0.1002 

Slope (C2) [(0.079,0.253),(0.071,0.272)] 6 0.0910 

Curvature (C3) [(0.034,0.303),(0.031,0.357)] 5 0.0972 

TWI (C4) [(0.015,0.237),(0.026,0.320)] 7 0.0790 

STI (C5) [(0.020,0.142),(0.053,0.186)] 9 0.0538 

NDVI (C6) [(0.023,0.224),(0.023,0.257)] 8 0.0708 

Distance from rivers (C7) [(0.022,0.368),(0.011,0.497)] 3 0.1184 

Rainfall (C8) [(0.091,0.378),(0.089,0.380)] 2 0.1266 

Land cover/use (C9) [(0.093,0.501),(0.091,0.656)] 1 0.1776 

Lithology (C10) [(0.012,0.107),(0.013,0.139)] 11 0.0360 

Soil (C11) [(0.023,0.153),(0.023,0.170)] 10 0.0496 
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To validate the effectiveness of the proposed method, two popular methods that were proposed 

recently were selected for comparison, including the crisp DEMTEL-ANP [29] and fuzzy DEMTEL-

ANP methods [35]. A symmetric form of triangular fuzzy numbers was used to calculate the weight 

coefficients by applying the DEMTEL-ANP method. The comparison results are shown in Figure 6. 

All the three methods generated sequences of weight coefficients that were characterized by similar 

rank of C9 > C8 > C7 > C1 > C3 > C2 > C4 > C6 > C5 > C11 > C10 with different values. 

 

Figure 6. Comparison of the conditioning factors weighting. 

Figure 6 shows each interval number with two colour shades (dark and light): the darker shade 

denotes the upper and lower ranges, while the lighter shade means the intersection of two rough 

sequences of the IRN. The crisp DEMTEL-ANP method computes weight coefficients by applying 

crisp numbers. Thus, any uncertainty and vagueness from the group decision making process can be 

neglected. Meanwhile, uncertainties from group decision making in the fuzzy DEMTEL-ANP and 

IRN-DEMTEL-ANP methods are represented by various dimensions of fuzzy and IRN of weight 

coefficients. These interval values are the result of various mechanisms that are employed to treat 

uncertainty and subjectivity. However, the fuzzy DEMTEL-ANP method handles uncertainty by 

means of fuzzy sets with previously defined boundaries, which cannot be extended or narrowed, the 

boundaries in IRN are flexible and can be adjusted to accommodate uncertainties in the data. 

Moreover, the previously defined boundaries in the fuzzy DEMTEL-ANP method increase the 

subjectivity in the group-decision-making process because the boundaries are defined based on 

subjective assessments. This phenomenon can significantly affect the degree of uncertainty, which is 

represented in the size of an interval, unlike in the IRN-DEMTEL-ANP method. Therefore, the 

proposed method can efficiently measure uncertainties during conditioning factor evaluation and 

reflect the perception of a decision maker. 

4.3. Aggregation of Weighted Linear Combinations 

WLC is the most commonly used method that is compensatory, meaning that a low result in one 

conditioning factor can be compensated by high results in another, which is desirable for this specific 

decision problem. Thus, WLC was selected as an aggregation method and it multiplied each fuzzy 

standardized conditioning factor map (i.e., each raster cell of 30 × 30 m) with the weights of the 

conditioning factors, obtaining different variations from the AHP method, and then summarizing the 

results. The mathematical expression for calculating the convenience index in the WLC method is as 

follows: 



Remote Sens. 2019, 11, 62 22 of 32 

 

 i iS w x  (24) 

where S is the suitability index, wi is the normalized value of the factor weight and xi is the criterion 

score of factor i. The WLC method was used to create a map of the aggregation of the conditioning 

factors on the final map, which is displayed in the same range of fuzzy values from 0 to 1, based on 

the employed conditioning factors and determination of their weights according to the scenario in 

the previous section. Finally, the FSI scales were calculated using the defuzzification algorithm of the 

standard deviation method using the Reclass Spatial Analyst Tool in ArcGIS 10.3 software. Each cell 

is classified into five categories and has been assigned a new value from 1 to 5, representing the FSI 

scales. The final results of the flood hazard assessment are provided in Figure 7. 

 

Figure 7. The final flood susceptibility map for the study area with historic flood locations. 

Table 8. Areas of the classes from the final flood susceptibility map. 

FSI 
Area 

Number of Cells (30 × 30 m) 
(km2) % 

FSI 1 Very low 118.4 7.7 131,544 

FSI 2 Low 434.8 28.2 483,080 

FSI 3 Moderate 588.4 38.1 653,747 

FSI 4 High 329.8 21.4 366,514 

FSI 5 Very high 71.6 4.6 79,534 

Table 8 shows the five classes of the final flood susceptibility map with the covered area of the 

study territory. According to the results in Table 8, the area with the largest FSI scale (FSI 5) was 71.6 

km2 or 4.6% of the study area. Additionally, 329.8 km2 in the study area exhibited a high FSI scale 

(FSI 4). These areas were mainly located in the eastern and southern regions, which have lower 

altitudes, lowland relief and areas near river flows. 
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4.4. Model Validation 

The validation of flood susceptibility maps is an essential step during modelling. The prediction 

performance of the WLC method and the FSI scales were evaluated by using a non-dependent 

threshold approach of ROC [28]. The AUC is a synthetic index that is calculated for ROC curves and 

has been generally used to evaluate the accuracy of flood susceptibility maps [25,27]. The AUC is the 

probability that a positive event is classified as positive by the test given all the possible values of the 

test [66-70]. In addition, the model of this paper is established by expert knowledge, all historical 

flood samples are considered. 

First, historical flood locations were used as the validation set to evaluate the accuracy of the 

prediction methods. The validation samples that represented flooded and non-flooded areas were 

integrated into a single vector. We filled the attributes of these validation samples with the values of 

the standardized conditioning factors and the values of the final maps from the WLC fuzzy method 

and the FSI scales. Histograms of the final map values showed a high correlation between the 

locations of the validation samples and the flood and non-flood areas. For the WLC fuzzy method, 

the maximum and minimum values for the flood validation samples were 0.874 and 0.582, 

respectively, and the standard deviation was 0.046, as shown in Figure 8a. In Figure 8b, the maximum 

and minimum values for the non-flood validation samples were 0.597 and 0.182, respectively, and 

the standard deviation was 0.106. In addition, the FSI scales in the final map ranged from 3.114 to 5 

and 1 to 3.508 for the flood and non-flood validation samples as shown in Figure 8c,d, respectively. 

The ROC curve corresponds to the graphical representation of the specificity and sensitivity for the 

various possible threshold values. The ROC curves and specificity/sensitivity diagrams for the WLC 

fuzzy model and FSIs are shown in Figure 9. 
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Figure 8. Histograms of the WLC fuzzy (a-b) and FSI scales (c-d) for flood and non-flood validation 

samples. 

The final results of the eleven flood susceptibility maps (maps generated through IRN-

DEMANTEL-ANP method) were validated by comparing them with the historical flood locations, 

using the success-rate and prediction-rate methods. The success-rate results were obtained based on 

a comparison of the flood grid cells in the training dataset with the eleven flood susceptibility maps. 

The success rate measures how the flood analysis results fit the training dataset. This method divides 

the area of a flood susceptibility map into five classes, ranging from the highest to the lowest FSI 

values (Figure 7). The success-rate method uses the training dataset, therefore, it might not be a 

suitable method for assessing the prediction capacity of the flood susceptibility models. 

The prediction rate can explain how well the flood susceptibility models and flood conditioning 

factors predict flood occurrence. In this study, the prediction-rate results were obtained by comparing 

the flood grid cells in the validation dataset with the eleven flood susceptibility maps. 

The area under the prediction-rate ROC curve was calculated. Figure 9 shows the prediction-

rate results of the eleven flood susceptibility maps obtained from IRN-DEMATEL-ANP models. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. ROC curves (a, c) and diagrams of the specificity/sensitivity (b, d) for the WLC fuzzy and FSI 

methods. 

According to the experimental results, all the flood susceptibility maps had the most acceptable 

and representable appearance with AUC above 0.95. The WLC fuzzy technique exhibited the best 

cross-validated performance, followed by the FSI based technique. For instance, the WLC fuzzy 

technique achieved a very high validation accuracy with an AUC value of 0.988, as shown in Figure 

9a,b. Meanwhile, both the visual assessment and quantitative validation through the ROC curve 
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indicated that the FSI based technique was an excellent prediction method with an AUC value of 

0.964, as shown in Figure 9c,d. 

5. Discussions 

The main objective of this work is to investigate the use a novel hybrid MCDA-GIS technique to 

evaluate FSM, which is constructed by ensemble of DEMATEL, ANP and IRN technique in the case 

study at Shangyou County, China. In this paper, we improve the DEMATEL method by applying 

IRN to determine connections in the network structure based on criteria and to accept imprecisions 

during collective decision making. The application of IRN can eliminate the necessity of additional 

information to define uncertain number intervals. Therefore, the quality of the existing data during 

collective decision making and experts’ perceptions that are expressed through an aggregation matrix 

can be retained. 

The considered conditioning factors have not the same contribution to flood occurrence, thus 

the decision makers should define importance of each conditioning factor by using appropriate 

weight coefficients. The WLC method requires normalization of the weights. After determining 

weight coefficients of the conditioning factors, the hybrid IRN-DEMATEL-ANP method is used to 

calculate the normalized weight conditioning factors. Pair-wise comparisons of the criteria from the 

IRN-DEMATEL method serve as the input parameters of the ANP method. The weight coefficients 

of the criteria are obtained as the output values from the ANP method. Finally, WLC method is 

subsequently used in the GIS environment to obtain the final flood susceptibility map. 

According to the importance determination of different used factors for FSM, results of the 

current study showed that the most important conditioning factor are land cover/use, followed by 

rainfall, distance from river, altitude and curvature. 

Land cover/use is a very important factor in recognizing sensitive regions prone to flooding. 

Strong correlation of the Land cover/use and flooding is not doubtable as each land use has its own 

impact on increasing or decreasing the speed of water and therefore generating the flood. Vegetated 

areas are most often represent protection zones that make the land less prone to flood occurrence 

[31]. Conversely, urban areas increase surface runoff due to the possession of large impermeable 

surfaces. 

Also the effect of the rainfall was appraised as a main conditioning factor in flood occurrence. 

The higher rainfall amount usually increases a chance of flood prone area [71]. In this work, the 

available 1:50,000 rainfall data was considered in the experiments. The main reasons can be 

summarized as follows: First of all, each factor was converted in the forms of spatially-defined layers 

of maps with grid size of 30 × 30 m from the ASTER GDEM Version 2 and remote sensing data, along 

with geological, meteorological and soil data that were provided by different government 

departments for further analysis. In fact, the rainfall data with the resolution of 1:50,000 was suitable 

for this study based on our experiments. Second, it is not appropriate for FSM under the assumption 

that the higher the resolution, the better the result. Since we obtain a pixel-based susceptibility map, 

using high resolution rainfall data may be useless for practical uses of the map. Moreover, it is not 

statistically reasonable in most cases if the resolution of other input data cannot accord with the 

rainfall one. Finally, there is no meteorological data in high resolution and only the 1:50,000 rainfall 

data are publicly available. However, even if we obtain different factor layers with a very high 

resolution, the available rainfall data can be interpolated to match the other data using the ArcGIS 

tool to support FSM. 

In addition, one of the conditioning factors, which have high significant impact on flooding, is 

distance from the river. River levels will increase due to the heavier precipitation during flooding, 

causing an overflow of water into areas closest to the river bank [24]. The role of curvature in flood 

occurrence in the study area was also quite remarkable. In the case of flood mostly occurred in the 

area that has flat curvature. This was confirmed by many different authors [12,24,29,31,34], who also 

confirmed that rainfall, land cover/use, curvature, elevation, and distance from river had higher 

impacts on flooding. 
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On the other hand, in this study, STI, soil type and lithology had lowest importance for flood 

occurrence. This is partly in agreement with findings reported in Chapi et al. [72] and Shafizadeh-

Moghadam et al. [73], even though distace from river was reported as the main effective factor [72,73]. 

In order to assess the performance of the used IRN-DEMATEL-ANP method, the defined flood 

susceptibility zones are compared with historical locations of flood events. For evaluation of the 

method, the area under the curve (AUC) method was used and prediction rate curves were 

calculated. The capability of IRN-DEMATEL-ANP method was evaluated using a non-dependent 

threshold approach: the receiver operating characteristic (ROC) curve. Based on overall estimates, 

the proposed approaches have shown the most acceptable results for mapping the flood occurrence 

in the study area. 

Besides, the proposed modification of the DEMATEL and ANP using RN makes it possible to 

take into account doubts that occur during the expert evaluation of criteria thus bridging the existing 

gap in the methodology in the treatment of uncertainty based on RN. In such a way, the quality of 

the existing data in the collective decision making process can be retained, as well as the experts’ 

perception, which is expressed through the aggregation matrix. In the surveyed literature, no works 

on the problem of FSM, taking into account the interdependencies between the criteria in the 

framework of the rough number-based MCDM approach, have been found. The suggested method 

was validated through a case study at Shangyou County. 

Taking into account the causal relationship between the proposed criteria for FSM, it may be 

stated that the DEMATEL methodology can support decision making by deriving a visual graph 

showing the degree of their influence on the final result [74]. In more realistic conditions, the 

analytical network process (ANP) is also capable of handling interdependencies between the criteria, 

but it assumes an equal cluster weight to obtain the weighted supermatrix [75,76]. To overcome this 

shortcoming, DEMATEL-ANP is applied to find the influential weights of the criteria based on the 

network relationship map [77]. The ANP technique is used to determine the weights of the 

performance criteria based on the total relation matrix formed by the DEMATEL, thus avoiding 

pairwise comparisons of the criteria required for ANP analysis [53]. Calculating the relative weights 

of criteria using traditional ANP means that the levels of interdependence of the factors are treated 

as reciprocal values. In contrast, in using the DEMATEL method, the levels of interdependence of 

factors do not have reciprocal values, which is closer to real circumstances [42,43,78-81]. Because all 

of the above, implementation DEMATEL method in ANP model gives more objective insight into 

weight coefficient values. 

The results obtained by the proposed method can be considered promising when the reliability 

and stability of the ranking results are checked. The proposed model can identify the mutual 

influence of the criteria, thereby aiding purchasing managers to better understand the performance-

related issues and to devise the appropriate improvement strategies. Furthermore, it allows for 

applying the developed framework for case studies from the perspective of particular areas and 

comparing the results by examining possible differences and their causes. 

6. Conclusions 

This work validates the application of a novel MCDA-GIS framework for FSM in the case of 

Shangyou County, China. To accommodate uncertainties in the MCDA process, the IRN technique is 

used to handle this problem. The application of IRN in the MADA process is presented through the 

hybrid IRN-DEMTEL-ANP method. The final susceptibility map was obtained using the WLC 

method. Some conclusions can be drawn as follows. First, the proposed method can conduct FSM by 

combining both qualitative and quantitative methods. It can make full use of experts’ knowledge, 

which is different from statistical learning methods. Second, the validation process was performed 

based on the comparison of the historical flood locations to the different flood susceptible zones on 

the final map. The higher AUC values demonstrate the effectiveness of the proposed method. 

Specifically, according to the resultant FSI scales, 71.6 km2 (4.6%), 329.8 km2 (21.4%) and 588.4 km2 

(38.1%) of the study area were labelled with ‘very high’, ‘high’ and ‘moderate’, respectively, which 

proves that Shangyou County is mostly located in the flood-prone areas. These high susceptible zones 
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locate at the eastern and southern areas which are near river flows with lower altitudes and lowland 

reliefs. In the future, we will take some useful ideas on the relationship between planning and flood 

assessment using the IRN-DEMTEL-ANP method, following the contributions of [82,83]. Moreover, 

the future improvement of the proposed method may be based on classical fuzzy sets and the 

intervals of fuzzy numbers when determining the parameters of the conditioning factors. Besides, 

the implementation of individual phases of the Best-Worst method can be involved in the phases of 

the DEMATEL or ANP methods. 
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